RESUMO
This study presents a comparative analysis of molecular docking data, focusing on the binding interactions of the natural compounds apigenin and luteolin with the proteins TP-53, pRb, and APOBEC, in comparison to conventional pharmacological ligands. Advanced bioinformatics techniques were employed to evaluate and contrast binding energies, showing that apigenin and luteolin demonstrate significantly higher affinities for TP-53, pRb, and APOBEC, with binding energies of -6.9 kcal/mol and -6.6 kcal/mol, respectively. These values suggest strong potential for therapeutic intervention against HPV-16. Conventional ligands, by comparison, exhibited lower affinities, with energies ranging from -4.5 to -5.5 kcal/mol. Additionally, protein-protein docking simulations were performed to assess the interaction between HPV-16 E6 oncoprotein and tumor suppressors TP-53 and pRb, which revealed high binding energies around -976.7 kcal/mol, indicative of their complex interaction. A conversion formula was applied to translate these protein-protein interaction energies to a comparable scale for non-protein interactions, further underscoring the superior binding potential of apigenin and luteolin. These findings highlight the therapeutic promise of these natural compounds in preventing HPV-16-induced oncogenesis, warranting further experimental validation for clinical applications.
RESUMO
Cellular therapy (CT) involving the transplantation of hematopoietic progenitor cells (HPC) is a treatment modality for both benign and malignant disorders. All autologous products require cryopreservation while allogeneic product cryopreservation became more common during the Coronavirus disease 2019 pandemic. Cells are stored in liquid nitrogen (LN2) freezers which can malfunction and products may have to be temporarily stored in a mechanical -80 °C freezer if additional LN2 freezer space is not available. The practice of temporary short-term -80 °C storage is present but there is no study to show that the product is unaffected by the temporary storage at a significantly warmer temperature. In this study, we identified previously collected CT products that were cryopreserved for now-deceased recipients that had remaining cryovials with aliquots of products for quality control purposes. Vials from 20 collections were split into 4 groups of 5 in with one vial placed in temporary storage at -80 °C for 2-5 weeks before returning to LN2 storage while another vial remained in LN2 storage for the entire duration of the study. The vials were then simultaneously thawed, processed, and evaluated for total nucleated cell (TNC) and CD34 + cell count and TNC and CD34 + cell viability to determine if there were any differences induced by temporary -80 °C storage. No statistically significant differences were seen after 4 weeks of -80 °C storage; however, after 5 weeks, a statistically significant decrease in TNC viability and viable TNC count, but not CD34 + cell viability and viable CD34 + cell count was observed. These results provide some reassurance to CT processing labs that if there is a failure in their LN2 storage for cryopreserved products, these products may be safely stored at -80 °C for up to 4 weeks and returned to LN2 storage without compromising CD34 + cell viability.
RESUMO
Introduction: The CD34+ hematopoietic cell count was used to define cell harvest goals. Successful peripheral blood stem cell transplantation depends on infusion of an appropriate number of HPCs to achieve rapid and durable hematologic recovery. Purpose: In this study, we evaluated the use of the Hematopoietic Progenitor Cell count program on the Sysmex XN-3000 hematology analyzer as an effective parameter for enumerating CD34+ cells. Patients and Methods: Whole blood samples from 144 subjects who are either healthy donors or patients scheduled to undergo peripheral blood stem cell collection were collected and hemopoietic stem cells were quantified using CD34 cell enumeration by flow cytometry and XN-HPC by hematology analyzer. Results: The correlation between the two methods was high (r = 0.766; 95% CI: 0.702-0.818). Passing-Bablok showed an intercept at 3.45 (2.54 to 4.74) with a slope of 0.78 (95% CI 0.69 to 0.89). Residual analysis of this model indicated no significant deviation from linearity (p = 0.360). The receiver operating characteristic curve demonstrated an area under curve to be 0.88 (0.82 to 0.92), with a positive predictive value of 80.3%. The correlation between CD34+ and XN-HPC showed a strong relationship and good agreement with minimal bias. Conclusion: The XN-HPC showed good analytical performance. With the increasing requirements for stem cell transplantation, a technically simple and rapid alternative for stem cell enumeration that is sustainable is highly useful.
RESUMO
The Sysmex XN series haematopoietic progenitor cell (XN-HPC) is a novel tool for assessing stem cell yield before allogeneic haematopoietic stem cell transplantation. This study aimed to establish a reference interval (RI) for XN-HPC in peripheral blood allogeneic transplant donors following granulocyte colony-stimulating factor (G-CSF) stimulation and determine its clinical significance. All specimens were analysed using Sysmex XN-20. Samples were collected and analysed using non-parametric percentile methods to define the RIs. Quantile regression was used to explore the dependency of the RIs on sex and age. Samples were included in clinical decision limits for apheresis based on receiver operating characteristic curve analysis. The non-parametrically estimated RI for XN-HPC was 623.50 (90% confidence interval [CI90%] 510.00-657.00) to 4,144.28 (CI90% 3,761.00-4,547.00). The RIs for the XN-HPC were not age-dependent but were sex-dependent. The RI for males was 648.40 (CI90% 582.00-709.00)-4,502.60 (CI90% 4,046.00-5,219.00) and for females was 490.90 (CI90% 311.00-652.00)-3,096.90 (CI90% 2,749.00-3,782.00). Comparisons based on XN-HPC values between the poor and less-than-optimal groups, good and less-than-optimal groups, and good and non-good groups had areas under the curve of 0.794 (P < 0.001), 0.768 (P < 0.001), and 0.806 (P < 0.001), respectively, indicating a good predictive value for mobilisation effectiveness. XN-HPC data exceeding 3974 × 106/L suggested that a sufficient number of stem cells could be collected clinically. Values > 5318 < 106/L indicated 100% mobilisation effectiveness. We established an RI for XN-HPC in peripheral blood allogeneic transplant donors following G-CSF stimulation and determined clinical decision thresholds for mobilisation efficiency.
Assuntos
Fator Estimulador de Colônias de Granulócitos , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Valores de Referência , Adulto Jovem , Mobilização de Células-Tronco Hematopoéticas/métodos , Doadores de Tecidos , Transplante de Células-Tronco Hematopoéticas , Adolescente , Células-Tronco Hematopoéticas/citologia , Transplante Homólogo , Curva ROCRESUMO
The effectiveness of copper oxide-modified electrochemical sensors using different polymers is being studied. The commercial powder was sonicated in an isopropyl alcohol solution and distilled water with 5 wt% polymers (chitosan, Nafion, PVP, HPC, α-terpineol). It was observed that the chitosan and Nafion caused degradation of CuO, but Nafion formed a stable mixture when diluted. The modified electrodes were drop-casted and analyzed using cyclic voltammetry in 0.1 M KCl + 3 mM [Fe(CN)6]3-/4- solution to determine the electrochemically active surface area (EASA). The results showed that α-terpineol formed agglomerates, while HPC created uneven distributions, resulting in poor stability. On the other hand, Nafion and PVP formed homogeneous layers, with PVP showing the highest EASA of 0.317 cm2. In phosphate-buffered saline (PBS), HPC and PVP demonstrated stable signals. Nafion remained the most stable in various electrolytes, making it suitable for sensing applications. Testing in 0.1 M NaOH revealed HPC instability, partial dissolution of PVP, and Cu ion reduction. The type of polymer used significantly impacts the performance of CuO sensors. Nafion and PVP show the most promise due to their stability and effective dispersion of CuO. Further optimization of polymer-CuO combinations is necessary for enhanced sensor functionality.
RESUMO
Background: MCA bifurcation aneurysms pose treatment challenges because of the complex hemodynamics at the bifurcation and the risk of rupture. FDS implantation has been controversial and there are only limited reports. Therefore, the aim of this study was to assess the efficacy and safety of this treatment strategy using p64 MW HPC and p48 MW HPC FDSs for MCA bifurcation aneurysms, compared with the p64 classic FDS. Materials and methods: We retrospectively analyzed our institutional database and identified all patients with saccular, non-ruptured MCA bifurcation aneurysms treated with p64 MW HPC, p48 MW HPC, or p64 classic FDS implantation alone. Aneurysms with implantation of additional devices in the same session, previous treatments, and acutely ruptured and fusiform aneurysms were excluded. Results: A total of 79 aneurysms met the inclusion criteria: 23 receiving a p64 MW HPC, 34 receiving a p48 MW HPC, and 22 receiving a p64 classic FDS. The occlusion rate was highest for the p48 MW HPC 2 mm FDS, at 88.9% at FU2, compared with 72.2% for the p64 MW HPC and 70.6% for the p64 classic. The time to aneurysm occlusion was shortest with the p64 MW HPC, at 178.31 days. The highest retreatment rate was observed with the p48 MW HPC 3 mm. Conclusion: Treatment of MCA bifurcation aneurysms with a p48 MW HPC 2 mm or p64 MW HPC FDS is a safe and reliable strategy achieving high aneurysm occlusion rates - attributable to their lower porosity in relation to the parent vessel diameter as compared to the p48 MW HPC 3 mm FDS-, with reasonable morbidity and mortality.
RESUMO
BACKGROUND: The advent of high-throughput technologies, including cutting-edge sequencing devices, has revolutionized biomedical data generation and processing. Nevertheless, big data applications require novel hardware and software for parallel computing and management to handle the ever-growing data size and analysis complexity. On-premise, high-performance computing (HPC) is increasingly used in biomedical research for big data stewardship. FINDINGS: In this work, we present Tunisia's first high-performance computational infrastructure for omics research. METHOD: We highlight measurements and recommendations that may help institutions in other low- and middle-income countries that are eager to implement local HPC in facilities for bioinformatics research and omics data analyses.
Assuntos
Biologia Computacional , Software , Biologia Computacional/métodos , Países em Desenvolvimento , Humanos , Genômica/métodos , Big Data , Análise de DadosRESUMO
Theoretical models conventionally portray the consolidation of memories as a slow process that unfolds during sleep. According to the classical Complementary Learning Systems theory, the hippocampus (HPC) rapidly changes its connectivity during wakefulness to encode ongoing events and create memory ensembles that are later transferred to the prefrontal cortex (PFC) during sleep. However, recent experimental studies challenge this notion by showing that new information consistent with prior knowledge can be rapidly consolidated in PFC during wakefulness and that PFC lesions disrupt the encoding of congruent events in the HPC. The contributions of the PFC to memory encoding have therefore largely been overlooked. Moreover, most theoretical frameworks assume random and uncorrelated patterns representing memories, disregarding the correlations between our experiences. To address these shortcomings, we developed a HPC-PFC network model that simulates interactions between the HPC and PFC during the encoding of a memory (awake stage), and subsequent consolidation (sleeping stage) to examine the contributions of each region to the consolidation of novel and congruent memories. Our results show that the PFC network uses stored memory "schemas" consolidated during previous experiences to identify inputs that evoke congruent patterns of activity, quickly integrate it into its network, and gate which components are encoded in the HPC. More specifically, the PFC uses GABAergic long-range projections to inhibit HPC neurons representing input components correlated with a previously stored memory "schema," eliciting sparse hippocampal activity during exposure to congruent events, as it has been experimentally observed.
Assuntos
Hipocampo , Memória , Córtex Pré-Frontal , Sono , Córtex Pré-Frontal/fisiologia , Hipocampo/fisiologia , Memória/fisiologia , Humanos , Sono/fisiologia , Vigília/fisiologia , Modelos Neurológicos , Consolidação da Memória/fisiologia , AnimaisRESUMO
Oral ulcers present as recurrent and spontaneous lesions, often causing intolerable burning pain that significantly disrupts patients' daily lives and compromises their quality of life. In addressing this clinical challenge, oral dissolving films (ODFs) have emerged as promising pharmaceutical formulations for oral ulcer management due to their rapid onset of action, ease of administration, and portability. In this study, ODFs containing the insoluble drug dexamethasone (Dex) were formulated for the treatment of oral ulcers in rabbits using a solvent casting method with ethanol as the solvent. To optimize the composition of the ODFs, a Box-Behnken Design (BBD) experiment was employed to investigate the effects of varying concentrations of hydroxypropyl cellulose (HPC), low-substituted hydroxypropyl cellulose (L-HPC), and plasticizer (glycerol) on key parameters, such as disintegration time, tensile strength, and peel-off efficiency of the films. Subsequently, the film properties of the Dex-loaded ODFs (ODF@Dex) were thoroughly assessed, revealing favorable attributes, including homogeneity, mechanical strength, and solubility. Notably, the use of ethanol as the solvent in the ODF preparation facilitated the homogeneous distribution of insoluble drugs within the film matrix, thereby enhancing their solubility and dissolution rate. Leveraging the potent pharmacological activity of Dex, ODF@Dex was further evaluated for its efficacy in promoting ulcer healing and mitigating the expression of inflammatory factors both in vitro and in vivo. The findings demonstrated that the ODF@Dex exerted significant antiulcer effects by modulating the PI3K/Akt signaling pathway, thus contributing to ulcer resolution. In conclusion, our study underscores the potential of HPC-based ODFs formulated with ethanol as a solvent as a promising platform for delivering insoluble drugs, offering a viable strategy for the clinical management of oral ulcers.
Assuntos
Celulose , Dexametasona , Úlceras Orais , Solubilidade , Dexametasona/química , Dexametasona/administração & dosagem , Celulose/análogos & derivados , Celulose/química , Coelhos , Animais , Úlceras Orais/tratamento farmacológico , Administração Oral , Masculino , Resistência à Tração , Liberação Controlada de Fármacos , Etanol/química , Etanol/administração & dosagem , Composição de Medicamentos/métodosRESUMO
Dye wastewater poses a serious threat to the environment and human health, necessitating sustainable degradation methods. In this study, Na-based Montmorillonite (MMT) was exfoliated using different ionic liquids ([C16MIM][Cl], [C16MIM][BF4], [C16MIM][PF6]), and silver nanoparticles (Ag NPs) were green-synthesized using hydroxypropyl cellulose (HPC). The HPC significantly enhanced the dispersion of MMT in the hydrogel. By introducing lauryl methacrylate (LMA), a hydrophobic associative network was constructed in PAM/LMA/HPC/MMT@ILs&Ag NPs hydrogel. This hydrogel demonstrated outstanding mechanical properties, with a stress of 833.21 kPa, strain of 3300 %, and toughness of 14.36 MJ/m3. It also exhibited excellent catalytic activity, with a rate constant of 0.83 min-1 for 4-nitrophenol degradation at 28 °C. The effects of temperature and catalyst concentration on the catalytic reaction were systematically investigated. This study presents a simple green synthesis approach for Ag NPs using HPC, achieving superior mechanical performance and stable MMT dispersion in aqueous solutions.
Assuntos
Bentonita , Celulose , Hidrogéis , Líquidos Iônicos , Nanopartículas Metálicas , Prata , Poluentes Químicos da Água , Celulose/química , Celulose/análogos & derivados , Líquidos Iônicos/química , Catálise , Bentonita/química , Hidrogéis/química , Poluentes Químicos da Água/química , Prata/química , Nanopartículas Metálicas/química , Ânions/química , Nitrofenóis/química , Química Verde , Purificação da Água/métodosRESUMO
BACKGROUND: Liver cancer is typified by a complex inflammatory tumor microenvironment, where an array of cytokines and stromal cells orchestrate a milieu that significantly influences tumorigenesis. Interleukin-17A (IL-17A), a pivotal pro-inflammatory cytokine predominantly secreted by Th17 cells, is known to play a substantial role in the etiology and progression of liver cancer. However, the precise mechanism by which IL-17A engages with hepatic stellate cells (HSCs) to facilitate the development of hepatocellular carcinoma (HCC) remains to be fully elucidated. This investigation seeks to unravel the interplay between IL-17A and HSCs in the context of HCC. METHODS: An HCC model was established in male Sprague-Dawley rats using diethylnitrosamine to explore the roles of IL-17A and HSCs in HCC pathogenesis. In vivo overexpression of Il17a was achieved using adeno-associated virus. A suite of molecular techniques, including RT-qPCR, enzyme-linked immunosorbent assays, Western blotting, cell counting kit-8 assays and colony formation assays, was employed for in vitro analyses. RESULTS: The study findings indicate that IL-17A is a key mediator in HCC promotion, primarily through the activation of hepatic progenitor cells (HPCs). This pro-tumorigenic influence appears to be mediated by HSCs, rather than through a direct effect on HPCs. Notably, IL-17A-induced expression of fibroblast activation protein (FAP) in HSCs emerged as a critical factor in HCC progression. Silencing Fap in IL-17A-stimulated HSCs was observed to reverse the HCC-promoting effects of HSCs. CONCLUSIONS: The collective evidence from this study implicates the IL-17A/FAP signaling axis within HSCs as a contributor to HCC development by enhancing HPC activation. These findings bolster the potential of IL-17A as a diagnostic and preventative target for HCC, offering new avenues for therapeutic intervention.
Assuntos
Carcinoma Hepatocelular , Células Estreladas do Fígado , Interleucina-17 , Neoplasias Hepáticas , Animais , Humanos , Masculino , Ratos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Endopeptidases/metabolismo , Endopeptidases/genética , Regulação Neoplásica da Expressão Gênica , Células Estreladas do Fígado/metabolismo , Interleucina-17/metabolismo , Interleucina-17/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Ratos Sprague-Dawley , Microambiente TumoralRESUMO
Solitary fibrous tumor (SFT) is a rare interstitial tumor that originates from various soft tissues, and SFTs occurring within the cranium are extremely rare. While intracranial SFTs with cerebral hemorrhage or subarachnoid hemorrhage have been reported, there have been no reports of intracranial SFTs causing subdural hematoma. In this case, we report on an intracranial SFT accompanied by a subdural hematoma. A 29-year-old female was emergently transported due to the sudden onset of persistent headache and vomiting that began the night before. CT and MRI imaging revealed a hemorrhagic tumor under the tentorium and an acute subdural hematoma extending along the tentorium. The excised tumor was diagnosed as an SFT through histopathological examination. After undergoing radiation therapy, no recurrence has been observed. This is the first case report of an SFT accompanied by a subdural hematoma, and it is vital to recognize that SFTs can be associated with subdural hematomas for proper diagnosis and treatment planning.
RESUMO
Dendrimers, intricate macromolecules with highly branched nanostructures, offer unique attributes including precise control over size, shape, and functionality, making them promising candidates for a wide range of biomedical applications. The exploration of their interaction with biological environments, particularly human serum albumin (HSA), holds significant importance for biomedical utilization. In this study, the interaction between HSA and a recently developed self-assembling amphiphilic dendrimer (AD) was investigated using various experimental techniques. Fluorescence spectroscopy and isothermal titration calorimetry revealed moderate interactions between the protein and the AD nanomicelles (NMs), primarily attributed to favorable enthalpic contributions arising from electrostatic interactions and hydrogen bonding. Structural analysis indicated minimal changes in HSA upon complexation with the AD NMs, which was further supported by computational simulations demonstrating stable interactions at the atomistic level. These findings provide valuable insights into the binding mechanisms and thermodynamic parameters governing HSA/AD NM interactions, thereby contributing to the understanding of their potential biomedical applications.
RESUMO
BACKGROUND: Standard flow cytometry protocols for CD34+ cell enumeration designed for fresh samples are not appropriate for cryopreserved products. Special protocols have been developed to remove the cryoprotectant by quickly washing a freshly thawed sample. Exposing cells to a large volume of hypotonic solution and subsequent washing process was hypothesized to cause lab-induced cell death. Moreover, standard gating strategies must be altered to avoid reporting falsely high viabilities. STUDY DESIGN AND METHODS: We developed a novel method whereby thawed samples were diluted step-wise to 1:2 by 3 additions of 1/3 sample volume using 1% Human Albumin in Dextran 40 (10% Low Molecular Weight Dextran in 0.9% NaCl) separated by 5 min between each addition. An additional 1:10 dilution was required to obtain a desired cell concentration for flow cytometry testing resulting in a 1:20 dilution. RESULTS: Twenty samples were tested simultaneously in a method comparison; the new method demonstrated significant increases in mean cell viabilities for white blood cells, hematopoietic progenitor cells, and T cells as well as reduced standard deviations for each parameter. DISCUSSION: Slow, step-wise dilutions of freshly thawed samples of cryopreserved apheresis products to 1:20 yielded higher and more precise viability measurements compared to quickly washing samples to remove DMSO.
Assuntos
Remoção de Componentes Sanguíneos , Sobrevivência Celular , Criopreservação , Citometria de Fluxo , Humanos , Criopreservação/métodos , Citometria de Fluxo/métodos , Remoção de Componentes Sanguíneos/métodos , Células-Tronco Hematopoéticas/citologia , Preservação de Sangue/métodos , Crioprotetores/farmacologia , Antígenos CD34/análiseRESUMO
To investigate the influence of temperature and humidity variations on creep in high-performance concrete beams, beam tests were conducted in both natural and laboratory settings. The findings indicate that the variations in creep primarily stem from temperature changes, whereas humidity changes have little influence on fluctuations in both basic creep and total creep. The influence of humidity on creep is more strongly reflected in the magnitude of creep. Functions describing the influence of temperature and humidity on the creep behavior of high-performance concrete (HPC) subjected to fluctuating conditions are proposed. The findings were employed to examine creep deformation in engineering applications across four places. This study complements the correction method for the creep of members under fluctuating temperature and humidity. This research application can provide a basis for the calculation of the long-term deformation of HPC structures in natural environments.
RESUMO
A system based on poly(l-lactic acid) (PLLA) and hydroxypropyl cellulose (HPC) was considered in this study to achieve electrospun mats with outstanding properties and applicability in biomedical engineering. A novel binary solvent system of chloroform/N,N-dimethylformamide (CF/DMF:70/30) was utilized to minimize the probable phase separation between the polymeric components. Moreover, Response Surface Methodology (RSM) was employed to model/optimize the process. Finally, to scrutinize the ability of the complex in terms of drug delivery, Calendula Officinalis (Marigold) extract was added to the solution of the optimal sample (Opt.PH), and then the set was electrospun (PHM). As a result, the presence of Marigold led to higher values of fiber diameter (262 ± 34 nm), pore size (483 ± 102 nm), and surface porosity (81.0 ± 7.3 %). As this drug could also prohibit the micro-scale phase separation, the PHM touched superior tensile strength and Young modulus of 11.3 ± 1.1 and 91.2 ± 4.2 MPa, respectively. Additionally, the cumulative release data demonstrated non-Fickian diffusion with the Korsmeyer-Peppas exponent and diffusion coefficient of n = 0.69 and D = 2.073 × 10-14 cm2/s, respectively. At the end stage, both the Opt.PH and PHM mats manifested satisfactory results regarding the hydrophilicity and cell viability/proliferation assessments, reflecting their high potential to be used in regenerative medicine applications.
RESUMO
BACKGROUND: Single-nucleotide polymorphisms (SNPs) are the most widely used form of molecular genetic variation studies. As reference genomes and resequencing data sets expand exponentially, tools must be in place to call SNPs at a similar pace. The genome analysis toolkit (GATK) is one of the most widely used SNP calling software tools publicly available, but unfortunately, high-performance computing versions of this tool have yet to become widely available and affordable. RESULTS: Here we report an open-source high-performance computing genome variant calling workflow (HPC-GVCW) for GATK that can run on multiple computing platforms from supercomputers to desktop machines. We benchmarked HPC-GVCW on multiple crop species for performance and accuracy with comparable results with previously published reports (using GATK alone). Finally, we used HPC-GVCW in production mode to call SNPs on a "subpopulation aware" 16-genome rice reference panel with ~ 3000 resequenced rice accessions. The entire process took ~ 16 weeks and resulted in the identification of an average of 27.3 M SNPs/genome and the discovery of ~ 2.3 million novel SNPs that were not present in the flagship reference genome for rice (i.e., IRGSP RefSeq). CONCLUSIONS: This study developed an open-source pipeline (HPC-GVCW) to run GATK on HPC platforms, which significantly improved the speed at which SNPs can be called. The workflow is widely applicable as demonstrated successfully for four major crop species with genomes ranging in size from 400 Mb to 2.4 Gb. Using HPC-GVCW in production mode to call SNPs on a 25 multi-crop-reference genome data set produced over 1.1 billion SNPs that were publicly released for functional and breeding studies. For rice, many novel SNPs were identified and were found to reside within genes and open chromatin regions that are predicted to have functional consequences. Combined, our results demonstrate the usefulness of combining a high-performance SNP calling architecture solution with a subpopulation-aware reference genome panel for rapid SNP discovery and public deployment.
Assuntos
Genoma de Planta , Polimorfismo de Nucleotídeo Único , Fluxo de Trabalho , Melhoramento Vegetal , Software , Sequenciamento de Nucleotídeos em Larga Escala/métodosRESUMO
BACKGROUND AND PURPOSE: The new p64 flow diverter with hydrophilic polymer coating (HPC) was designed to reduce thrombogenicity. To date, it is unclear how antithrombogenic surface modifications affect neoendothelialization and thrombus formation in patients with unruptured intracranial aneurysms. The purpose of this study was to evaluate the safety and effectiveness of the p64MW-HPC in the treatment of unruptured aneurysms of small to giant size and of both the anterior and posterior circulation. MATERIALS AND METHODS: Between March 2020 and October 2022 all patients with unruptured intracranial aneurysms treated with the p64MW-HPC were included at five neurovascular centers. Demographic data, aneurysm characteristics, antiplatelet therapy, procedural complications, and clinical and angiographic outcomes were recorded. RESULTS: A total of 100 patients with 100 unruptured intracranial aneurysms met the inclusion criteria. Eighty-three aneurysms were classified as saccular, 12 aneurysms were fusiform, 4 aneurysms dissecting, and 1 aneurysm was blister-like. Dual antiplatelet therapy with Clopidogrel and Aspirin was given in 68 cases, and with Ticagrelor and Aspirin in 24 cases. Technical issues with deployment were encountered in 14 cases (torsion (n = 3), foreshortening (n = 8), and incomplete opening (n = 3)). Ischemic stroke occurred in a total of seven cases. In one patient a wire perforation and subsequent severe ICH occurred. Complete aneurysm occlusion at angiographic follow-up (mean time = 7 months) was seen in 73% and adequate occlusion in 93%. CONCLUSION: This study is the largest multicenter study to date documenting the safety and effectiveness of the new antithrombogenic p64MW-HPC in the treatment of unruptured intracranial aneurysms of the anterior and posterior circulation.
RESUMO
Neuroimaging research requires sophisticated tools for analyzing complex data, but efficiently leveraging these tools can be a major challenge, especially on large datasets. CBRAIN is a web-based platform designed to simplify the use and accessibility of neuroimaging research tools for large-scale, collaborative studies. In this paper, we describe how CBRAIN's unique features and infrastructure were leveraged to integrate TAPAS PhysIO, an open-source MATLAB toolbox for physiological noise modeling in fMRI data. This case study highlights three key elements of CBRAIN's infrastructure that enable streamlined, multimodal tool integration: a user-friendly GUI, a Brain Imaging Data Structure (BIDS) data-entry schema, and convenient in-browser visualization of results. By incorporating PhysIO into CBRAIN, we achieved significant improvements in the speed, ease of use, and scalability of physiological preprocessing. Researchers now have access to a uniform and intuitive interface for analyzing data, which facilitates remote and collaborative evaluation of results. With these improvements, CBRAIN aims to become an essential open-science tool for integrative neuroimaging research, supporting FAIR principles and enabling efficient workflows for complex analysis pipelines.