RESUMO
Neutrophil extracellular traps (NETs) are implicated in the occurrence and progression of atherosclerosis (AS), which can result in adverse cardiovascular events. We investigated the potential mechanism of action of Modified Taohong Siwu Decoction (MTHSWD) against AS based on its effect on NETs. A model of unstable plaque in AS was established by tandem stenosis (TS) of the right common carotid artery in ApoE-/- mice combined with a western diet (WD). The research found that MTHSWD reduced the weight of mice with AS to varying degrees, and significantly decreased the levels of plasma total cholesterol (TC) and triglycerides (TG). Meanwhile, we found that MTHSWD not only significantly improved cardiac EF, FS, cardiac hypertrophy, and ventricular remodeling, but also ameliorated the silent and depressed hypoactivity state caused by AS in ApoE-/- mice. Additionally, the study revealed that MTHSWD improved the severity of AS, protected the vascular structure, increased plaque stability and vessel patency. It also significantly reduced vascular cell apoptosis, platelet aggregation, and the presence of inflammatory cells such as neutrophils (NEUs), as well as the expression of neutrocyte elastase (NE) and myeloperoxidase (MPO), which are components of NETs. Subsequently, NEUs studies have shown that MTHSWD not only significantly reduces the dsDNA content of NETs, but also lowers the expression of NETs components NE and citH3. NETs treating the human umbilical vein endothelial cells (HUVECs) demonstrated that NETs differentially increased the protein expression of endothelial inflammatory adhesion factors CD62P, VCAM-1 and ICAM-1, while significantly decreasing the viability of HUVECs. Pharmacological treatment discovered that MTHSWD significantly improved HUVECs viability impaired by NETs, and promoted the growth and proliferation of endothelial cells. Furthermore, it significantly reduced early and late apoptosis of HUVECs caused by NETs, decreased the expression of pro-apoptotic proteins BAX and Cleaved-Caspase-3, and increased the expression of anti-apoptotic protein Bcl-2. Thus, study suggests that MTHSWD may improve body weight, lipid levels, cardiac function, vigour, and the severity of AS in ApoE-/- AS mice. The novel effect of MTHSWD against AS may be attributed to the inhibition of endothelial injury and apoptosis through the regulation of NETs. This, in turn, reduces the levels of platelets, inflammatory cells, and components of NETs in AS plaques, achieving a benign cycle that protects endothelial cells and vascular structure and function. This result provides some clues and evidence for studying the mechanism of action and clinical application of MTHSWD and its active ingredients against AS.
RESUMO
Crocin-4 is a water-soluble carotenoid that exhibits cardiovascular protection effects through anti-inflammatory and antioxidant effects. However, the pharmacodynamic effects and mechanisms of its analogues crocin-1 and crocin-2' have not been reported. In this study, we evaluated the protective effects of rare crocins on cardiovascular systems. In ox-LDL induced HUVECs model, 0.02, 0.1, 0.5, 1, 2, 3, 4, 5, 6 µg/mL crocin-1 and crocin-2' can increase cell viability by up to 80 %. Meanwhile, rare crocins at concentrations between 25-100 µg/mL crocin-1 and crocin-2' reduced the lipid accumulation by 30 % in cholesterol-induced zebrafish larvae. What's more, the therapeutic potential of rare crocins on thrombosis has also been explored. In vitro experiments, rare crocin-1 and crocin-2' at concentrations of 0.02, 0.05, 0.2, 0.5, 1, 2, 5, 10 µg/mL protected Human Umbilical Vein Endothelial Cells (HUVECs) against lipopolysaccharides-induced oxidative stress and inflammation. In vivo studies revealed that rare crocins at concentrations of 25, 50, 100, 150, 200, and 300 µg/mL exerted significant antithrombotic effect on arachidonic acid (AA)-induced zebrafish and there was nearly no potential risk for the deformity of zebrafish at 300 µg/mL dosages. In brief, rare crocins was viewed as a potentially useful candidate for the treatment of cardiovascular diseases because of its anti-inflammatory, antioxidant, and anticoagulant properties.
RESUMO
Ferroptosis, a distinct type of cell death caused by iron and lipid peroxidation, has been associated with several diseases, including cardiovascular disorders. Ferrostatin-1 (Fer-1) is a known ferroptosis inhibitor, but its clinical application is limited by low efficacy and stability. In the present study, a series of Fer-1-based diamide derivatives was synthesized and evaluated to enhance ferroptosis inhibition and in vitro metabolic stability. The synthesized compounds were tested for their protective effects against Erastin-induced injury in human vascular endothelial cells (HUVECs). Among the derivatives, compound 36 exhibited the most potent anti-ferroptosis activity with an EC50 value of 0.58 ± 0.02 µM. Remarkably, compound 36 also demonstrated superior stability in both microsomal (human and mouse) and mouse plasma assays. These findings indicated ferroptosis inhibitor 36 as a promising hit for further developing potential therapeutic drug candidates in cardiovascular diseases.
Assuntos
Cicloexilaminas , Ferroptose , Fenilenodiaminas , Humanos , Ferroptose/efeitos dos fármacos , Animais , Camundongos , Relação Estrutura-Atividade , Fenilenodiaminas/farmacologia , Fenilenodiaminas/química , Fenilenodiaminas/síntese química , Cicloexilaminas/farmacologia , Cicloexilaminas/síntese química , Cicloexilaminas/química , Estrutura Molecular , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Relação Dose-Resposta a DrogaRESUMO
Cell-bound membrane vesicles (CBMVs), a novel type of membrane vesicles, have been identified through a series of characterization tools. However, the lipid composition of CBMVs has not yet been characterized. This study focuses on the differences in lipid composition between CBMVs and cell membranes. In order to determine the lipid composition of CBMVs and cell membranes of Human umbilical vein endothelial cells (HUVECs) and find out differential metabolites, this study was carried out by isolating CBMVs lipids and characterizing them using high-performance liquid chromatography tandem secondary mass spectrometry (LC-MS/MS). The results showed the presence of 213 up-regulated and 726 down-regulated lipids in CBMVs compared to cell membranes which produced CBMVs. There are lipids expressed in CBMVs and not in cell membranes: DGDG 18:0_8:0, DGDG O-8:0_16:1, DGDG O-26:7_26:7, DGDG O-16:3_26:7, TG 15:4_21:5_22:5; 4O, PC 49:11, PG 19:5_38:10, PI 60:14, PI 44:9, PI 25:2, PI 43:5, PI 50:10, PS 55:10. DGDG (digalactosyl diglyceride), MGDG (monogalactosyl diglyceride) belongs to galactosyl diglyceride, promotes fat catabolism, which also has antioxidant and anti-inflammatory effects, and unsaturated diacylglycerols are a class of antioxidant compounds, which enables CBMVs to have a therapeutic potential.
Assuntos
Membrana Celular , Células Endoteliais da Veia Umbilical Humana , Humanos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Membrana Celular/metabolismo , Lipídeos de Membrana/metabolismo , Lipídeos de Membrana/química , Espectrometria de Massas em Tandem/métodos , Células Cultivadas , Lipídeos/química , Lipídeos/análiseRESUMO
N6-methyladenosine (m6A) is the most general post-transcriptional modification of eukaryotic mRNAs and long-stranded non-coding RNAs. In this process, It has been shown that FTO associates with the m6A mRNA demethylase and plays a role in diabetic vascular endothelial dysfunction. In the present study, we detected FTO protein expression in HUVECs by Western blot and found that FTO was highly expressed in all disease groups relative to the control group. To explore the mechanism of FTO in T2DM vasculopathy, we performed an analysis by methylated RNA immunoprecipitation sequencing (MeRIP-seq) to elucidate the role of aberrant m6A modification and mRNA expression in endothelial dysfunction. The results showed 202 overlapping genes with varying m6A modifications and varied mRNA expression, and GO and KEGG enrichment analysis revealed that these genes were predominantly enriched in pathways associated with T2DM complications and endothelial dysfunction. By an integrated analysis of MeRIP-seq and RNA-seq results, the IGV plots showed elevated kurtosis of downstream candidate gene modifications, which may be downstream targets for FTO to exercise biological functions. HOXA9 and PLAU mRNA expression levels were significantly down after FTO inhibition. In the current work, we set up a typological profile of the m6A genes among HUVECs as well as uncovered a hidden relationship between RNA methylation modifications for T2DM vasculopathy-associated genes. Taken together, this study indicates that endothelial functional impairment is present in T2DM patients and may be related to aberrant expression of FTO.
Assuntos
Adenosina , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Células Endoteliais da Veia Umbilical Humana , Humanos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Metilação , Imunoprecipitação , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Análise de Sequência de RNARESUMO
Endometriosis is a multifactorial gynecological disease, with angiogenesis as a key hallmark. The role of exosomal microRNAs (miRNAs) in endometriosis is not well understood. This study investigates differentially expressed exosomal miRNAs linked to angiogenesis in endometriosis, clarifies their molecular mechanisms, and identifies potential targets. Primary endometrial stromal cells (ESCs) were cultured, and exosomes were extracted. In a co-culture system, ESC-derived exosomes were taken up by human umbilical vein endothelial cells (HUVECs). Endometriosis implant-ESC-derived exosomes (EI-EXOs) significantly promoted HUVEC proliferation, migration and tube formation compared to normal endometrium-exosomes (NE-EXOs), a finding consistent in vivo in mice. MiRNA sequencing and bioinformatics identified differentially expressed miR-21-5p from EI-EXOs, confirmed by RT-qPCR. The miR-21-5p inhibitor or GW4869 attenuated EI-EXO-induced HUVEC proliferation, migration, and tube formation. TIMP3 overexpression diminished the pro-angiogenic effect of EI-EXOs, which was reversed by adding EI-EXOs or upregulating miR-21-5p. These findings validate the crosstalk between ESCs and HUVECs mediated by exosomal miR-21-5p, and confirm the miR-21-5p-TIMP3 axis in promoting angiogenesis in endometriosis. KEY MESSAGES: ESC-derived exosomes were found to be taken up by recipient cells, i.e. HUVECs. Functionally, endometriosis implant-ESC-derived exosomes (EI-EXOs) could significantly promote the proliferation, migration and tube formation of HUVECs compared to normal endometrium-exosomes (NE-EXOs). Through miRNA sequencing and bioinformatics analysis, differentially expressed miR-21-5p released by EI-EXOs was chosen, as confirmed by qRT-PCR. miR-21-5p inhibitor or GW4869 was found to attenuate the proliferation, migration, and tube formation of HUVECs induced by EI-EXOs. In turn, TIMP3 overexpression diminished the pro-angiogenic effect of EI-EXOs, and this angiogenic phenotype was reversed once EI-EXOs were added or miR-21-5p was upregulated.
Assuntos
Proliferação de Células , Endometriose , Endométrio , Exossomos , Células Endoteliais da Veia Umbilical Humana , MicroRNAs , Neovascularização Patológica , Células Estromais , Inibidor Tecidual de Metaloproteinase-3 , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Inibidor Tecidual de Metaloproteinase-3/genética , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Exossomos/metabolismo , Exossomos/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Estromais/metabolismo , Animais , Endométrio/metabolismo , Endométrio/patologia , Endometriose/genética , Endometriose/metabolismo , Endometriose/patologia , Camundongos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Movimento Celular/genética , Adulto , AngiogêneseRESUMO
Background: This study aims to identify a novel gene signature for coronary artery disease (CAD), explore the role of immune cell infiltration in CAD pathogenesis, and assess the cell function of mast cell-expressed membrane protein 1 (MCEMP1) in human umbilical vein endothelial cells (HUVECs) treated with oxidized low-density lipoprotein (ox-LDL). Methods: To identify differentially expressed genes (DEGs) of CAD, datasets GSE24519 and GSE61145 were downloaded from the Gene Expression Omnibus (GEO) database using the R "limma" package with p < 0.05 and |log2 FC| > 1. Gene ontology (GO) and pathway analyses were conducted to determine the biological functions of DEGs. Hub genes were identified using support vector machine-recursive feature elimination (SVM-RFE) and least absolute shrinkage and selection operator (LASSO). The expression levels of these hub genes in CAD were validated using the GSE113079 dataset. CIBERSORT program was used to quantify the proportion of immune cell infiltration. Western blot assay and qRT-PCR were used to detect the expression of hub genes in ox-LDL-treated HUVECs to validate the bioinformatics results. Knockdown interference sequences for MCEMP1 were synthesized, and cell proliferation and apoptosis were examined using a CCK8 kit and Muse® Cell Analyzer, respectively. The concentrations of IL-1ß, IL-6, and TNF-α were measured with respective enzyme-linked immunosorbent assay (ELISA) kits. Results: A total of 73 DEGs (four down-regulated genes and 69 up-regulated genes) were identified in the metadata (GSE24519 and GSE61145) cohort. GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis results indicated that these DEGs might be associated with the regulation of platelet aggregation, defense response or response to bacterium, NF-kappa B signaling pathway, and lipid and atherosclerosis. Using SVM-RFE and LASSO, seven hub genes were obtained from the metadata. The upregulated expression of DIRC2 and MCEMP1 in CAD was confirmed in the GSE113079 dataset and in ox-LDL-treated HUVECs. The associations between the two hub genes (DIRC2 and MCEMP1) and the 22 types of immune cell infiltrates in CAD were found. MCEMP1 knockdown accelerated cell proliferation and suppressed cell apoptosis for ox-LDL-treated HUVECs. Additionally, MCEMP1 knockdown appeared to decrease the expression of inflammatory factors IL-1ß, IL-6, and TNF-α. Conclusions: The results of this study indicate that MCEMP1 may play an important role in CAD pathophysiology.
Assuntos
Doença da Artéria Coronariana , Células Endoteliais da Veia Umbilical Humana , Lipoproteínas LDL , Humanos , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/imunologia , Lipoproteínas LDL/metabolismo , Proteínas de Membrana/genética , Perfilação da Expressão Gênica , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Apoptose/genética , Apoptose/efeitos dos fármacosRESUMO
BACKGROUND: Liver cancer is a highly lethal malignancy with frequent recurrence, widespread metastasis, and low survival rates. The aim of this study was to explore the role of Endoglin (ENG) in liver cancer progression, as well as its impacts on angiogenesis, immune cell infiltration, and the therapeutic efficacy of sorafenib. METHODS: A comprehensive evaluation was conducted using online databases Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA), 76 pairs of clinical specimens of tumor and adjacent non-tumor liver tissue, and tissue samples from 32 hepatocellular carcinoma (HCC) patients treated with sorafenib. ENG expression levels were evaluated using quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR), Western blot, and immunohistochemical analysis. Cox regression analysis, Spearman rank correlation analysis, and survival analysis were used to assess the results. Functional experiments included Transwell migration assays and tube formation assays with Human Umbilical Vein Endothelial Cells (HUVECs). RESULTS: Tumor cells exhibited retro-differentiation into endothelial-like cells, with a significant increase in ENG expression in these tumor-derived endothelial cells (TDECs). High expression of ENG was associated with more aggressive cancer characteristics and worse patient prognosis. Pathway enrichment and functional analyses identified ENG as a key regulator of immune responses and angiogenesis in liver cancer. Further studies confirmed that ENG increases the expression of Collagen type Iα1 (COL1A1), thereby promoting angiogenesis in liver cancer. Additionally, HCC patients with elevated ENG levels responded well to sorafenib treatment. CONCLUSIONS: This study found that ENG is an important biomarker of prognosis in liver cancer. Moreover, ENG is associated with endothelial cell differentiation in liver cancer and plays a crucial role in formation of the tumor vasculature. The assessment of ENG expression could be a promising strategy to identify liver cancer patients who might benefit from targeted immunotherapies.
Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , Diferenciação Celular , Endoglina , Neoplasias Hepáticas , Neovascularização Patológica , Sorafenibe , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/irrigação sanguínea , Neoplasias Hepáticas/tratamento farmacológico , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Prognóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/irrigação sanguínea , Carcinoma Hepatocelular/tratamento farmacológico , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Endoglina/metabolismo , Endoglina/genética , Masculino , Feminino , Pessoa de Meia-Idade , Linhagem Celular Tumoral , Compostos de Fenilureia/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , AngiogêneseRESUMO
Teeth exert fundamental physiological functions, such as mastication and speech, and are a key feature of oral health that affects life quality. Teeth are anchored to the alveolar bone via the periodontal ligament, which provides stability to the teeth and absorbs mechanical stresses during mastication. Periodontal infection leads to periodontitis, a severe inflammation of the supporting soft tissues that ultimately cause tooth loss. Despite the pressing need of periodontal regeneration for improved oral care, efficient in vitro models of the periodontal tissues are still missing, thus hampering the development of novel, faster, and more effective therapy modalities. Herein, a novel "periodontal ligament (PDL)-on-chip" model that integrates patient-derived periodontal ligament cells (PDLCs) and endothelial cells is introduced. This microfluidic platform provides optimal conditions for the formation of extensive and perfusable vascular networks. Furthermore, PDLCs elicit blood vessels' development and maturation while establishing close contacts with the endothelial cells. Potential applications for inflammatory periodontal diseases are also successfully displayed in the "PDL-on-chip" by stimulating inflammation and detecting inflammatory cytokines. This work offers a cornerstone for more complex and specialized microfluidic dental models, which are necessary to unravel complex oral diseases that affect individuals' general health that go beyond the field of dentistry.
RESUMO
In this paper, three varieties of Elaeagnus conferta Roxb fruits prepared by ultrasonic-assisted extraction from a subtropical region southwest of China were utilized as raw materials to investigate their phenolic profiles, antioxidant activities, and protective effects on injured human umbilical vein endothelial cells (HUVECs). The ultra performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) findings revealed that fifteen substances, including seven phenolic acids, seven flavonoids, and one gallic acid derivative, were discovered. The dihydromyricetin, ellagic acid, gallic acid were the predominant phenolic compounds in all E.conferta fruits. These E.conferta fruits extracts shown excellent antioxidant activity varied from 2.258 ± 0.03 ~ 7.844 ± 0.39 µM Trolox/g and protective effect on HUVECs injured by H2O2 through decrease the level of ROS, MDA, LDH and enhance the SOD level. These finding indicate that E.conferta is a valuable source of high-capacity antioxidants that might be used as an alternative material for food industries.
RESUMO
Lyme disease, caused by infection with members of the Lyme borreliosis group of Borrelia spirochete bacteria, is increasing in frequency and distribution worldwide. Epigenetic interactions between the mammalian host, tick, and bacterial pathogen are poorly understood. In this study, high-throughput next-generation sequencing (NGS) allowed for the in vitro study of the transcriptome, non-coding RNAs, and methylome in human host cells in response to Borrelia burgdorferi infection. We tested the effect of the Borrelia burgdorferi strain B31 on a human primary cell line (HUVEC) and an immortalized cell line (HEK-293) for 72 h, a long-duration time that might allow for epigenetic responses in the exposed human host cells. Differential gene expression was detected in both cell models in response to B. burgdorferi. More differentially expressed genes were found in HUVECs compared to HEK-293 cells. Borrelia burgdorferi exposure significantly induced genes in the interferon, in addition to cytokine and other immune response signaling in HUVECs. In HEK-293 cells, pre-NOTCH processing in Golgi was significantly downregulated in Borrelia-exposed cells. Other significantly altered gene expressions were found in genes involved in the extracellular matrix. No significant global methylation changes were detected in HUVECs or HEK-293 cells exposed to B. burgdorferi; however, two long non-coding RNAs and a pseudogene were deregulated in response to B. burgdorferi in HUVECs, suggesting that other epigenetic mechanisms may be initiated by infection.
Assuntos
Borrelia burgdorferi , Doença de Lyme , RNA Longo não Codificante , Transcriptoma , Humanos , Borrelia burgdorferi/genética , RNA Longo não Codificante/genética , Doença de Lyme/microbiologia , Doença de Lyme/genética , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/microbiologia , Epigenoma , Metilação de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno/genética , Epigênese GenéticaRESUMO
Long-term cell culture is an important biological approach but is also characterized by degeneration in cellular morphology, proliferation rate, and function. To explore this phenomenon in a systematic way, we conducted an integrative proteomics-metabolomics measurement of two cardiovascular cell lines of AC16 and HUVECs. The 18th culturing passages, i.e., G18, showed as the turning points by cell metabolism profiles, in which the metabolomic changes demonstrated the dysfunction of energy, amino acid, and ribonucleotide metabolism metabolic pathways. Although active protein networks showed mitochondria abundance AC16 and oxidative/nitrative sensitive HUVECs indicated the different degeneration patterns, the G18 and G30 proteomics evidenced the senescence by processes of signal transduction, signaling by interleukins, programmed cell death, cellular responses to stimuli, cell cycle, mRNA splicing, and translation. Some crucial proteins (RPS8, HNRNPR, SOD2, LMNB1, PSMA1, DECR1, GOT2, OGDH, PNP, CBS, ATIC, and IMPDH2) and metabolites (L-glutamic acid, guanine, citric acid, guanosine, guanosine diphosphate, glucose 6-phosphate, and adenosine) that contributed to the dysregulation of cellular homeostasis are identified by using the integrative proteomic-metabolomic analysis, which highlighted the increased cellular instability. These findings illuminate some vital molecular processes when culturing serial passages, which contribute holistic viewpoints of in vitro biology with emphasis on the replicative senescence of cardiovascular cells.
RESUMO
Deep vein thrombosis (DVT) is a common postoperative complication of orthopaedic surgery with a complex pathogenesis mechanism. The effect of the miR-2467-3p/acting-binding LIM protein 1 (ABLIM1) axis on thrombus formation and human vascular endothelial cells (HUVECs) progression was evaluated aiming to identify a novel potential biomarker of DVT. DVT rat models were established by inferior vena cava stenosis. The expression of the miR-2467-3p/ABLIM1 axis was analyzed by PCR. HUVECs were induced with oxidative low-density lipoprotein (ox-LDL). Cell growth and motility were assessed by cell counting kit 8 (CCK8) and Transwell assay. The inflammation and oxidative stress were estimated by proinflammatory cytokines and generation of MDA and reactive oxygen species (ROS). ABLIM1 was downregulated in DVT rats. Overexpressing ABLIM1 could suppress the formation of thrombosis and alleviate inflammation and oxidative stress. In HUVECs, ox-LDL induced significantly increased miR-2467-3p and decreased ABLIM1, and miR-2467-3p could negatively regulate ABLIM1. The knockdown of miR-2467-3p could alleviate the inhibited cell growth and motility by ox-LDL, and the inflammation and oxidative stress were also attenuated. While silencing could reverse the effect of miR-2467-3p on ox-LDL-induced HUVECs. The miR-2467-3p/ABLIM1 axis regulates the occurrence and development of DVT through modulating HUVECs inflammation and oxidative stress.
RESUMO
Twelve polyphenol derivatives were obtained in a protective activity-guided isolation from the Portulaca oleracea L. extract on a cell model of human umbilical vein endothelial cells (HUVECs) under diethylhexyl phthalate (DEHP) exposure. Among them, methyl (3,4,5-trimethoxybenzoyl) valylprolinate (PP-10) performed the most protective activity and inhibited DEHP exposure-induced HUVECs' apoptosis. PP-10 also inhibited the DEHP-induced inflammatory cytokines (TNF-α, IL-6, IL-1ß, and IL-8) and adhesion molecule (ICAM-1 andVCAM-1) overexpression. Furthermore, DEHP-induced NLRP3 inflammasomes' and NF-κB signaling pathway activation was significantly inhibited after the PP-10 treatments. Of note, the current results suggest the potential application of Portulaca oleracea L. and PP-10 in the prevention of DEHP-induced inflammatory damages in HUVECs.
Assuntos
Dietilexilftalato , Células Endoteliais da Veia Umbilical Humana , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Extratos Vegetais , Portulaca , Transdução de Sinais , Humanos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Portulaca/química , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Dietilexilftalato/toxicidade , Dietilexilftalato/análogos & derivados , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/metabolismo , Apoptose/efeitos dos fármacos , Citocinas/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Molécula 1 de Adesão Intercelular/genéticaRESUMO
Vascular endothelial cytoskeletal disruption leads to increased vascular permeability and is involved in the pathogenesis and progression of various diseases. Oxidative stress can increase vascular permeability by weakening endothelial cell-to-cell junctions and decrease intracellular nicotinamide adenine dinucleotide (NAD+) levels. However, it remains unclear how intracellular NAD+ variations caused by oxidative stress alter the vascular endothelial cytoskeletal organization. In this study, we demonstrated that oxidative stress activates poly (ADP-ribose [ADPr]) polymerase (PARP), which consume large amounts of intracellular NAD+, leading to cytoskeletal disruption in vascular endothelial cells. We found that hydrogen peroxide (H2O2) could transiently disrupt the cytoskeleton and reduce intracellular total NAD levels in human umbilical vein endothelial cells (HUVECs). H2O2 stimulation led to rapid increase in ADPr protein levels in HUVECs. Pharmaceutical PARP inhibition counteracted H2O2-induced total NAD depletion and cytoskeletal disruption, suggesting that NAD+ consumption by PARP induced cytoskeletal disruption. Additionally, supplementation with nicotinamide mononucleotide (NMN), the NAD+ precursor, prevented both intracellular total NAD depletion and cytoskeletal disruption induced by H2O2 in HUVECs. Inhibition of the NAD+ salvage pathway by FK866, a nicotinamide phosphoribosyltransferase inhibitor, maintained H2O2-induced cytoskeletal disruption, suggesting that intracellular NAD+ plays a crucial role in recovery from cytoskeletal disruption. Our findings provide further insights into the potential application of PARP inhibition and NMN supplementation for the treatment and prevention of diseases involving vascular hyperpermeability.
Assuntos
Citoesqueleto , Células Endoteliais da Veia Umbilical Humana , Peróxido de Hidrogênio , NAD , Estresse Oxidativo , Poli(ADP-Ribose) Polimerases , Humanos , Citoesqueleto/metabolismo , Citoesqueleto/efeitos dos fármacos , NAD/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/metabolismo , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/toxicidade , Peróxido de Hidrogênio/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Células CultivadasRESUMO
Background: This study aimed to explore the molecular mechanism of homeodomain-interacting protein kinase 2 (HIPK2) in diabetic foot ulcers (DFU).Methods: High glucose (HG)-induced human umbilical vein endothelial cells (HUVECs) were used to construct DFU cell models. Cell functions were determined using CCK8 assay, EdU assay, flow cytometry, transwell assay, wound healing assay and tube formation assay. Quantitative real-time PCR and western blot were applied to measure the gene expression.Results: HG treatment suppressed HUVECs proliferation, invasion, migration, and angiogenesis, while enhanced apoptosis. HIPK2 was overexpressed in DFU patients, and its knockdown alleviated HG-induced HUVECs dysfunctions. USP7 stabilised HIPK2 protein by reducing its ubiquitination. USP7 overexpression promoted HG-induced HUVECs dysfunctions, and HIPK2 upregulation also reversed the regulation of USP7 knockdown on HG-induced HUVECs dysfunctions. USP7/HIPK2 axis inhibited the activity of PI3K/AKT pathway.Conclusion: Our study revealed that USP7-stabilised HIPK2 contributed to HG-induced HUVECs dysfunctions, thus accelerating DFU process.
RESUMO
Rehmannia glutinosa Libosch, Achyranthes bidentata Bl. (A. bidentata), Dioscorea opposita Thunb, and Chrysanthemum morifolium Ramat (C. morifolium) are known as the 'Four Huaiqing Chinese Medicine' in China, which are used as materials for functional foods. In this paper, the constituents of Four Huaiqing Chinese Medicine were identified by UPLC-Q-TOF-MS/MS, and flavones and aromatic compounds are mainly responsible for these herbs. Moreover, C. morifolium exhibited the most significant effect in cobalt chloride-induced HUVECs injury, which could decrease cell apoptosis and the overproduction of ROS, lactic dehydrogenase (LD) and pyruvic acid, and increase the migration capacity of cells. Meanwhile, A. bidentata exhibited the most significant effect in isoproterenol-induced H9C2 cell injury, which could decrease the levels of ROS overproduction, BNP, NO, LD and pyruvic acid. Western blot revealed that C. morifolium and A. bidentata also could decrease the levels of bax/bcl-2 ratio, cleaved caspase-3, cytochrome c, HIF-1É, GLUT1, HKII and PFKFB3, respectively.
RESUMO
Tendon injuries are common orthopedic ailments with a challenging healing trajectory, especially in cases like the Achilles tendon afflictions. The healing trajectory of tendon injuries is often suboptimal, leading to scar formation and functional impairment due to the inherent low metabolic activity and vascularization of tendon tissue. As pressing is needed for effective interventions, efforts are made to explore biomaterials to augment tendon healing. However, tissue engineering approaches face hurdles in optimizing tissue scaffolds and nanomedical strategies. To navigate these challenges, an injectable hydrogel amalgamated with human umbilical vein endothelial cells-derived exosomes (HUVECs-Exos) was prepared and named H-Exos-gel in this study, aiming to enhance tendon repair. In our research involving a model of Achilles tendon injuries in 60 rats, we investigated the efficacy of H-Exos-gel through histological assessments performed at 2 and 4 weeks and behavioral assessments conducted at the 4-week mark revealed its ability to enhance the Achilles tendon's mechanical strength, regulate inflammation and facilitate tendon regeneration and functional recovery. Mechanically, the H-Exos-gel modulated the cellular behaviors of macrophages and tendon-derived stem cells (TDSCs) by inhibiting inflammation-related pathways and promoting proliferation-related pathways. Our findings delineate that the H-Exos-gel epitomizes a viable bioactive medium for tendon healing, heralding a promising avenue for the clinical amelioration of tendon injuries.
Assuntos
Tendão do Calcâneo , Exossomos , Células Endoteliais da Veia Umbilical Humana , Hidrogéis , Regeneração , Traumatismos dos Tendões , Cicatrização , Animais , Exossomos/metabolismo , Hidrogéis/química , Hidrogéis/farmacologia , Ratos , Humanos , Tendão do Calcâneo/lesões , Traumatismos dos Tendões/terapia , Cicatrização/efeitos dos fármacos , Masculino , Ratos Sprague-Dawley , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , InflamaçãoRESUMO
Atherosclerosis (AS) is an inflammatory disease with multiple causes. Multiple circular RNAs (circRNAs) are known to be involved in the pathogenesis of AS. To explore the function and mechanism of circ_0005699 in oxidative low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cells (HUVECs) injury. Ox-LDL treatment restrained HUVECs viability, cell proliferation, and angiogenesis ability, and accelerated HUVECs apoptosis, inflammatory response, and oxidative stress. Circ_0005699 was up-regulated in the serum samples of AS patients and ox-LDL-induced HUVECs. Interference of circ_0005699 effectively rescued ox-LDL-induced injury in HUVECs. Additionally, miR-384 could bind to circ_0005699, and miR-384 depletion inverted the effects of circ_0005699 deficiency on ox-LDL-mediated HUVEC injury. Moreover, ASPH was a direct target of miR-384, and the enforced expression of ASPH overturned miR-384-induced effects on ox-LDL-induced HUVECs. Importantly, circ_0005699 regulated ASPH expression via sponging miR-384. Interference of circ_0005699 protected against ox-LDL-induced injury in HUVECs at least partly by regulating ASPH expression via acting as a miR-384 sponge.
Assuntos
Apoptose , Aterosclerose , Células Endoteliais da Veia Umbilical Humana , Lipoproteínas LDL , MicroRNAs , Estresse Oxidativo , RNA Circular , Transdução de Sinais , Humanos , Lipoproteínas LDL/toxicidade , Lipoproteínas LDL/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , RNA Circular/genética , RNA Circular/metabolismo , Aterosclerose/patologia , Aterosclerose/metabolismo , Aterosclerose/genética , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Células Cultivadas , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica , Estudos de Casos e Controles , Neovascularização Fisiológica/efeitos dos fármacos , Mediadores da Inflamação/metabolismoRESUMO
Steroid (glucocorticoid)-induced necrosis of the femoral head (SONFH) represents a prevalent, progressive, and challenging bone and joint disease characterized by diminished osteogenesis and angiogenesis. Omaveloxolone (OMA), a semi-synthetic oleanocarpane triterpenoid with antioxidant, anti-inflammatory, and osteogenic properties, emerges as a potential therapeutic agent for SONFH. This study investigates the therapeutic impact of OMA on SONFH and elucidates its underlying mechanism. The in vitro environment of SONFH cells was simulated by inducing human bone marrow mesenchymal stem cells (hBMSCs) and human umbilical vein endothelial cells (HUVECs) using dexamethasone (DEX).Various assays, including CCK-8, alizarin red staining, Western blot, qPCR, immunofluorescence, flow cytometry, and TUNNEL, were employed to assess cell viability, STING/NF-κB signaling pathway-related proteins, hBMSCs osteogenesis, HUVECs migration, angiogenesis, and apoptosis. The results demonstrate that OMA promotes DEX-induced osteogenesis, HUVECs migration, angiogenesis, and anti-apoptosis in hBMSCs by inhibiting the STING/NF-κB signaling pathway. This experimental evidence underscores the potential of OMA in regulating DEX-induced osteogenesis, HUVECs migration, angiogenesis, and anti-apoptosis in hBMSCs through the STING/NF-κB pathway, thereby offering a promising avenue for improving the progression of SONFH.