Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 786
Filtrar
1.
Phytochemistry ; : 114294, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39374748

RESUMO

Terpenes, volatile compounds known for their aromatic and therapeutic properties, play a pivotal role in shaping the overall chemical profile of Cannabis sativa L. Their biosynthesis in planta occurs in trichomes and involves the 2-C-methyl-D-erythritol 4-phosphate (MEP) and the mevalonic acid (MVA) pathways, responsible for producing the substrates utilized by a family of enzymes, the terpene synthases (TPS), for terpene production. In this work, a comprehensive approach combining chemical analyses of the volatile compounds characterizing the aroma of the inflorescences three C. sativa genotypes collected at three stages of maturity and the transcriptional analyses of key genes involved in the terpene biosynthesis was adopted to study this pathway. The results revealed different terpene profiles among genotypes, which were characterized by peculiar compounds belonging to the sesqui- (CINBOL and Fibrante) or monoterpene (Ermo) categories. Both structural and putative regulatory genes were analysed by RT-qPCR, revealing distinct transcriptional profiles of Terpene Synthases, contributing to the diversity of mono and sesquiterpenes synthesized. Furthermore, the research delved into potential regulatory genes associated with trichome formation, a crucial factor influencing terpene accumulation. This integrated approach highlighted complex mechanisms governing terpene accumulation in cannabis, while also offering potential regulators putatively involved in this pathway.

2.
Heliyon ; 10(18): e37700, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39364237

RESUMO

Pheretima is a popular healthy food, but Pheretima and related foods have specific stenchy odor, especially after decocting or warm soaking, the odor is intense, resulting in nausea and vomiting. This indicates that the release of stenchy odor components is intensified when Pheretima was exposed to hot water. It is urgent to study the composition and release pattern of the stenchy odor components of Pheretima. In this study, a series of samples with different odors were prepared by the combination of SFE-CO2 and warm soaking. The results showed that the fishy and smoky odor of Pheretima were heavier, attributed to the components such as dimethyl trisulfide, TMA, and guaiacol. When Pheretima was exposed to hot water, the fishy odor increased sharply. Dimethyl trisulfide and TMA were the key odor components, especially the exposure of TMA increased by 2∼3 times after warm soaking. The volatilization rate of n-hexanal, TMA, dimethyl trisulfide and other components was found to be highly volatile, and the volatilization rate at 75 °C was 2.5 times that at room temperature. This study proved for the first time that stenchy odor substances include two categories: water-soluble and liposoluble. And found that the water-soluble odor components accelerate their exposure and volatilization in warm water, which is the scientific principle of "Pheretima smells worse exposed to water".

3.
Curr Res Food Sci ; 9: 100848, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39319112

RESUMO

Walnut oil oxidizes and becomes rancid during storage, that could be significantly affecting flavor and quality. This study aimed to monitor the volatile compounds present in walnut oil during storage, identify the characteristic markers of walnut oil at different oxidation levels, and establish a correlation network analysis based on the relationship between the olfactory analyzer and the characteristic markers to understand their correlation. The results indicated that the oxidation level of walnut oil had a positive correlation with the response of the olfactory analyzer. 219 volatile compounds were identified in walnut oil, with 89 identified as key volatile compounds (VIP >1). Among these, compounds such as (E, E)-2,4-decadienal (6.10%-23.04%),(E, E)-2,4-heptadienal (2.23%-13.61%),(E)-2-octenal (0.95%-11.71%), hexanoic acid (1.63%-4.30%),1-octen-3-ol (2.53%-19.01%),(Z)-2-heptenal (5.95%-25.01%),2,3-dihydro-furan (1.08%-3.20%),2-pentyl-furan (0.13%-0.54%), pyrazine (0.33%-1.32%), hexanal (24.52%-1.33%),3-hethylbutylacetate (12.44%-1.29%), 2-methyl butyl acetate (7.74%-1.56%) and ethenyl hexanoate (4.39%-0.41%) were found to be characteristic volatile compounds in the oxidation process of walnut oil. Furthermore, the correlation network analysis revealed a strong correlation between the olfactory analyzer sensors and the characteristic volatile compounds. The findings of this study can provide valuable data for the development of rapid determination of the oxidation level of walnut oil.

4.
Food Res Int ; 195: 114942, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39277220

RESUMO

Frankincense is an important seasoning and spice known for its distinctive and intricate flavor profile. Considering the considerable variation in the aromatic quality of frankincense due to geographical origin, species diversity and cultivation conditions, frankincense from major global origins was characterized holistically for the first time. The electronic nose (E-nose) with headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) and sensory evaluation were implemented to characterize the aroma components of 21 commercial varieties of frankincense from around the world. The results showed that a total of 149 volatile organic compounds (VOCs) of 10 categories were identified in frankincense, among which the numbers of alcohols, terpenes and esters compounds accounted for 22.15 %, 18.79 % and 15.44 % of the total VOCs of frankincense, respectively. The PLS-DA model effectively distinguished frankincense from Oman/Somalia and other origins. Furthermore, the study identified two differential VOCs with VIP > 1 in three Asian countries and five in six African countries. The total VOCs content and sensory characteristic score of "Lemon/Citrus" in Oman frankincense is significantly higher than other regions. The OAV results showed that 61 substances (e.g., Diacety, alpha-Pinene, Camphene, Myrcene) as key aroma compounds and OICS model indicated that p-Cymenol was found to contribute significantly to the citrus aroma in frankincense. This study identified the fundamental components of frankincense flavor and revealed different flavor descriptors of frankincense, which are crucial for reconstructing frankincense flavor and improving flavor quality.


Assuntos
Nariz Eletrônico , Cromatografia Gasosa-Espectrometria de Massas , Odorantes , Microextração em Fase Sólida , Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise , Odorantes/análise , Microextração em Fase Sólida/métodos , Humanos , Feminino , Paladar , Masculino , Adulto , Olfato
5.
Plants (Basel) ; 13(17)2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39273851

RESUMO

The volatile components emitted by fresh aromatic flowers of Plumeria rubra L., harvested in southern Ecuador during three different months were determined to evaluate the fluctuation of secondary metabolites. The volatile compounds were analyzed using headspace solid-phase microextraction (HS-SPME) followed by gas chromatography coupled to mass spectrometry (GC-MS) and a flame ionization detector (GC-FID) using two types of columns: a non-polar (DB-5ms) and polar column (HP-INNOWax). The principal chemical groups were hydrocarbon sesquiterpenes (43.5%; 40.0%), oxygenated sesquiterpenes (23.4%; 26.4%), oxygenated monoterpenes (14.0%; 11.2%), and hydrocarbon monoterpenes (12.7%; 9.3%). The most representative constituents were (E,E)-α-Farnesene (40.9-41.2%; 38.5-50.6%), (E)-nerolidol (21.4-32.6%; 23.2-33.0%), (E)-ß-ocimene (4.2-12.5%; 4.5-9.1%), (Z)-dihydro-apofarnesol (6.5-9.9%; 7.6-8.6%), linalool (5.6-8.3%; 3.3-7.8%), and perillene (3.1-5.9%; 3.0-3.2%) in DB-5ms and HP-INNOWax, respectively. Finally, we reported for the first time the enantiomeric distribution of P. rubra flowers, where the enantiomers (1R,5R)-(+)-α-pinene, (S)-(-)-limonene, (S)-(+)-Linalool, and (1S,2R,6R,7R,8R)-(+)-α-copaene were present as enantiomerically pure substances, whereas (S)-(+)-(E)-Nerolidol and (R)-(+)-(E)-Nerolidol were observed as scalemic mixtures. This study provides the first comprehensive and comparative aroma profile of Plumeria rubra cultivated in southern Ecuador and gave us a clue to the variability of P. rubra chemotypes depending on the harvesting time, which could be used for future quality control or applications in phytopharmaceutical and food industries.

6.
Food Chem X ; 24: 101816, 2024 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-39310891

RESUMO

The chemical compositions and volatile profiles of wax gourd seed oil (WGSO), watermelon seed oil (WSO), pumpkin seed oil (PSO), cucumber seed oil (CSO), and bitter gourd seed oil (BGSO) were comparatively explored for the first time. All oils complied with standards for physicochemical properties and BGSO had the highest phenolic content. Their mineral levels varied significantly. The fatty acid composition of WGSO, WSO, PSO, and CSO was similar, predominantly linoleic acid. Whereas BGSO exhibited a distinct fatty acid profile with 55.38 % α-eleostearic acid. All samples were rich in tocopherols and squalene, with WSO having the highest total tocopherol content and PSO having the highest squalene content. HS-GC-IMS and HS-SPME-GC-MS detected 118 and 67 VOCs, respectively, primarily consisting of aliphatic aldehydes, alcohols, esters, and ketones. Principal component analysis confirmed that BGSO had the most distinctive volatile characteristics, while the other four seed oils shared similar VOC profiles.

7.
Front Plant Sci ; 15: 1439087, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39246814

RESUMO

This study explores the role of floral volatile organic compounds (FVOCs) in insect behavior, focusing on Aquilaria sinensis (AS), a valuable tropical plant threatened by Heortia vitessoides Moore. Despite H. vitessoides' attraction to AS and non-host plants like Elaeocarpus decipiens (ED) and Dalbergia odorifera (DO), little is known about their chemical interactions. FVOCs from these plants were analyzed at 9:00 and 18:00 using GC×GC-QTOF-MS and HS-SPME. The results showed that ED exhibiting the highest concentration (92.340 ng/mg), followed by DO (75.167 ng/mg) and AS (64.450 ng/mg). Through GC-EAD and EAG, a total of 11 FVOC compounds with electrophysiological activates were identified. These compounds, except linalool, showed dose-dependent responses. Y-Tube bioassays confirmed phenylethyl alcohol or the mixture of EAD-active compounds produced positive chemotactic responses in both males and females. FVOCs have the potential to be used as a natural and sustainable alternative to chemical insecticides in pest control.

8.
Food Chem ; 463(Pt 1): 141112, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39255699

RESUMO

This work aimed to investigate the effects of frozen storage on volatile compounds of white meats (chicken and duck) and red meats (pork, beef, and mutton). The samples were stored at -18 °C for 0, 2, 4, 10, 18 weeks, and volatile compounds were analyzed by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. Results indicated that the total amounts of volatile compounds increased with frozen storage duration of meats. The correlations were observed between frozen storage duration and levels of 2-ethyl-1-hexanol, tetradecane, nonanal, decanal, octanal, tridecanal, benzaldehyde, pentadecane, propanoic acid,2-methyl-,3-hydroxy-2,2,4-trimethylpentyl ester, heptadecane, and hexanal (r = 0.7456-0.9873). Levels of octanal and propanoic acid,2-methyl-,3-hydroxy-2,2,4-trimethylpentyl ester in white meat and benzaldehyde in red meat versus frozen storage duration fitted very well with zero-order reactions. Therefore, it was concluded that changes in volatile compounds derived from lipid oxidation may be used as indicators of quality deterioration during frozen storage of meat.

9.
Food Res Int ; 194: 114928, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39232540

RESUMO

Dark tea (DT) holds a rich cultural history in China and has gained sizeable consumers due to its unique flavor and potential health benefits. In this study, headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS), relative odor activity value (ROAV), and chemometrics approaches were used to detect and analyze aroma compounds differences among five dark teas from different geographical regions. The results revealed that the five DTs from different geographical regions differed in types, quantities, and relative concentrations of volatile compounds. A total of 1372 volatile compounds of were identified in the 56 DT samples by HS-SPME-GC-MS. Using ROAV and chemometrics approaches, based on ROAV>1 and VIP>1. Eighteen key aroma compounds can be used as potential indicators for DT classification, including dihydroactinidiolide, linalool, 1,2,3-trimethoxybenzene, geranyl acetone, 1,2,4-trimethoxybenzene, cedrol, 3,7-dimethyl-1,5,7-octatrien-3-ol, ß-ionone, 4-ethyl-1,2-dimethoxybenzene, methyl salicylate, α-ionone, geraniol, linalool oxide I, linalool oxide II, 6-methyl-5-hepten-2-one, α-terpineol, 1,2,3-trimethoxy-5-methylbenzene, and 1,2-dimethoxybenzene. These compounds provide a certain theoretical basis for distinguishing the differences in five DTs from different geographical regions. This study provides a potential method for identifying the volatile substances in DTs and elucidating the differences in key aroma compounds. Abbreviations: DT, dark tea; FZT, Fuzhuan tea; LPT, Guangxi Liupao tea; QZT, Hubei Qingzhuan tea; TBT, Sichuan Tibetan tea; PET, Yunnan Pu-erh tea; ROAV, Relative odor activity value; OT, Odor threshold; HS-SPME, Headspace solid-phase microextraction; GC-MS, Gas chromatography-mass spectrometry; PCA, Principal components analysis; PLS-DA, Partial least squares-discriminant analysis; HCA, Hierarchical clustering analysis.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Odorantes , Microextração em Fase Sólida , Chá , Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise , Odorantes/análise , Chá/química , Microextração em Fase Sólida/métodos , China , Quimiometria , Camellia sinensis/química
10.
J Food Sci ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39327541

RESUMO

Fermentation is critical for producing high-quality cocoa, yet its kinetics and resulting chemical and sensory outcomes are poorly understood and thus difficult to manage. Cocoa sweatings (CS), the liquid runoff produced early during fermentation and typically drained off, may beneficially affect fermentation outcome when added back into the fermenting mass. Here, we report how back-addition of CS affects composition and sensory perception of roasted cocoa liquor after 5, 6, and 7 days of fermentation. Cocoa liquor (= 100% chocolate) made from beans fermented for 5 days with the addition of CS were similar in sensory perception to those fermented for 7 days without added CS. Twenty-one flavor compounds showed similar patterns to the sensory results: In the beans fermented with CS, these compounds remained at similar levels after 5, 6, and 7 days of fermentation, while the same compounds significantly changed in the samples fermented conventionally, without CS addition. These results suggest a link between changes in flavor composition and sensory differences in roasted cocoa. Future work is needed to reveal the mechanism of flavor stabilization throughout fermentation resulting from the back-addition of CS. PRACTICAL APPLICATION: Roasted cocoa liquor fermented with cocoa sweating (CS) is sensorily similar when fermented for 5 or 7 days and produces cocoa that is sensorily similar to traditionally fermented cocoa in shorter time (5 days vs. 7 days). The addition of CS seems to stabilize 21 flavor compounds throughout fermentation mimicking changes in sensory perception. The back-addition of CS could help standardize cocoa fermentation as indicated by more consistent temperature evolution.

11.
Foods ; 13(18)2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39335823

RESUMO

Rosa roxburghii (R. roxburghii), native to the southwest provinces of China, is a fruit crop of important economic value in Guizhou Province. However, the changes in fruit quality and flavor during R. roxburghii fruit ripening have remained unknown. Here, this study investigated the changes of seven active components and volatile organic compounds (VOCs) during the ripening of the R. roxburghii fruit at five different ripening stages including 45, 65, 75, 90, and 105 days after anthesis. The results indicated that during the ripening process, the levels of total acid, vitamin C, and soluble sugar significantly increased (p < 0.05), while the levels of total flavonoids, superoxide dismutase (SOD), and soluble tannin significantly decreased (p < 0.05). Additionally, the content of total phenol exhibited a trend of first decreasing significantly and then increasing significantly (p < 0.05). A total of 145 VOCs were detected by HS-SPME-GC-MS at five mature stages, primarily consisting of aldehydes, alcohols, esters, and alkenes. As R. roxburghii matured, both the diversity and total quantity of VOCs in the fruit increased, with a notable rise in the contents of acids, ketones, and alkenes. By calculating the ROAV values of these VOCs, 53 key substances were identified, which included aromas such as fruit, citrus, green, caramel, grass, flower, sweet, soap, wood, and fat notes. The aromas of citrus, caramel, sweet, and wood were predominantly concentrated in the later stages of R. roxburghii fruit ripening. Cluster heatmap analysis revealed distinct distribution patterns of VOCs across five different maturity stages, serving as characteristic chemical fingerprints for each stage. Notably, stages IV and V were primarily characterized by a dominance of alkenes. OPLS-DA analysis categorized the ripening process of R. roxburghii fruit into three segments: the first segment encompassed the initial three stages (I, II, and III), the second segment corresponded to the fourth stage (IV), and the third segment pertained to the fifth stage (V). Following the variable importance in projection (VIP) > 1 criterion, a total of 30 key differential VOCs were identified across the five stages, predominantly comprising ester compounds, which significantly influenced the aroma profiles of R. roxburghii fruit. By integrating the VIP > 1 and ROAV > 1 criteria, 21 differential VOCs were further identified as key contributors to the aroma changes in R. roxburghii fruit during the ripening process. This study provided data on the changes in quality and aroma of R. roxburghii fruit during ripening and laid the foundation for the investigation of the mechanism of compound accumulation during ripening.

12.
Plants (Basel) ; 13(18)2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39339533

RESUMO

Autochthonous Italian pomegranate accessions are still underexplored, although they could be an important resource for fresh consumption, processing, and nutraceutical uses. Therefore, it is necessary to characterize the local germplasm to identify genotypes with desirable traits. In this study, six old Italian pomegranate landraces and a commercial cultivar (Dente di Cavallo) were investigated, evaluating their fruit pomological parameters, physicochemical (TSS, pH, TA, and color) characteristics, sugar content, and aromatic profiles (HeadSpace Solid-Phase MicroExtraction (HS-SPME)) coupled with Gas Chromatographyass Spectrometry (GC-MS) of pomegranate juices. Significant differences were observed in the size and weight of the seed and fruits (127.50-525.1 g), as well as the sugar content (100-133.6 gL-1), the sweetness (12.9-17.6 °Brix), and the aroma profiles. Over 56 volatile compounds, predominantly alcohols (56%), aldehydes (24%), and terpenes (9%), were simultaneously quantified. Large variability among the genotypes was also statistically confirmed. The results indicate a strong potential for commercial exploitation of this germplasm, both as fresh and processed fruit, and highlight its versatility for diverse applications. The genetic diversity of the autochthonous pomegranate accessions represents a precious heritage to be preserved and enhanced. This work represents a preliminary step toward a more comprehensive characterization and qualitative valorization of the Italian pomegranate germplasm.

13.
Curr Res Food Sci ; 9: 100819, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39234276

RESUMO

Edible wild mushrooms are one of the popular ingredients due to their high quality and unique flavor and nutrients. To gain insight into the effect of drying temperature on its composition, 86 Boletus bainiugan were divided into 5 groups and dried at different temperatures. Headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) was used for the identification of volatile organic compounds (VOCs) of Boletus bainiugan. The 21 differential VOCs that distinguish different drying temperatures of Boletus bainiugan were identified. 65 °C retained more VOCs. There were differences in their types and content at different temperatures, proteins, polysaccharides, crude fibers, and fats. Fourier transform near-infrared (FT-NIR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and two-dimensional correlation spectroscopy (2DCOS) images were successfully characterized for differences in the chemical composition of Boletus bainiugan. Partial least squares discriminant analysis (PLS-DA) verified the variability in the chemical composition of Boletus bainiugan with the coefficient of determination (R2) = 0.95 and predictive performance (Q2) = 0.75 with 92.31% accuracy. Next, infrared spectroscopy provides a fast and efficient assessment of the content of Boletus bainiugan nutrients (proteins, polysaccharides, crude fibers, and fats).

14.
Planta ; 260(4): 95, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271529

RESUMO

MAIN CONCLUSION: New findings are presented for Chaerophyllum coloratum L. on the volatile composition of the essential oil, based on data of hydrosol and fresh plant material, light and electron microscopy of leaves, and cytotoxic and antiviral activity. The widespread Apiaceae family includes many well-known and economically important plants that are cultivated as food or spices. Many produce essential oils and are generally a source of secondary metabolites and compounds that have numerous applications in daily life. In this study, the chemical composition of volatile organic compounds (VOCs), ultrastructure and biological activity of the Mediterranean endemic species Cheaerophyllum coloratum L. are investigated, as literature data for this plant species are generally very scarce. The essential oil and hydrosol were extracted from the air-dried leaves by hydrodistillation and the chemical composition of both extracts was analysed by GC-MS in conjunction with headspace solid-phase microextraction (HS-SPME) of VOCs from the hydrosol and the fresh plant material. In the composition of the essential oil, the oxygenated sesquiterpenes spathulenol and caryophyllene oxide were the most abundant components. In the fresh plant material, non-oxygenated sesquiterpenes dominated, with ß-caryophyllene and germacrene D being the main components. The hydrosol was dominated by monoterpenes, with the oxygenated monoterpene p-cymen-8-ol being the most abundant. Light and electron micrographs of the leaf of C. coloratum show secretory structures, and we hypothesize that glandular leaf trichomes, secretory epidermal cells and secretory canals are involved in the production of volatiles and their secretion on the leaf surface. Since the biological potential of C. coloratum is poorly investigated, we tested its cytotoxic activity on cancer and healthy cell lines and its antiviral activity on plants infected with tobacco mosiac virus (TMV). Our results dealing with the composition, ultrastructure and biological activity show that C. coloratum represent a hidden valuable plant species with a potential for future research.


Assuntos
Óleos Voláteis , Folhas de Planta , Compostos Orgânicos Voláteis , Folhas de Planta/química , Folhas de Planta/ultraestrutura , Compostos Orgânicos Voláteis/farmacologia , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Antivirais/farmacologia , Microextração em Fase Sólida , Sesquiterpenos/farmacologia , Sesquiterpenos/metabolismo
15.
MethodsX ; 13: 102914, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39253006

RESUMO

This review critically assesses the determination of low molecular weight volatiles by different methods, providing context for the development of suitable techniques to determine volatile content in plant tissue and soil samples as well as the associated analytical challenges. Although sensitive analytical methods have been reported in recent decades, studies on their application in modern investigative techniques are lacking. Herein, the latest sampling methods in volatile biochemistry, current advancements in the understanding of these analytes, and the significance of these findings for other types of volatiles are summarized. Gas chromatography, high-performance liquid chromatography, ion chromatography, thin-film microextraction, and real-time monitoring techniques are discussed and critically determined. This review concerns the methods most suitable for future research in this area.

16.
Molecules ; 29(17)2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39275105

RESUMO

Calypogeia is a genus of liverworts in the family Calypogeiaceae. The subject of this study was Calypogeia suecica. Samples of the liverwort Calypogeia suecica were collected from various places in southern Poland. A total of 25 samples were collected in 2021, and 25 samples were collected in 2022. Volatile organic compounds (VOCs) from liverworts were analyzed by gas chromatography-mass spectrometry (GC-MS). A total of 107 compounds were detected, of which 38 compounds were identified. The identified compounds were dominated by compounds from the sesquiterpene group (up to 34.77%) and sesquiterpenoids (up to 48.24%). The tested samples of Calypogeia suecica also contained compounds belonging the aromatic classification (up to 5.46%), aliphatic hydrocarbons (up to 1.66%), and small amounts of monoterpenes (up to 0.17%) and monoterpenoids (up to 0.30%). Due to the observed differences in the composition of VOCs, the tested plant material was divided into two groups, in accordance with genetic diversity.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Hepatófitas , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Hepatófitas/genética , Hepatófitas/química , Hepatófitas/classificação , Sesquiterpenos/análise
17.
Food Chem ; 463(Pt 2): 141264, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39288457

RESUMO

The four major Chinese carps are highly popular for their distinctive nutritional benefits. However, the differences in flavor among these carps remain unclear. This study investigated the flavor profiles of these carps using headspace solid-phase micro-extraction gas chromatography-mass spectrometry (HS-SPME-GC/MS) combined with ultra-fasted gas chromatography electronic nose (GC E-nose). The four major Chinese carps had high protein content (16.68-18.61 %) and low fat levels (0.42-1.29 %). A total of 45 volatile compounds were identified in these carps. Both the GC E-nose and HS-SPME-GC-MS results consistently showed significant flavor profiles differences among these carps, with Ctenopharyngodon Idella (CI) exhibiting the most pronounced distinctions compared to the other three species. Based on VIP >1 and p < 0.05, 10 key compounds including 2-Nonanone, Cyclodecanol, Eugenol, 1,3-Cyclooctadiene, etc., largely contributed to the distinctive overall flavor profile of four major Chinese carps derived mainly from amino acid and fatty acid metabolism.

18.
Foods ; 13(16)2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39200416

RESUMO

Steamed bread is a traditional staple food in China, and it has gradually become loved by people all over the world because of its healthy production methods. With the improvement in people's living standards, the light flavor of steamed bread fermented by single yeast cannot meet people's needs. Multi-strain co-fermentation is a feasible way to improve the flavor of steamed bread. Here, the dynamic change profiles of volatile substances in steamed bread co-fermented by Saccharomyces cerevisiae SQJ20 and Wickerhamomyces anomalus GZJ2 were analyzed using the electronic nose (E-nose) and headspace solid-phase microextraction combined with gas chromatography-mass spectrometry (HS-SPME-GC-MS). The five detectors of the E-nose rapidly detected the changes in volatile substances in different dough or steamed bread with the highest response value in co-fermented dough. A total of 236 volatile substances were detected in all the samples using HS-SPME-GC-MS, and alcohols were the most variable component, especially Phenylethyl alcohol. Significantly, more alcohols and esters were upregulated in co-fermented dough, and the addition of W. anomalus GZJ2 improved the key volatile aroma compounds of steamed bread using the relative odor activity value method (ROAV), especially the aldehydes and alcohols. Moreover, these key volatile aroma compounds can be quickly distinguished using the W2S detector of the E-nose, which can be used for the rapid detection of aroma components in steamed bread.

19.
Foods ; 13(16)2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39200513

RESUMO

Wheat starch fermentation slurry is the main substrate for producing Ganmianpi, a traditional Chinese fermented wheat starch-based noodle. In the present work, the microbial population dynamics and metabolite changes in wheat starch fermentation slurry at different fermentation times (0, 1, 2, 3, and 4 days) were measured by using high-throughput sequencing analysis and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME/GC-MS) methods. The texture and sensory properties of Ganmianpi made from fermented starch slurry are also evaluated. The results showed that Latilactobacillus curvatus and Leuconostoc citreum were the dominant bacteria in wheat starch fermentation slurry, while Saccharomyces cerevisiae and Kazachstania wufongensis were identified as the main species of fungi. With the extension of fermentation time, the reducing sugar content first increased and then decreased, when the titratable acidity content showed an increasing trend, and the nonvolatile acid was significantly higher than the volatile acid. A total of 62 volatile flavor compounds were identified, and the highest content is alcohols, followed by acids. Fermentation significantly reduced the hardness and chewiness of Ganmianpi, and increased its resilience and cohesiveness. Ganmianpi made from fermented starch slurry for two and three days showed a higher sensory score than other samples. The present study is expected to provide a theoretical basis for exploiting the strains with potential for commercial application as starter cultures and quality improvement of Ganmianpi.

20.
Food Chem ; 460(Pt 3): 140658, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39126949

RESUMO

This investigation explores the impact of various fermentation techniques and the inoculation of Bacillus subtilis spores on the physicochemical properties and principal flavor profiles of Huangjiu. Employing sensory analysis, headspace solid-phase microextraction, gas chromatography-tandem mass spectrometry (HS-SPME-GC-MS), and orthogonal partial least squares discriminant analysis (OPLS-DA), we observed that these variables significantly alter the physicochemical attributes of Huangjiu. Our analysis, integrating volatile organic compounds (VOCs) with odor activity values (OAV), revealed that while B. subtilis inoculation modifies the concentrations of key flavor compounds, it does not affect their types. Notably, the inoculation enhances the concentrations of 13 primary flavor compounds, thereby enriching floral and fruity notes while reducing higher alcohol levels. These findings contribute valuable insights into the flavor formation mechanisms of Huangjiu and guide the optimization of fermentation processes.


Assuntos
Bacillus subtilis , Fermentação , Oryza , Paladar , Compostos Orgânicos Voláteis , Vinho , Adulto , Feminino , Humanos , Masculino , Cromatografia Gasosa-Espectrometria de Massas , Odorantes/análise , Oryza/química , Oryza/microbiologia , Microextração em Fase Sólida , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Vinho/análise , Vinho/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA