Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Front Biosci (Landmark Ed) ; 29(5): 189, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38812317

RESUMO

BACKGROUND: It has been demonstrated that exosomes derived from HPV-16 E7-over-expressiong non-small cell lung cancer (NSCLC) cells (E7 Exo) trigger increased levels of epidermal growth factor receptor (EGFR) and miR-381-3p. The purpose of this investigation was to examine the role of E7 Exo in NSCLC angiogenesis, and to analyze the contribution of exosomal EGFR and miR-381-3p to it. METHODS: The influence of E7 Exo on the proliferation and migration of human umbilical vein endothelial cells (HUVECs) was assessed using colony formation and transwell migration assays. Experiments on both cells and animal models were conducted to evaluate the angiogenic effect of E7 Exo treatment. The involvement of exosomal EGFR and miR-381-3p in NSCLC angiogenesis was further investigated through suppressing exosome release or EGFR activation, or by over-expressing miR-381-3p. RESULTS: Treatment with E7 Exo increased the proliferation, migration, and tube formation capacities of HUVECs, as well as angiogenesis in animal models. The suppression of exosome release or EGFR activation in NSCLC cells decreased the E7-induced enhancements in HUVEC migration and tube formation, and notably reduced vascular endothelial growth factor A (VEGFA) and Ang-1 levels. HUVECs that combined miR-381-3p mimic transfection and E7 Exo treatment exhibited a more significant tube-forming capacity than E7 Exo-treated HUVECs alone, but were reversed by the miR-381-3p inhibitor. CONCLUSION: The angiogenesis induced by HPV-16 E7 in NSCLC is mediated through exosomal EGFR and miR-381-3p.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Movimento Celular , Proliferação de Células , Receptores ErbB , Exossomos , Células Endoteliais da Veia Umbilical Humana , Neoplasias Pulmonares , MicroRNAs , Neovascularização Patológica , Proteínas E7 de Papillomavirus , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Exossomos/metabolismo , Exossomos/genética , Receptores ErbB/metabolismo , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/irrigação sanguínea , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Animais , Linhagem Celular Tumoral , Camundongos , Camundongos Nus , Papillomavirus Humano 16/genética , Angiogênese
2.
Clin Epigenetics ; 16(1): 40, 2024 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461243

RESUMO

BACKGROUND: MAL (T-lymphocyte maturation-associated protein) is highly downregulated in most cancers, including cervical cancer (CaCx), attributable to promoter hypermethylation. Long noncoding RNA genes (lncGs) play pivotal roles in CaCx pathogenesis, by interacting with human papillomavirus (HPV)-encoded oncoproteins, and epigenetically regulating coding gene expression. Hence, we attempted to decipher the impact and underlying mechanisms of MAL downregulation in HPV16-related CaCx pathogenesis, by interrogating the interactive roles of MAL antisense lncRNA AC103563.8, E7 oncoprotein and PRC2 complex protein, EZH2. RESULTS: Employing strand-specific RNA-sequencing, we confirmed the downregulated expression of MAL in association with poor overall survival of CaCx patients bearing HPV16, along with its antisense long noncoding RNA (lncRNA) AC103563.8. The strength of positive correlation between MAL and AC103563.8 was significantly high among patients compared to normal individuals. While downregulated expression of MAL was significantly associated with poor overall survival of CaCx patients bearing HPV16, AC103563.8 did not reveal any such association. We confirmed the enrichment of chromatin suppressive mark, H3K27me3 at MAL promoter, using ChIP-qPCR in HPV16-positive SiHa cells. Subsequent E7 knockdown in such cells significantly increased MAL expression, concomitant with decreased EZH2 expression and H3K27me3 marks at MAL promoter. In silico analysis revealed that both E7 and EZH2 bear the potential of interacting with AC103563.8, at the same binding domain. RNA immunoprecipitation with anti-EZH2 and anti-E7 antibodies, respectively, and subsequent quantitative PCR analysis in E7-silenced and unperturbed SiHa cells confirmed the interaction of AC103563.8 with EZH2 and E7, respectively. Apparently, AC103563.8 seems to preclude EZH2 and bind with E7, failing to block EZH2 function in patients. Thereby, enhanced EZH2 expression in the presence of E7 could potentially inactivate the MAL promoter through H3K27me3 marks, corroborating our previous results of MAL expression downregulation in patients. CONCLUSION: AC103563.8-E7-EZH2 axis, therefore, appears to crucially regulate the expression of MAL, through chromatin inactivation in HPV16-CaCx pathogenesis, warranting therapeutic strategy development.


Assuntos
Proteínas Proteolipídicas Associadas a Linfócitos e Mielina , Proteínas Oncogênicas Virais , RNA Longo não Codificante , Neoplasias do Colo do Útero , Feminino , Humanos , Cromatina/metabolismo , Metilação de DNA , Regulação para Baixo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Histonas/metabolismo , Papillomavirus Humano 16/genética , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias do Colo do Útero/patologia , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina/genética , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina/metabolismo
3.
Pharm Pat Anal ; 12(5): 231-236, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37982658

RESUMO

Repurposing of approved drugs allows strong savings in time and investment. Rimantadine is an FDA-approved drug for prevention and treatment of influenza A infection. Patent US2021330605 describes the use of rimantadine, an adamantane derivative, for the treatment of melanoma, breast cancer and head and neck squamous cell carcinoma. Rimantadine inhibited proliferation of cell lines of melanoma, breast cancer, and head and neck squamous cell carcinoma, increased the survival of mice injected with cancer cell lines and restores the expression of MHC class I. Rimantadine has the potential to be used successfully in the treatment of head and neck squamous cell carcinoma.


Assuntos
Neoplasias de Cabeça e Pescoço , Melanoma , Animais , Camundongos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Rimantadina/farmacologia , Rimantadina/uso terapêutico , Reposicionamento de Medicamentos , Melanoma/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico
4.
Front Microbiol ; 14: 1259510, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795297

RESUMO

Objective: In past decades, the role of high-risk HPV (HR-HPV) infection in cancer pathogenesis has been extensively studied. The viral E7 protein expressed in pre-malignant cells has been identified as an ideal target for immunological intervention. However, the cultivation of HPV in vitro remains a significant challenge, as well as the lack of methods for expressing the HPV E7 protein and generating replication-competent recombinant viral particles, which posed a major obstacle to further exploration of the function and carcinogenic mechanisms of the E7 oncoprotein. Therefore, it is imperative to investigate novel methodologies to construct replication-competent recombinant viral particles that express the HPV E7 protein to facilitate the study of its function. Methods: We initiated the construction of recombinant viral particles by utilizing the ccdB-Kan forward/reverse screening system in conjunction with the Red/ExoCET recombinant system. We followed the infection of C33A cells with the obtained recombinant virus to enable the continuous expression of HPV16 E7. Afterwards, the total RNA was extracted and performed transcriptome sequencing using RNA-Seq technology to identify differentially expressed genes associated with HPV-induced oncogenicity. Results: We successfully established replicative recombinant viral particles expressing HPV16 E7 stably and continuously. The C33A cells were infected with recombinant viral particles to achieve overexpression of the E7 protein. Subsequently, RNA-Seq analysis was conducted to assess the changes in host cell gene expression. The results revealed an upregulation of the CD36 gene, which is associated with the HPV-induced oncogenic pathways, including PI3K-Akt and p53 signaling pathway. qRT-PCR analysis further identified that the upregulation of the CD36 gene due to the expression of HPV16 E7. Conclusion: The successful expression of HPV16 E7 in cells demonstrates that the replicated recombinant virus retains the replication and infection abilities of Ad4, while also upregulating the CD36 gene involved in the PI3K-Akt signaling and p53 pathways, thereby promoting cell proliferation. The outcome of this study provides a novel perspective and serves as a solid foundation for further exploration of HPV-related carcinogenesis and the development of replicative HPV recombinant vaccines capable of inducing protective immunity against HPV.

5.
Microb Pathog ; 185: 106423, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37871853

RESUMO

Human papillomavirus (HPV) E7 protein as an important viral factor was involved in the progression of cervical cancer by mediating the cellular signaling pathways. Daxx (Death domain-associated protein) can interact with a variety of proteins to affect the viral infection process. However, the interaction and its related function between HPV16 E7 and Daxx have not been adequately investigated. Here, it was found that HPV16 E7 can interact with Daxx in HeLa or C33A cells by co-immunoprecipitation. HPV16 E7 protein treatment can up-regulate Daxx protein expression, while the interference in Daxx expression and the agonists for JNK can both reduce the antagonistic effects of HPV16 E7 on TNF-α-induced apoptosis, suggesting that Daxx/JNK pathway may be involved in the anti-apoptotic activity of HPV16 E7.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Papillomavirus Humano 16/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Apoptose
6.
Mol Biol Rep ; 50(2): 981-991, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36378419

RESUMO

PURPOSE: Oct3/4 a transcription factor is involved in maintaining the characteristics of cancer stem cells. Oct3/4 can be expressed differentially with respect to the progression of cervical cancer (CC). In addition, Oct3/4 can give rise to three isoforms by alternative splicing of the mRNA Oct3/4A, Oct3/4B and Oct3/4B1. The aim of this study was to evaluate the mRNA expression from Oct3/4A, Oct3/4B and Oct3/4B1 in low-grade squamous intraepithelial lesion (LSIL), high-grade squamous intraepithelial lesion (HSIL), CC samples, and measure the effect of the HPV16 E7 oncoprotein on the mRNA expression from Oct3/4 isoforms in the C-33A cell line. METHODS: The expression levels of Oct3/4A, Oct3/4B and Oct3/4B1 mRNA were analyzed by reverse transcription quantitative polymerase chain reaction (RT-qPCR) in patients with LSILs, HSILs and CC. Additionally, C-33A cells that expressed the HPV16 E7 oncoprotein were established to evaluate the effect of E7 on the expression of Oct3/4 mRNA isoforms. RESULTS: Oct3/4A (p = 0.02), Oct3/4B (p = 0. 001) and Oct3/4B1 (p < 0. 0001) expression is significantly higher in patients with LSIL, HSIL and CC than in woman with non-IL. In the C-33A cell line, the expression of Oct3/4A mRNA in the presence of the E7 oncoprotein increased compared to that in nontransfected C-33A cells. CONCLUSION: Oct3/4B and Oct3/4B1 mRNA were expressed at similar levels among the different groups. These data indicate that only the mRNA of Oct3/4A is upregulated by the HPV16 E7 oncoprotein.


Assuntos
Papillomavirus Humano 16 , Fator 3 de Transcrição de Octâmero , Neoplasias do Colo do Útero , Feminino , Humanos , Processamento Alternativo/genética , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Neoplasias do Colo do Útero/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo
7.
Cancer Biol Ther ; 23(1): 1-13, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36224722

RESUMO

Our previous studies have demonstrated that human papillomavirus (HPV)-16 E7 oncoprotein promoted epithelial-mesenchymal transition (EMT) in non-small cell lung cancer (NSCLC) cells. Moreover, recent studies have found that exosomes can mediate EMT of NSCLC cells and epidermal growth factor receptor (EGFR) is related to the progression of NSCLC. Here, we further investigated the role of exosomal EGFR in HPV-16 E7-induced EMT of NSCLC cells. Our results showed that the exosomes derived from the stable HPV-16 E7-overexpressing A549 and NCI-H460 NSCLC cells (E7 Exo) significantly increased migration, invasion, and proliferation abilities of NSCLC cells as compared with the exosomes derived from empty vector-infected NSCLC cells (ev Exo). Moreover, both in vitro and in vivo results demonstrated that E7 Exo dramatically enhanced EMT of NSCLC cells and promoted the growth of subcutaneous NSCLC xenografts. Additionally, HPV-16 E7 enhanced the expression of EGFR and p-EGFR in both NSCLC cells and exosomes. Furthermore, the inhibition of EGFR activation or exosome secretion suppressed E7 Exo-induced migration, invasion, and EMT of NSCLC. Moreover, 12 kinds of differentially expressed miRNAs between E7 Exo and ev Exo (fold change≥2, P ≤ .05) were screened out, of which 7 miRNAs were up-regulated while 5 miRNAs were down-regulated in A549 E7 Exo. Taken together, our findings suggest that exosomal EGFR is involved in HPV-16 E7-induced EMT of NSCLC cells, which may play a key role in the progression of HPV-related NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Exossomos , Neoplasias Pulmonares , MicroRNAs , Infecções por Papillomavirus , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Receptores ErbB/genética , Exossomos/metabolismo , Papillomavirus Humano 16 , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , MicroRNAs/genética , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Infecções por Papillomavirus/complicações
8.
Ann Transl Med ; 10(4): 217, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35280390

RESUMO

Background: Cervical cancer is mainly caused by persistent infection with human papillomavirus (HPV), especially HPV-16. Recently, HPV-16 E7-modified dendritic cells (DCs) have been reported to play a blocking role in the progression of cervical cancer. Conversely, the effect and mechanism of HPV-16 E7-pulsed DCs in cervical cancer are not entirely clear. Methods: DCs from the peripheral blood of patients with cervical cancer were induced with lipopolysaccharide and identified through the detection of cluster of differentiation (CD)11c, major histocompatibility complex (MHC)-II, CD83, and CD40 levels, and exosomes from HPV-16 E7-pulsed and catalase 2 (CAT2)-silenced DCs were extracted and identified through transmission electron microscopy and the detection of markers. Additionally, the migration, inflammatory factors, and polarization of macrophages were confirmed using Transwell, enzyme-linked immunoassay, and Western blot of arginase-1 (Arg-1) and inducible nitric oxide synthase (iNOS). In vivo, we also built a mice xenograft model of HPV cervical cancer. Results: We first successfully induced and identified DCs from cervical cancer patients, and successfully extracted and confirmed the exosomes from the constructed HPV-16 E7-pulsed and CAT2-silenced DCs. Subsequently, we proved that exosomes from HPV-16 E7-pulsed DCs restrained migration and inflammation and induced M2 polarization in macrophages, while the effect of exosomes from CAT2-silenced DCs on macrophage migration, polarization, and inflammation was opposite to that of exosomes from HPV-16 E7-pulsed DCs, and the 2 affected each other. Additionally, we found that exosomes from CAT2-silenced DCs also prevented growth and M2 polarization in a mice xenograft model of HPV cervical cancer. Conclusions: Exosomes from HPV-16 E7-pulsed DCs blocked cervical cancer progression by regulating macrophage function, and its mechanism was relevant to CAT2.

9.
Allergol Immunopathol (Madr) ; 50(1): 60-67, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34873897

RESUMO

OBJECTIVE: To investigate the effect of radiofrequency therapy (RFT) on HPV16-E7 lentivirus infection in the reproductive tract of mice and reveal its effect on immune function of splenic lymphocytes. MATERIALS AND METHODS: The mouse reproductive tract model was established by infection with HPV16-E7 lentivirus. Fluorescence microscope was used to evaluate successful injection. The expression of HPV16-E7 protein was detected by Western blotting test. The levels of CD4+ and CD8+ were determined by flow cytometry, and the ratio was calculated. The proliferation of splenic lymphocytes was detected by MTT assay. Expression of Interleukin (IL)-2 and interferon-γ (IFN-γ) messenger RNA (mRNA) in lymphocyte was determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). RESULTS: Fluorescence microscope determined the successful injection of HPV16-E7 lentivirus. Compared with model group, RFT treatment decreased HPV16-E7 protein, and increased CD4+/CD8+ ratio and the proliferation activity of splenic lymphocytes. Besides, RFT treatment increased the mRNA expression levels of IL-2 and IFN-γ compared to the model group. In particular, the proliferation activity of spleen lymphocytes and the expression levels of IL-2 mRNA and IFN-γ mRNA in RFT were higher at 12 days than at 6 days after treatment. CONCLUSION: RFT could eliminate HPV16-E7 lentivirus infection in the reproductive tract of mice, and the mechanism was related to the immune system.


Assuntos
Infecções por Lentivirus , Terapia por Radiofrequência , Humanos , Imunidade , Interferon gama , Interleucina-2 , Linfócitos , RNA Mensageiro , Baço
10.
Gynecol Obstet Invest ; 87(1): 22-29, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34808628

RESUMO

OBJECTIVE: Silent information regulator 1 (SIRT1), an NAD+-dependent III class histone deacetylase, plays crucial roles in cell proliferation, apoptosis, senescence, metabolism, and stress responses. Nevertheless, the role of SIRT1 in tumorigenesis remains unclear. METHODS: In the present study, we measured expression levels of SIRT1 and HPV16 E7 protein in cervical cancer (CC) tissue and calculated their correlations. We measured the effect of silencing SIRT1 on the proliferation, migration, invasion, and apoptosis in human CC SiHa cells. RESULTS: Immunohistochemistry results revealed that the expression of SIRT1 was upregulated with progression from CIN II-III to CC, but was not expressed in normal cervical tissues and CIN I. There was a positive correlation between SIRT1 expression and HPV16 E7 expression in CC tissues, and silencing of HPV16 E7 downregulated the expression of SIRT1. Depletion of SIRT1 downregulated SIRT1 expression, and inhibited proliferation, migration, and invasion of SiHa cells, inducing apoptosis. CONCLUSIONS: Taken together, the data suggest that SIRT1 promotes CC carcinogenesis. SIRT1 inhibition is a potential treatment strategy for CC.


Assuntos
Proteínas Oncogênicas Virais , Sirtuína 1/metabolismo , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Papillomavirus Humano 16/genética , Humanos , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Sirtuína 1/genética
11.
Cell Div ; 16(1): 6, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34736484

RESUMO

BACKGROUND: It has been reported that the oncoprotein E7 from human papillomavirus type 16 (HPV16-E7) can induce the excessive synthesis of centrosomes through the increase in the expression of PLK4, which is a transcriptional target of E2F1. On the other hand, it has been reported that increasing MPS1 protein stability can also generate an excessive synthesis of centrosomes. In this work, we analyzed the possible role of MPS1 in the amplification of centrosomes mediated by HPV16-E7. RESULTS: Employing qRT-PCR, Western Blot, and Immunofluorescence techniques, we found that E7 induces an increase in the MPS1 transcript and protein levels in the U2OS cell line, as well as protein stabilization. Besides, we observed that inhibiting the expression of MPS1 in E7 protein-expressing cells leads to a significant reduction in the number of centrosomes. CONCLUSIONS: These results indicate that the presence of the MPS1 protein is necessary for E7 protein to increase the number of centrosomes, and possible implications are discussed.

12.
J Cancer ; 12(21): 6344-6355, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659524

RESUMO

High-risk human papillomavirus (HPV) infection was one of the first step in the process of carcinogenesis in cervical cancers. The expression of viral oncoprotein E7 was essential in this process by inactivating the tumor suppressor proteins RB, in addition to interacting with other host proteins. LncRNA MALAT1 was found to be altered in human cervical cancer tissues, suggesting an important role in tumorigenesis. Moreover, MALAT1 was also overexpressed in HPV16 positive cervical cancer cell lines in an HPV16 E7 dependent manner. To explore the mechanism of E7 involved in MALAT1 up-regulation, the deletion mutant E7∆N and E7∆C were constructed to test the functional domain of E7 for MALAT1 regulation. ChIP, EMSA and UV crosslink were performed to detect the interaction between E7 and MALAT1 promoter. E7 and E7∆N mutant were observed that could bind with MALAT1 promoter directly and interacted with SP1 to form triple complex. E7-SP1 interaction contributed to the transcription activation of MALAT1 promoter. E7 and E7∆N also could promote cell proliferation, invasion, and migration, and the stimulating effect could be reversed by siMALAT1. Here we showed that HPV16 E7 as well as E7∆N could associate with SP1 and bound directly to MALAT1 promoter in vitro and in vivo. This function way of E7 was independent of pRB in cervical cancer cells. To our knowledge, this was the first reported function model for E7 as transcription activator to directly bind to the target promoter.

13.
Hum Vaccin Immunother ; 17(10): 3529-3538, 2021 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-34270395

RESUMO

Our previous research verified that HSP (heat shock protein) 110 could enhance the anti-tumor effect of HPV16 E749-57 epitope. In this study, to optimize the immunotherapy of this vaccine type, we developed and evaluated the anti-tumor immunity of a nanoparticle vaccine format assembling with E749-57-HSP110 fusion expression plasmid and RGD-GGG-K18 polypeptide. The nanoparticle vaccine was self-assembled from positively charged RGD-GGG-K18 polypeptide and negatively charged fusion expression plasmid pIRES2-3נE7-HSP110-EGFP. The particle size, stability, expression of E749-57-HSP110 fusion protein and the target ability of nanoparticle were determined, respectively. Specific CTL responses were determined by E7 tetramer staining and cytotoxicity assay in TC-1 tumor-bearing mice (CD4/CD8 knockout). The preventive and therapeutic experiments of nanoparticle vaccine were investigated in TC-1 tumor-bearing mice. Results showed that the RGD-GGG-K18 polypeptide and pIRES2-3נE7-HSP110-EGFP plasmid self-assembled nanoparticles about 100 nanometers in diameter when the charge ratios of peptide/plasmid were 2. The nanoparticles effectively entered TC-1 cells directed by RGD target-peptide, and correctly expressed the E7-HSP110 fusion protein. The HSP110 effectively facilitated nanoparticles activating CD8+T cells than nanoparticles without HSP110, including the CD8+ T cell number and the IFN-γ level; in contrast, the CD4+T cells immune response remained indiscriminate among the mice groups. This nanoparticle formulation inhibited tumor growth and prolonged the survival duration in the prophylactic and therapeutic mouse models. Therefore, the RGD-based tumor-targeting nanoparticle expressing E749-57-HSP110 fusion protein can efficiently evoke anti-tumor activity and thus suggests it might be a favorable candidate for cervical cancer immunotherapy.


Assuntos
Vacinas Anticâncer , Nanopartículas , Neoplasias do Colo do Útero , Animais , Linfócitos T CD8-Positivos , Feminino , Humanos , Imunidade , Camundongos , Camundongos Endogâmicos C57BL , Oligopeptídeos , Proteínas E7 de Papillomavirus/genética , Neoplasias do Colo do Útero/terapia
14.
Cancer Cell Int ; 21(1): 400, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34320988

RESUMO

BACKGROUND: Cervical cancer (CC) is one of the most common gynaecological malignancies all around the world. The mechanisms of cervical carcinoma formation remain under close scrutiny. The long non-coding RNAs (lncRNA) and microRNAs (miRNAs) play important roles in controlling gene expression and promoting the development and progression of cervical cancer by acting as competitive endogenous RNA (ceRNA). However, the roles of lncRNA associated with ceRNAs in cervical carcinogenesis remains unknown. In this study, the expression of long non-coding RNA HOTAIR was investigated in HPV16 positive cervical cancer cells, the candidate miRNAs and target genes were identified to clarify putative ceRNAs of HOTAIR/miRNA in cervical cancer cells. METHODS: The proliferation ability of cells was measured by CCK8 and EdU incorporation assays and cell apoptosis was analyzed by flow cytometry. The expression of HOTAIR, miR-214-3p, HPV16 E7 mRNA were detected by qRT-PCR. As for searching for the interaction between miR-214-3p and HOTAIR, the binding sites for miR-214-3p on HOTAIR was predicted by starbase v2.0 database, then dual-luciferase assay was used to verify the binding sites. In addition, Gene Ontology (GO) and protein-protein interaction (PPI) network analysis of target genes of miR-214-3p were performed with bioinformatics analysis. The potential signal pathway regulated by HOTAIR/miR-214-3p was predicted by KEGG enrichment analysis and confirmed by qPCR and WB analysis in cervical cancer cells. RESULTS: Our results showed that expression of HOTAIR was up-regulated, while that of miR-214-3p was down-regulated in HPV16-positive cervical cancer cells. The expression status of HPV16 E7 played an important role in regulating expression of HOTAIR or miR-214-3p in cervical cancer cells. HOTAIR knockdown could significantly inhibited cell proliferate ability and promote cellular apoptosis, whereas the inhibition of miR-214-3p expression partially reversed such results. Bioinformatics analysis identified 1451 genes as target genes of miR-214-3p. The Gene ontology (GO) and KEGG Pathway enrichment analysis showed that these target genes were mainly related to regulation of cell communication, protein binding, enzyme binding and transferase activity, and Wnt ligand biogenesis. Pathway enrichment analysis results showed that the predicted target genes were significantly enriched in Wnt/ß-catenin signaling pathway. Finally, our results confirmed that miR-214-3p could significantly inhibit ß-catenin expression in HPV16 positive cancer cells by qPCR and WB analysis. CONCLUSION: HOTAIR could act as a ceRNA through binding to miR-214-3p, promote cell proliferation and inhibit the apoptosis of HPV16 positive cervical cancer. HOTAIR/miR-214-3p/Wnt/ß-catenin signal pathway might played important regulated roles in HPV16 positive cervical cancer. Our results provided new insight into defining novel biomarkers for cervical cancer.

15.
Viruses ; 13(3)2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800513

RESUMO

Pyruvate kinase M2 (PKM2) mainly catalyzes glycolysis, but it also exerts non-glycolytic functions in several cancers. While it has been shown to interact with the human papillomavirus 16 (HPV16) E7 oncoprotein, the functional significance of PKM2 in HPV-associated cervical cancer has been elusive. Here, we show that HPV16 E7 increased the expression of PKM2 in cervical cancer cells. TCGA data analyses revealed a higher level of PKM2 in HPV+ than HPV- cervical cancers and a worse prognosis for patients with high PKM2 expression. Functionally, we demonstrate that shRNA-mediated PKM2 knockdown decreased the proliferation of HPV+ SiHa cervical cancer cells. PKM2 knockdown also inhibited the E7-induced proliferation of cervical cancer cells. ML265 activating the pyruvate kinase function of PKM2 inhibited cell cycle progression and colony formation. ML265 treatments decreased phosphorylation of PKM2 at the Y105 position that has been associated with non-glycolytic functions. On the contrary, HPV16 E7 increased the PKM2 phosphorylation. Our results indicate that E7 increases PKM2 expression and activates a non-glycolytic function of PKM2 to promote cervical cancer cell proliferation.


Assuntos
Proteínas de Transporte/genética , Proliferação de Células/genética , Papillomavirus Humano 16/patogenicidade , Proteínas de Membrana/genética , Proteínas Oncogênicas Virais/genética , Proteínas E7 de Papillomavirus/genética , Hormônios Tireóideos/genética , Neoplasias do Colo do Útero/virologia , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Feminino , Expressão Gênica , Papillomavirus Humano 16/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Fosforilação , Hormônios Tireóideos/metabolismo , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/genética , Proteínas de Ligação a Hormônio da Tireoide
16.
Cancers (Basel) ; 13(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477952

RESUMO

Human papillomavirus 16 (HPV16) exhibits a strong oncogenic potential mainly in cervical, anogenital and oropharyngeal cancers. The E6 and E7 viral oncoproteins, acting via specific interactions with host cellular targets, are required for cell transformation and maintenance of the transformed phenotype as well. We previously demonstrated that HPV16E7 interacts with the actin-binding protein gelsolin, involved in cytoskeletal F-actin dynamics. Herein, we provide evidence that the E7/gelsolin interaction promotes the cytoskeleton rearrangement leading to epithelial-mesenchymal transition-linked morphological and transcriptional changes. E7-mediated cytoskeletal actin remodeling induces the HIPPO pathway by promoting the cytoplasmic retention of inactive P-YAP. These results suggest that YAP could play a role in the "de-differentiation" process underlying the acquisition of a more aggressive phenotype in HPV16-transformed cells. A deeper comprehension of the multifaceted mechanisms elicited by the HPV infection is vital for providing novel strategies to block the biological and clinical features of virus-related cancers.

17.
Appl Microbiol Biotechnol ; 104(10): 4417-4433, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32215704

RESUMO

Here, we used codon usage technology to generate two codon-modified human papillomavirus (HPV)16 E7 genes and, together with wild-type E7, to construct three HPV16 E7 gene plasmids: Wt-E7, HB1-E7, and HB2-E7. The three HPV 16 E7 plasmids were used to investigate how HPV16 E7 protein was expressed in different cells and how this oncoprotein deregulated cellular and molecular events in human keratinocytes to induce carcinogenesis. We discovered that codon usage of HPV16 E7 gene played a key role in determining expression of E7 oncoprotein in all tested cells. HPV16 E7 inhibited significantly expression of pRb to impair keratinocyte differentiation and disrupted development of skin epidermis in mice. HPV16 E7 increased substantially the number of G0/G1 cells associated with upregulation of cyclin D2 and downregulation of cyclin B1 in keratinocytes. HPV16 E7 not only inhibited expression of involucrin and α-spectrin but also disrupted the organization of involucrin filaments and spectrin cytoskeleton. Furthermore, HPV16 E7 inhibited expression of ß-adducin, destroyed its cytoskeletal structure and induced phosphorylation of ß-adducin(Ser662) in keratinocytes. Importantly, HPV16 E7 induced carcinogenesis in mice associated with expression of phosphorylated ß-adducin(Ser662) and its nucleus-translocation. In conclusion, we provided evidence that HPV16 E7 oncoprotein inhibited keratinocyte differentiation in vitro and in vivo leading to carcinogenesis through cell cycle arrest and disruption of pRb/involucrin/spectrin/adducin cascade.


Assuntos
Carcinogênese/genética , Ciclo Celular , Diferenciação Celular/genética , Uso do Códon , Queratinócitos/virologia , Proteínas E7 de Papillomavirus/genética , Animais , Células CHO , Proteínas de Ligação a Calmodulina/genética , Proteínas de Ligação a Calmodulina/metabolismo , Células Cultivadas , Cricetulus , Feminino , Células HEK293 , Papillomavirus Humano 16 , Humanos , Queratinócitos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Proteínas Repressoras/genética , Espectrina/genética , Espectrina/metabolismo
18.
Viruses ; 12(3)2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204370

RESUMO

At present, the clinical detection method of human papillomavirus (HPV) is mainly based on the PCR method. However, this method can only be used to detect HPV DNA and HPV types, and cannot be used to accurately predict cervical cancer. HPV16 E7 is an oncoprotein selectively expressed in cervical cancers. In this study, we prepared an HPV16 E7-histidine (HIS) fusion oncoprotein by using a prokaryotic expression and gained several mouse anti-HPV16 E7-HIS fusion oncoprotein monoclonal antibodies (mAbs) by using hybridoma technology. Two mAbs, 69E2 (IgG2a) and 79A11 (IgM), were identified. Immunocytochemistry, immunofluorescence, immunohistochemistry, and Western blot were used to characterize the specificity of these mAbs. The sequences of the nucleotide bases and predicted amino acids of the 69E2 and 79A11 antibodies showed that they were novel antibodies. Indirect enzyme-linked immunosorbent assay (ELISA) with overlapping peptides, indirect competitive ELISA, and 3D structural modeling showed that mAbs 69E2 and 79A11 specifically bound to the three exposed peptides of the HPV16 E7 (HPV16 E749-66, HPV16 E773-85, and HPV16 E791-97). We used these two antibodies (79A11 as a capture antibody and 69E2 as a detection antibody) to establish a double-antibody sandwich ELISA based on a horseradish peroxidase (HRP)-labeled mAb and tetramethylbenzidine (TMB) detection system for quantitative detection of the HPV16 E7-HIS fusion oncoprotein, however, it was not ideal. Then we established a chemiluminescence immunoassay based on a labeled streptavidin-biotin (LSAB)-ELISA method and luminol detection system-this was sufficient for quantitative detection of the HPV16 E7-HIS fusion oncogenic protein in ng levels and was suitable for the detection of HPV16-positive cervical carcinoma tissues. Collectively, we obtained two novel mouse anti-HPV16 E7 oncoprotein mAbs and established an LSAB-lumino-dual-antibody sandwich ELISA method for the detection of the HPV16 E7-HIS fusion oncogenic protein, which might be a promising method for the diagnosis of HPV16-type cervical cancers in the early stage.


Assuntos
Papillomavirus Humano 16/imunologia , Proteínas Oncogênicas Virais/imunologia , Proteínas E7 de Papillomavirus/imunologia , Infecções por Papillomavirus/diagnóstico , Infecções por Papillomavirus/imunologia , Animais , Anticorpos Monoclonais , Anticorpos Antivirais , Especificidade de Anticorpos , Linhagem Celular , Feminino , Humanos , Imunoensaio/métodos , Imuno-Histoquímica , Medições Luminescentes/métodos , Infecções por Papillomavirus/virologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/etiologia
19.
J Microbiol Biotechnol ; 29(9): 1444-1452, 2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31387341

RESUMO

The conventional prophylactic vaccines for human papillomavirus (HPV) efficiently prevent infection with high-risk HPV types, but they do not promote therapeutic effects against cervical cancer. Previously, we developed HPV16 E7-expressing Lactobacillus casei (L. casei-E7) as a therapeutic vaccine candidate for cervical cancer, which induces antitumor therapeutic effects in a TC-1 murine cancer model. To improve the therapeutic effect of L. casei-E7, we performed co-treatment with poly-gamma-glutamic acid (γ-PGA), a safe and edible biomaterial naturally secreted by Bacillus subtilis. We investigated their synergistic effect to improve antitumor efficacy in a murine cancer model. The treatment with γ-PGA did not show in vitro cytotoxicity against TC-1 tumor cells; however, an enhanced innate immune response including activation of dendritic cells was observed. Mice co-administered with γ-PGA and L. casei-E7 showed significantly suppressed growth of TC-1 tumor cells and an increased survival rate in TC-1 mouse models compared to those of mice vaccinated with L. casei-E7 alone. The administration of γ-PGA markedly enhanced the activation of natural killer (NK) cells but did not increase the E7-specific cytolytic activity of CD8+ T lymphocytes in mice vaccinated with L. casei-E7. Overall, our results suggest that oral administration of γ-PGA induces a synergistic antitumor effect in combination with L. casei-E7.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Vacinas Anticâncer/administração & dosagem , Lacticaseibacillus casei/genética , Proteínas E7 de Papillomavirus/genética , Vacinas contra Papillomavirus/administração & dosagem , Ácido Poliglutâmico/análogos & derivados , Neoplasias do Colo do Útero/prevenção & controle , Adjuvantes Imunológicos/farmacologia , Administração Oral , Animais , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Sobrevivência Celular , Células Cultivadas , Células Dendríticas/imunologia , Feminino , Imunidade Inata/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas E7 de Papillomavirus/imunologia , Vacinas contra Papillomavirus/genética , Vacinas contra Papillomavirus/imunologia , Ácido Poliglutâmico/administração & dosagem , Ácido Poliglutâmico/farmacologia , Células RAW 264.7 , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Mol Immunol ; 109: 12-19, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30849663

RESUMO

The persistent infection of high-risk human papillomavirus (HPV) is one of the most common causes of cervical cancer. It is well documented that expression of two oncogenes (E6/E7) plays a key role in tumor progression. HPV16E7 -targeting via nanobody (Nb) therefore could be beneficial for HPV16-associated cancer diagnosis and therapy. In this work, phage-display approach was employed to select the high affinity HPV16E7-specific Nb. Firstly; a high-quality immune library was constructed. After three round of biopanning, high-affinity HPV16 E7-specific nanobodies were retrieved. By phage ELISA and sequencing, four different sequences of anti- HPV16E7 nanobodies were selected. Then recombinant nanobody Nb2 was cloned and expressed in E. coli, and the specificity and thermal stability of purified Nb2 was evaluated. To examine the potential of Nb2 as an inhibitor of E7 function, Nb2 was expressed within HPV16 positive cells. Proliferation assay showed that the intracellular expressed Nb2 as an intrabody can decrease the growth of HPV16-positive cells. The results indicate that Nb2 as an intracellular antibody directed towards HPV oncoprotein E7 has great promise in applications for the therapy of HPV16-associated disease.


Assuntos
Anticorpos Antivirais , Carcinoma de Células Escamosas/imunologia , Papillomavirus Humano 16/imunologia , Proteínas E7 de Papillomavirus/antagonistas & inibidores , Proteínas E7 de Papillomavirus/imunologia , Anticorpos de Domínio Único , Neoplasias do Colo do Útero/imunologia , Anticorpos Antivirais/genética , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/isolamento & purificação , Anticorpos Antivirais/farmacologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/virologia , Linhagem Celular Tumoral , Clonagem Molecular , Escherichia coli , Feminino , Expressão Gênica , Papillomavirus Humano 16/genética , Humanos , Proteínas E7 de Papillomavirus/genética , Biblioteca de Peptídeos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/isolamento & purificação , Anticorpos de Domínio Único/farmacologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA