Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Environ Sci Technol ; 58(33): 14864-14874, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39047190

RESUMO

Widely used antioxidants can enter the environment via urban stormwater systems and form disinfection byproducts (DBPs) during chlorination in downstream drinking water processes. Herein, we comprehensively investigated the occurrence of 39 antioxidants from stormwater runoff to surface water. After a storm event, the concentrations of the antioxidants in surface water increased by 1.4-fold from 102-110 ng/L to 128-139 ng/L. Widespread antioxidants during the stormwater event could transform into toxic DBPs during disinfection. Moreover, the yields of trihalomethanes, haloacetaldehydes, haloacetonitriles (HANs), and halonitromethanes during the chlorination of widely used antioxidants considerably increased with an increasing chlorine dose and contact time. Specifically, the yields of dichloroacetonitrile during the chlorination of diphenylamine (DPA) and N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) were higher than those of most reported amino acid precursors, indicating that DPA and 6PPD might be important precursors of HANs. Exploring the intermediates using GC × GC-time-of-flight high-resolution mass spectrometry helped reveal potential pathways from DPA to HANs, whose formation could be attributed to the intermediate carbazole and indole moieties detected in this study. This study provides insights into the transport and transformation of commonly used antioxidants in a water environment and during water treatment processes, highlighting the potential risks of anthropogenic pollutants from a DBP perspective.


Assuntos
Antioxidantes , Desinfecção , Poluentes Químicos da Água/química , Purificação da Água , Halogenação
2.
Sci Total Environ ; 926: 171995, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38547977

RESUMO

Dichloroacetonitrile (DCAN) is an emerging disinfection by-product (DBP) that is widespread in drinking water. However, the pathway for DCAN formation from aromatic amino acids remains unclear, leading to a lack of an understanding of its explicit fate during chloramination. In this study, we investigated the specific formation mechanism of DCAN during the chloramination of phenylalanine based on reaction kinetics and chemical thermodynamics. The reason for differences between aldehyde and decarboxylation pathways was explained, and kinetic parameters of the pathways were obtained through quantum chemistry calculations. The results showed that the reaction rate constant of the rate-limiting step of the aldehyde pathway with 1.9 × 10-11 s-1 was significantly higher than that of decarboxylation (3.6 × 10-16 s-1 M-1), suggesting that the aldehyde pathway is the main reaction pathway for DCAN formation during the chloramination of phenylalanine to produce DCAN. Subsequently, theoretical calculations were performed to elucidate the effect of pH on the formation mechanism, which aligned well with the experimental results. Dehydrohalogenation was found to be the rate-limiting step under acidic conditions with reaction rate constants higher than those of the rate-limiting step (expulsion of amines) under neutral conditions, increasing the rate of DCAN formation. This study highlights the differences in DCAN formation between the decarboxylation and aldehyde pathways during the chloramination of precursors at both molecular and kinetic levels, contributing to a comprehensive understanding of the reaction mechanisms by which aromatic free amino acids generate DCAN.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Fenilalanina , Halogenação , Purificação da Água/métodos , Desinfecção , Acetonitrilas/química , Aldeídos , Poluentes Químicos da Água/análise
3.
Water Res ; 253: 121302, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401474

RESUMO

With the increasing discharge of wastewater effluent to natural waters, there is an urgent need to achieve both pathogenic microorganism inactivation and the mitigation of disinfection by-products (DBPs) during disinfection. Studies have shown that two-step chlorination, which injected chlorine disinfectant by splitting into two portions, was more effective in inactivating Escherichia coli than one-step chlorination under same total chlorine consumption and contact time. In this study, we observed a substantial reduction in the formation of five classes of CX3R-type DBPs, especially highly toxic haloacetonitriles (HANs), during two-step chlorination of secondary effluent when the mass ratio of chlorine-to-nitrogen exceeded 2. The shift of different chlorine species (free chlorine, monochloramine and organic chloramine) verified the decomposition of organic chloramines into monochloramine during second chlorination stage. Notably, the organic chloramines generated from the low molecular weight (< 1 kDa) fraction of dissolved organic nitrogen in effluent organic matter tended to decompose during the second step chlorination leading to the mitigation of HAN formation. Furthermore, the microbiological analysis showed that two-step chlorinated effluent had a slightly lower ecological impact on surface water compared to one-step chlorination. This work provided more information about the two-step chlorination for secondary effluent, especially in terms of organic chloramine transformation and HAN control.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Cloraminas , Desinfecção , Esgotos , Halogenação , Cloro/análise , Peso Molecular , Poluentes Químicos da Água/análise
4.
J Hazard Mater ; 460: 132469, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37690199

RESUMO

Electrochemical oxidation (EO) can effectively remove recalcitrant organic contaminants from produced water (PW) but the formation of toxic oxidation byproducts (OBPs) is an unintended consequence. This study has rigorously investigated the OBPs formation during the EO treatment of a simulated PW containing phenol - a common organic contaminant existing in PW, as a model contaminant. In the absence of ammonia, free chlorine was generated from Cl- oxidation to serve as the main oxidant for phenol oxidation. During the EO process, 2,4,6-trichlorophenol and 2,6-dichlorobenzoquinone were identified as the critical intermediates that led to the formation of carbonaceous OBPs (C-OBPs). Some C-OBPs like chloroform (TCM), chloral hydrate (CH), and trichloroacetic acid (TCAA) reached their peak concentrations of 15 - 180 µM that were then reduced to 1 - 115 µM via volatilization and/or electrochemical reduction. When ammonia was present, nitrogenous OBPs (N-OBPs) were formed with the peak levels of 1 - 10 µM at the chlorination breakpoint (when ammonia was completely removed) that were subsequently reduced below 1 uM via volatilization and/or hydrolysis. It was observed that ammonia significantly decreased the formation of both C-OBPs and chlorate due to the consumption of free chlorine. A higher current density accelerated OBPs formation rates with different effects on volatile and non-volatile OBPs. The results of this study will enhance our understanding of OBPs formation precursors and mechanisms during electrochemical process and help develop strategies for proper control of OBPs to achieve safer electrochemical wastewater treatment.

5.
Water Res ; 244: 120519, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37657316

RESUMO

Proper control/removal of disinfection byproducts (DBPs) is important to drinking water safety and human health. In this study, a membrane-less electrochemical system was developed and investigated to remove DPBs through integrated adsorption and reduction by granular activated carbon (GAC)-based cathode. Representative DPBs including trihalomethanes and haloacetonitriles at drinking water concentrations were used for removal experiments. The proposed system achieved >70% removal of most DBPs in a batch mode. The comparison with control tests under either open circuit or hydrolysis demonstrated the advantages of electrochemical treatment, which not only realized higher DPBs removal but also extended GAC cathode lifetime. Such advantages were further demonstrated with continuous treatment. High dechlorination and debromination efficiencies were obtained in both batch (82.2 and 94.3%) and continuous (79.3 and 87.6%) reactors. DBPs removal was mainly contributed by the electrochemical reduction and adsorption by the GAC-based cathode, while anode showed little oxidizing effect on DBPs and halide ions. Dehalogenated products of chloroform and dichloroacetonitrile were identified with toxicity reduction. The energy consumption of the continuously operated system was estimated to be 0.28 to 0.16 kWh m-3. The proposed system has potential applications for wastewater reuse or further purification of drinking water.


Assuntos
Desinfecção , Água Potável , Humanos , Adsorção , Carvão Vegetal , Clorofórmio
6.
Water Res ; 244: 120474, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37611358

RESUMO

We investigated short (first post-fire precipitation)- and long-term (11-month) impacts of the Caldor and Mosquito Fires (2021 and 2022) on water quality, dissolved organic matter, and disinfection byproduct (DBP) precursors in burned and adjacent unburned watersheds. Both burned watersheds experienced water quality degradation compared to their paired unburned watersheds, including increases in dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and DBP precursors from precipitation events. DBP precursor concentrations during storm events were greater in the Caldor Fire's burned watershed than in the unburned watershed; precursors of trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles (HANs), and haloacetamides (HAMs) were 533 µg/L, 1,231 µg/L, 64 and 58 µg/L greater. The burned watershed of the Mosquito Fire also had greater median concentrations of THM (44 µg/L), HAA (37 µg/L), HAN (7 µg/L), and HAM (13 µg/L) precursors compared to the unburned watershed during a storm immediately following the fire. Initial flushes from both burned watersheds formed greater concentrations of more toxic DBPs, such as HANs and HAMs. The Caldor Fire burn area experienced a rain-on-snow event shortly after the fire which produced the greatest degradation of water quality of all seasons/precipitation events/watersheds studied. Over the long term, statistical analysis revealed that DOC and DON values in the burned watershed of the Caldor Fire remained higher than the unburned control (0.98 mg C/L and 0.028 mg N/L, respectively). These short and long-term findings indicate that wildfires present potential treatment challenges for public water systems outside of the two studied here.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Incêndios Florestais , Desinfecção , Rios , Nitrogênio/análise , Matéria Orgânica Dissolvida , Trialometanos/análise , Poluentes Químicos da Água/análise , Desinfetantes/análise
7.
Environ Res ; 234: 116539, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37414390

RESUMO

The characteristics of canvas fabric-derived adsorbents and their removal efficiency on five haloacetronitriles (HANs) were investigated. In addition, the effect of chemical activation with ferric chloride (FeCl3) and ferric nitrate (Fe(NO3)3) solutions on HANs removal efficiency was determined. The results indicated that the surface area increased from 262.51 m2/g to 577.25 and 370.83 m2/g, respectively, after being activated with FeCl3 and Fe(NO3)3 solutions. Increases in surface area and pore volume had a direct impact on the effectiveness of HANs removal. As compared to the non-activated adsorbent, the activated adsorbent effectively removed five species of HANs. TCAN was highly removed by the Fe(NO3)3-activated adsorbent (94%) due to the presence of mesoporous pore volume after activation with Fe(NO3)3. On the other hand, MBAN had the lowest removal efficiency of all adsorbents in this study. The activation with FeCl3 and Fe(NO3)3 showed equal removal efficiency for DCAN, BCAN, and DBAN, with percent removal higher than 50%. The hydrophilicity of HANs species affected the removal efficiency. The hydrophilicity order of five HANs species was MBAN, DCAN, BCAN, DBAN, and TCAN, respectively, which well corresponded to the obtained removal efficiency. The canvas fabric-derived adsorbents synthesized in this study were proven to be utilized as low-cost adsorbents to efficiently remove HANs from the environment. Future research will focus on the adsorption mechanism and recycling method to realize the potential for large-scale utilization.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Purificação da Água/métodos , Adsorção , Acetonitrilas , Cinética
8.
Environ Sci Technol ; 57(17): 7074-7085, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37079884

RESUMO

Haloacetonitriles (HANs) are a group of disinfection byproducts with high toxicity and frequent occurrence. Past studies have focused on the free amine groups, especially those in amino acids, as HAN precursors. This study reports, for the first time, that the indole moiety such as that in the tryptophan side chain is also a potent precursor for the most common HANs dichloroacetonitrile, bromochloroacetonitrile, and dibromoacetonitrile. 3-Indolepropionic acid, differing from tryptophan only in the absence of the free amine group, formed HANs at levels 57-76% of those by tryptophan at a halogen/nitrogen molar ratio of 10. Experiments with tryptophan-(amino-15N) showed that the indole contributed to 28-51% of the HANs formed by tryptophan. At low oxidant excess (e.g., halogen/precursor = 5), 3-indolepropionic acid even formed more HANs than Trp by 3.5-, 2.5-, and 1.8-fold during free chlorination, free bromination, and chlorination in the presence of bromide (0.6 mg/L), respectively. Indole's HAN formation pathway was investigated by exploring the chlorination/bromination products of 3-indolepropionic acid using liquid chromatography-orbitrap high-resolution mass spectrometry. A total of 22 intermediates were detected, including pyrrole ring-opening products with an N-formyl group, 2-substituted anilines with different hydroxyl/halogen substitutions, and an intermediate with a postulated non-aromatic ring structure.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Desinfetantes/química , Triptofano , Indóis , Halogenação , Halogênios , Aminas , Purificação da Água/métodos , Poluentes Químicos da Água/química
9.
Heliyon ; 9(2): e13673, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36865475

RESUMO

The aim of this work was to determine and study the concentration of different groups of disinfection by-products (DBPs): trihalomethanes, haloacetic acids, haloacetonitriles, haloacetones and combined chlorine (as an indicator of chloramine levels), in the water of 175 public swimming pools in Gipuzkoa (Basque Country, Spain). The study included chlorinated and brominated pools, indoor and outdoor, used for recreational and sports purposes, and filled with water from calcareous and siliceous soils. The most abundant were haloacetic acids, followed by trihalomethanes, with chlorinated or brominated forms predominating depending on whether the pools were disinfected by chlorination or bromination, respectively. All the 75th percentiles of DBPs were below the limits established by the European Chemical Agency (ECHA), although the maximum values of trihalomethanes exceeded them. The same was true for dichloroacetonitrile in chlorinated pools and dibromoacetonitrile in brominated pools. All families of DBPs showed positive associations with each other, all being significant except for combined chlorine. Their mean levels were higher in outdoor pools than in indoor pools, significantly so in all except combined chlorine. Recreational pools showed higher levels of haloacetic acids and combined chlorine than sports pools. The concentrations of the different groups of DBPs were higher in the pools than in the mains water that fed them. This increase, especially that of the haloacetonitriles, as well as the high concentrations of brominated forms in the pools disinfected by bromination, make it necessary to focus on their toxicological implication. The differences in the DBP profiles of the filling network water were not transferred to the pool water.

10.
Environ Sci Technol ; 57(6): 2516-2526, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36724198

RESUMO

Disinfection byproduct (DBP) pre-formation is a major issue when prechlorination is used before or during advanced treatment of impacted drinking water sources. Control strategies for pre-formed DBPs before final disinfection, especially for currently nonregulated although highly toxic DBP species, are not yet established. This study evaluated the biodegradation potential of pre-formed DBPs, including haloacetonitriles (HANs), haloacetamides (HAMs), and haloacetaldehydes (HALs), during biofiltration with sand, anthracite, and biological activated carbon of three wastewater effluents under potable reuse conditions. Up to 90%+ removal of di- and trihalogenated HANs, HAMs, and HALs was observed, and removal was associated with active heterotrophic biomass and removal of biodegradable organic carbon. Unlike the microbial dehalogenation pathway of haloacetic acids (HAAs), removal of HANs and HAMs appeared to result from a biologically mediated hydrolysis pathway (i.e., HANs to HAMs and HAAs) that may be prone to inhibition. After prechlorination, biofiltration effectively controlled pre-formed DBP concentrations (e.g., from 271 µg/L to as low as 22 µg/L in total) and DBP-associated calculated toxicity (e.g., 96%+ reduction). Abiotic residual adsorption capacity in biological activated carbon media was important for controlling trihalomethanes. Overall, the toxicity-driving DBP species exhibited high biodegradation potential and biofiltration showed significant promise as a pre-formed DBP control technology.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Carvão Vegetal , Poluentes Químicos da Água/análise , Halogenação , Trialometanos , Desinfetantes/análise
11.
Sci Total Environ ; 868: 161723, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36682556

RESUMO

The formation of brominated disinfection byproducts (Br-DBPs) is an emerging issue in drinking water disinfection because its toxicity is tens to hundreds of times higher than that of chlorinated analogues and because of the widespread presence of bromide in source water. However, the mechanism and pathways of Br-DBPs formation remain unclear. In this study, we used glycine, alanine, and serine as model precursors and observed that brominated haloacetonitriles (Br-HANs) were more likely to be formed than brominated trihalomethanes. The results showed that there is not only one important way to HAN formation in the presence of bromide. We propose that organic bromamines, similar to organic chloramines, play a significant role in the formation of Br-HANs. Both the experimental and theoretical results confirmed that the decay of organic bromamines was faster than that of organic chloramines, which verified our assumption. The effect of the pH was investigated to further confirm the role of organic bromamines. In addition, we found that the formation of Br-HANs was significantly inhibited when monochloramine was used as a disinfectant, because the formation of organic bromamines was blocked. However, the formation of Br-HANs was promoted during the UV/chlorine process because of the faster decay of organic bromamines under UV photolysis. Overall, our study reveals the formation mechanism of Br-HANs and provides an alternative method to prevent Br-HAN formation.

12.
Sci Total Environ ; 856(Pt 1): 159027, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36167135

RESUMO

Organic matter reacts with chlorine forming disinfection byproducts (DBPs) including trihalomethanes (THMs), haloacetamides (HAMs), haloacetic acids (HAAs), and haloacetonitriles (HANs). Filter backwash water (FBW) is either released back to the environment or recycled to the head of the treatment plant after solids settling and the remaining dissolved organic matter is a significant pool of DBP precursors that are not well understood. We characterized dissolved organic matter in FBW from 10 treatment plants and low molecular weight (MW < 1 kDa) organic matter contributed the most to DBP formation. We demonstrated overall similarity of the molecular composition (e.g., elemental ratios, m/z, DBE) of the 10 samples of FBW by Fourier transform ion cyclotron resonance mass spectrometry. Aromatic and more highly oxidized compounds preferentially reacted with chlorine, forming DBPs. Low MW (<450 Da) aliphatic compounds, and highly unsaturated and phenolic compounds were the primary precursors of THMs, HANs, and HAMs, and the formation potentials (FPs) of these groups of DBPs were correlated with multiple individual molecular formulae. HAA FPs were correlated with low MW, highly unsaturated and phenolic compounds. These advances in the understanding of the molecular composition of DBP precursors in FBW may develop the effective strategies to control DBP formation and limit impacts on the quality of finished water, and can be expanded to understanding DBP precursors in drinking water sources.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Desinfecção , Cloro/química , Água Potável/análise , Desinfetantes/análise , Halogenação , Poluentes Químicos da Água/análise , Trialometanos/análise
13.
Chemosphere ; 313: 137568, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36529179

RESUMO

Haloacetonitriles (HANs) are an emerging class of nitrogenous disinfection by-products (DBPs) formed in disinfected drinking water and have been reported to be more cyto- and genotoxic than the regulated DBPs. HANs are also known to hydrolyze under neutral pH and normal room temperature. However, the stability of HANs has not been well characterized in DBP toxicological assessments. Most toxicological assessments expose DBPs up to several days which may result in a mixture of HANs and degradation products that might have underestimated HAN toxicity. In this study, HANs stability was characterized in 1) a buffer solution in sealed vials, 2) cell culture media (CCM) in sealed vials, and 3) CCM in 96 sealed well plates with 5% CO2. Solutions were incubated at 37 °C for 3 days. MonoHANs were found to be stable in buffer and CCM except when HANs were incubated in CCM in plates where they could possibly be affected by volatilization and photodegradation during sample handling. However, di- and tri- HANs degraded between 70 and 100% in both buffer solution and CCM. They were also found to be less stable in CCM than in buffer solution possibly from HANs reacting with nucleophiles present in CCM (i.e., amino acids). Identified degradation products include corresponding haloacetamides and haloacetic acids for buffer solutions and only haloacetic acids and an unknown brominated compound for CCM. Results of this study suggests that reported toxicity values might have been underestimated and should consider changing CCM and DBP on a daily basis for a more accurate toxicity measurement.


Assuntos
Desinfetantes , Purificação da Água , Desinfetantes/química , Purificação da Água/métodos , Acetonitrilas/toxicidade , Acetonitrilas/química , Desinfecção/métodos , Técnicas de Cultura de Células
14.
Biophys Chem ; 289: 106876, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35987097

RESUMO

To evaluate the interaction between haloacetonitriles (HANs) and human hemoglobin (Hb), a pipeline was established based on fluorescence spectra, mass spectra and molecular docking. Fluorescence spectra analysis showed the fluorescence of Hb was statically quenched by HANs in the sequence of TCAN > DBAN > DCAN > IAN > BAN > CAN. HANs could combine to multiple surface sites of Hb accounting for "hydrogen bonds" and "van der Waals forces". The high-resolution mass spectra analysis for Hb with and without HANs further confirmed the formation of multiple HAN-Hb complexes with different conversion rates. With the assistance of MOE molecule docking, the potential combination sites and related interactions parameters between HANs and Hb were filtrated. By analyzing the correlations between the candidate interactions parameters and fluorescence quenching constants/MS conversion rates, the combination sites of HANs were fixed at Asp126 (α1/α2), Lys127 (α1/α2) in the form of "hydrogen bonds" X â†’ Asp126 (α1/α2), N â†’ Lys127 (α1/α2). In this way, the potential interactions between HANs and Hb were effectively evaluated.


Assuntos
Desinfecção , Purificação da Água , Hemoglobinas , Humanos , Hidrogênio , Simulação de Acoplamento Molecular , Nitrogênio
15.
Toxicol Appl Pharmacol ; 450: 116163, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35842135

RESUMO

Humans are exposed to disinfection by-products through oral, inhalation, and dermal routes, during bathing and swimming, potentially causing skin lesions, asthma, and bladder cancer. Nuclear factor E2-related factor 2 (NRF2) is a master regulator of the adaptive antioxidant response via the antioxidant reaction elements (ARE) orchestrating the transcription of a large group of antioxidant and detoxification genes. Here we used an immortalized human keratinocyte model HaCaT cells to investigate NRF2-ARE as a responder and protector in the acute cytotoxicity of seven haloacetonitriles (HANs), including chloroacetonitrile (CAN), bromoacetonitrile (BAN), iodoacetonitrile (IAN), bromochloroacetonitrile (BCAN), dichloroacetonitrile (DCAN), dibromoacetonitrile (DBAN), and trichloroacetonitrile (TCAN) found in drinking water and swimming pools. The rank order of cytotoxicity among the HANs tested was IAN ≈ BAN Ëƒ DBAN Ëƒ BCAN ˃ CAN Ëƒ TCAN Ëƒ DCAN based on their LC50. The HANs induced intracellular reactive oxygen species accumulation and activated cellular antioxidant responses in concentration- and time-dependent fashions, showing elevated NRF2 protein levels and ARE activity, induction of antioxidant genes, and increased glutathione levels. Additionally, knockdown of NRF2 by lentiviral shRNAs sensitized the HaCaT cells to HANs-induced cytotoxicity, emphasizing a protective role of NRF2 against the cytotoxicity of HANs. These results indicate that HANs cause oxidative stress and activate NRF2-ARE-mediated antioxidant response, which in turn protects the cells from HANs-induced cytotoxicity, highlighting that NRF2-ARE activity could be a sensitive indicator to identify and characterize the oxidative stress induced by HANs and other environmental pollutants.


Assuntos
Água Potável , Fator 2 Relacionado a NF-E2 , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Humanos , Queratinócitos/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo
16.
J Environ Sci (China) ; 117: 305-314, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35725084

RESUMO

Dibromoacetonitrile (DBAN) is a disinfection byproduct (DBP) and linked with cancer in rodents, but the mechanism of its carcinogenicity has not been fully elucidated. We recently reported that DBAN induced inhibition of nucleotide excision repair (NER). In this study, we investigated if glutathione (GSH) is involved in the DBAN-induced inhibition of NER. Human keratinocytes HaCaT were pretreated with L-buthionine-(S,R)-sulfoximine (BSO) to deplete intracellular GSH. BSO treatment markedly potentiated the DBAN-induced NER inhibition as well as intracellular oxidation. The recruitment of NER proteins (transcription factor IIH, and xeroderma pigmentosum complementation group G) to DNA damage sites was inhibited by DBAN, which was further exacerbated by BSO treatment. Our results suggest that intracellular GSH protects cells from DBAN-induced genotoxicity including inhibition of DNA damage repair.


Assuntos
Reparo do DNA , Glutationa , Acetonitrilas/toxicidade , Dano ao DNA , Glutationa/metabolismo
17.
J Environ Sci (China) ; 117: 161-172, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35725068

RESUMO

A survey was conducted at eight U.S. drinking water plants, that spanned a wide range of water qualities and treatment/disinfection practices. Plants that treated heavily-wastewater-impacted source waters had lower trihalomethane to dihaloacetonitrile ratios due to the presence of more organic nitrogen and HAN precursors. As the bromide to total organic carbon ratio increased, there was more bromine incorporation into DBPs. This has been shown in other studies for THMs and selected emerging DBPs (HANs), whereas this study examined bromine incorporation for a wider group of emerging DBPs (haloacetaldehydes, halonitromethanes). Moreover, bromine incorporation into the emerging DBPs was, in general, similar to that of the THMs. Epidemiology studies that show an association between adverse health effects and brominated THMs may be due to the formation of brominated emerging DBPs of heath concern. Plants with higher free chlorine contact times before ammonia addition to form chloramines had less iodinated DBP formation in chloraminated distribution systems, where there was more oxidation of the iodide to iodate (a sink for the iodide) by the chlorine. This has been shown in many bench-scale studies (primarily for iodinated THMs), but seldom in full-scale studies (where this study also showed the impact on total organic iodine. Collectively, the THMs, haloacetic acids, and emerging DBPs accounted for a significant portion of the TOCl, TOBr, and TOI; however, ∼50% of the TOCl and TOBr is still unknown. The correlation of the sum of detected DBPs with the TOCl and TOBr suggests that they can be used as reliable surrogates.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Bromo , Cloro , Desinfetantes/análise , Desinfecção , Halogenação , Iodetos , Trialometanos/análise , Poluentes Químicos da Água/análise
18.
Sci Total Environ ; 821: 153221, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35063517

RESUMO

Disinfection byproduct (DBP) formation is a potential concern with regard to MPUV/Cl2 application in water treatment. In this study, five typical amino acids (AAs) were selected to investigate their DBP alteration during short-term medium pressure (MP) UV/chlorine oxidation following post-chlorination relative to parallel dark controls. The five selected AAs include two potent DBP precursors (aspartic acid and tryptophan), one modest precursor (asparagine) and two poor precursors (phenylalanine and proline). MPUV/chlorine increased the total DBP formation and DBP-associated cytotoxicity of the two poor precursors phenylalanine (Phe) and proline (Pro) as well as their chlorine demands. Conversely, DBP formation and DBP-associated cytotoxicity of the three modest-to-potent DBP precursors showed the opposite changing trends due to MPUV/Cl2 oxidation. The two aromatic AAs (tryptophan and phenylalanine) were more readily to be affected by MPUV/Cl2 oxidation especially at acidic pH condition. Conversely, DBP formation and DBP-associated cytotoxicity of the three modest-to-potent precursors showed the opposite changing trends due to MPUV/Cl2 oxidation. Among the measured DBPs, the absolute formation potential changes of haloacetic acids and haloacetonitriles were the most prominent. Presence of bromide increased the trihalomethane formation potential of five AAs. Ammonia-spiked samples resulted in notably higher chlorine demands but slightly reduced DBPFP. Photonitration caused increased haloacetonitrile and trichloronitromethane formation but lower overall DBP formation potential and DBP-associated cytotoxicity. Results indicated that increased DBP formation of unreactive aromatic AAs may be problematic with respect to MPUV/Cl2 application, while the presence of inorganic ions may not contribute to further increase in calculated cytotoxicity of measured DBPs.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Aminoácidos , Amônia , Brometos , Cloro/química , Desinfecção , Halogenação , Nitratos , Poluentes Químicos da Água/análise
19.
Sci Total Environ ; 806(Pt 2): 150612, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34597579

RESUMO

The formation of haloacetonitriles (HANs) during chlorination after sulfite/ultraviolet (UV) treatment of bromate (BrO3-) in the presence of amino acids (AAs) was investigated. During sulfite/UV treatment, the primary species hydrated electrons (eaq-) and hydrogen atom radicals (H) dominated the reduction of BrO3- to bromide (Br-), whereas the sulfite anion radicals (SO3-) and H degraded AAs to produce the intermediates HN=C(CH3)-COOH, CH3-CH=NH, and CH3-C≡N via α­hydrogen abstraction and NH2-hydrogen abstraction mechanisms. During post-chlorination, Br- was converted to HBrO/BrO-, and the HN=C(CH3)-COOH, CH3-CH=NH, and CH3-C≡N groups featured higher bromine utilization factor (BUF) and chlorine utilization factor (CUF) values than AAs, enhancing the formation of dibromoacetonitrile (DBAN) and dichloroacetonitrile (DCAN). The energetic feasibility of the transformation pathway, that is, HN=C(CH3)-COOH, CH3-CH=NH, and CH3-C ≡ N formation via hydrogen abstraction by SO3- and H and their further conversion to HANs, was proved by density functional theory calculations, which showed stepwise negative Gibbs free energy changes (ΔG < 0). The effects of pH and water matrices (e.g., HCO3-, Cl-, Fe3+, and natural organic matter) were comprehensively evaluated. Although 72% of BrO3- was removed by sulfite/UV treatment in the presence of AAs, the cytotoxicity index (CTI) and genotoxicity index (GTI) during post-chlorination increased by 213% and 125%, respectively, due to the formation of 24 CX3R-type disinfection by-products (DBPs), especially brominated DBPs. Accordingly, more attention should be given to the formation of brominated DBPs during post-chlorination when using sulfite/UV processes to remove BrO3- in the presence of AAs. As a solution, using monochloramine instead of chlorine as a disinfectant after the sulfite/UV process could significantly lower the CTI and GTI values by alleviating the formation of brominated DBPs.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Bromatos , Cloro , Desinfecção , Halogenação , Sulfitos , Tecnologia , Poluentes Químicos da Água/análise
20.
J Hazard Mater ; 423(Pt B): 127194, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34844342

RESUMO

Dibromoacetonitrile (DBAN) is a carcinogenic disinfection byproduct (DBP) but how it precipitates cancer is unknown. Nucleotide excision repair (NER) is a versatile repair mechanism for removing bulky DNA lesions to maintain genome stability, and impairment of this process is associated with cancer development. In this study, we found that DBAN inhibited NER and investigated its mechanism with other DNA damage responses. Human keratinocytes HaCaT were treated with DBAN followed by ultraviolet (UV) as a model inducer of DNA damage, pyrimidine dimers, which require NER for the removal. DBAN pretreatment exacerbated UV-cytotoxicity, and inhibited the repair of pyrimidine dimers. DBAN treatment delayed the recruitment of NER proteins, transcription factor IIH (TFIIH) and xeroderma pigmentosum complementation group G (XPG), to DNA damaged sites, and subsequent gap filling process. Moreover, DBAN suppressed the UV-induced double strand breaks (DSBs) formation, as well as phosphorylated histone H2AX (γ-H2AX), a widely used DNA damage marker. Altogether, DBAN could negatively impact the NER process and phosphorylation pathway responding to DNA damage. This study was the first to identify the inhibition of NER and damage response signaling as a genotoxicity mechanism of a class of DBPs and it may serve as a foundation for DBP carcinogenesis.


Assuntos
Desinfecção , Água , Acetonitrilas , Dano ao DNA , Reparo do DNA , Humanos , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA