Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Anim Biotechnol ; : 2379883, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39051919

RESUMO

This study investigates the transcriptome-level alterations that influence production traits and early fattening stage myogenesis in Hanwoo cattle, specifically focusing on the highly prized Longissimus dorsi (LD) and Psoas major (PM) skeletal muscles, which hold significant commercial value. We conducted RNA sequencing analysis on LD and PM muscles from 14 Hanwoo steers (n = 7, each group) at the age of 10 months, all fed the same diet. Our results unveiled a total of 374 and 206 up-regulated differentially expressed genes (DEGs) in LD and PM muscles, respectively, with statistical significance (p < 0.05) and a log2fold change ≥ 1. Genes governing muscle development processes, such as PAX3, MYL3, COL11A1, and MYL6B, were found to be expressed at higher levels in both tissues. Conversely, genes regulating lipid metabolism, including FABP3, FABP4, LEP, ADIPOQ, and PLIN1, exhibited higher expression in the PM muscle. Functional enrichment analysis revealed a tissue-specific response, as PM muscle showed increased lipid metabolism allied pathways, including the PPAR signaling pathway and regulation of lipolysis in adipocytes, while LD was characterized by growth and proliferative processes. Our findings validate the presence of a muscle-dependent transcription and co-expression pattern that elucidates the transcriptional landscape of bovine skeletal muscle.

2.
Animal ; 18(5): 101152, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38701710

RESUMO

The traditional genetic evaluation methods generally consider additive genetic effects only and often ignore non-additive (dominance and epistasis) effects that may have contributed to genetic variation of complex traits of livestock species. The available dense single nucleotide polymorphisms (SNPs) panels offer to investigate the potential benefits of including non-additive genetic effects in the genomic evaluation models. Data from 16 971 genotyped (Illumina Bovine 50 K SNP chip) Korean Hanwoo cattle were used to estimate genetic variance components and prediction accuracy of genomic breeding values (GEBVs) for four carcass and meat quality traits: carcass weight (CWT), eye muscle area (EMA), back fat thickness (BFT) and marbling score (MS). Five different genetic models were evaluated through including additive, dominance and epistatic interactions (additive by additive, A × A; additive by dominance, A × D and dominance by dominance, D × D) successively in the models. The estimates of additive genetic variances and narrow sense heritabilities (ha2) were found similar across the evaluated models and traits except when additive interaction (A × A) was included. The dominance variance estimates relative to phenotypic variance ranged from 1.7-3.4% for CWT and MS traits, whereas, they were close to zero for EMA and BFT traits. The magnitude of A × A epistatic heritability (haa2) ranged between 14.8 and 27.7% in all traits. However, heritability estimates for A × D and D × D epistatic interactions (had2 and hdd2) were quite low compared to haa2 and were contributed only 0.0-9.7% of the total phenotypic variation. In general, broad sense heritability (hG2) estimates were almost twice (ranging between 0.54 and 0.68) the ha2 for all of the investigated traits. The inclusion of dominance effects did not improve the prediction accuracy of GEBV but improved 2.0-3.0% when epistatic effects were included in the model. More importantly, rank correlation revealed that partitioning of variance components considering dominance and epistatic effects in the model would enable to re-rank of top animals with better prediction of GEBV. The present result suggests that dominance and epistatic effects could be included in the genomic evaluation model for better estimates of variance components and more accurate prediction of GEBV for carcass and meat quality traits in Korean Hanwoo cattle.


Assuntos
Cruzamento , Carne , Modelos Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único , Animais , Bovinos/genética , Carne/análise , Masculino , Feminino , Genótipo , República da Coreia , Genômica , Epistasia Genética , Variação Genética
3.
J Anim Sci Technol ; 65(4): 720-734, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37970511

RESUMO

In Korea, Korea Proven Bulls (KPN) program has been well-developed. Breeding and evaluation of cows are also an essential factor to increase earnings and genetic gain. This study aimed to evaluate the accuracy of cow breeding value by using three methods (pedigree index [PI], pedigree-based best linear unbiased prediction [PBLUP], and genomic-BLUP [GBLUP]). The reference population (n = 16,971) was used to estimate breeding values for 481 females as a test population. The accuracy of GBLUP was 0.63, 0.66, 0.62 and 0.63 for carcass weight (CWT), eye muscle area (EMA), back-fat thickness (BFT), and marbling score (MS), respectively. As for the PBLUP method, accuracy of prediction was 0.43 for CWT, 0.45 for EMA, 0.43 for MS, and 0.44 for BFT. Accuracy of PI method was the lowest (0.28 to 0.29 for carcass traits). The increase by approximate 20% in accuracy of GBLUP method than other methods could be because genomic information may explain Mendelian sampling error that pedigree information cannot detect. Bias can cause reducing accuracy of estimated breeding value (EBV) for selected animals. Regression coefficient between true breeding value (TBV) and GBLUP EBV, PBLUP EBV, and PI EBV were 0.78, 0.625, and 0.35, respectively for CWT. This showed that genomic EBV (GEBV) is less biased than PBLUP and PI EBV in this study. In addition, number of effective chromosome segments (Me) statistic that indicates the independent loci is one of the important factors affecting the accuracy of BLUP. The correlation between Me and the accuracy of GBLUP is related to the genetic relationship between reference and test population. The correlations between Me and accuracy were -0.74 in CWT, -0.75 in EMA, -0.73 in MS, and -0.75 in BF, which were strongly negative. These results proved that the estimation of genetic ability using genomic data is the most effective, and the smaller the Me, the higher the accuracy of EBV.

4.
Anim Genet ; 54(6): 786-791, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37828654

RESUMO

Meat tenderness is considered the most important trait contributing to beef quality, level of consumer satisfaction, willingness to pay premium prices and industry profit. Genomic selection method would be helpful for genetic improvement of traits with low heritability and that are difficult to measure. The identification of core genes can aid genomic selection for complex traits with low heritability that are difficult to measure. We performed statistical analysis of associations between longissimus dorsi muscle tenderness and gene expression in 20 Hanwoo cattle, using Warner-Bratzler shear force and RNAseq data, respectively. We found a total of 166 core genes, from which six (ASAP1, CAPN5, ELN, SUMF2, TTC8 and MGAT4A) were regulated by 16 cis-expression quantitative trait loci (eQTL) SNPs. Notably, we found that a cis-eQTL SNP of the ELN gene contained an MFZ-1 binding site in its putative promoter region. These findings provide useful information for genomic prediction of beef tenderness in Hanwoo cattle.


Assuntos
Carne , Locos de Características Quantitativas , Bovinos/genética , Animais , Carne/análise , Fenótipo , Biomarcadores , República da Coreia , Músculo Esquelético/fisiologia
5.
Animals (Basel) ; 12(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077985

RESUMO

This study evaluated the accuracy of sequence imputation in Hanwoo beef cattle using different reference panels: a large multi-breed reference with no Hanwoo (n = 6269), a much smaller Hanwoo purebred reference (n = 88), and both datasets combined (n = 6357). The target animals were 136 cattle both sequenced and genotyped with the Illumina BovineSNP50 v2 (50K). The average imputation accuracy measured by the Pearson correlation (R) was 0.695 with the multi-breed reference, 0.876 with the purebred Hanwoo, and 0.887 with the combined data; the average concordance rates (CR) were 88.16%, 94.49%, and 94.84%, respectively. The accuracy gains from adding a large multi-breed reference of 6269 samples to only 88 Hanwoo was marginal; however, the concordance rate for the heterozygotes decreased from 85% to 82%, and the concordance rate for fixed SNPs in Hanwoo also decreased from 99.98% to 98.73%. Although the multi-breed panel was large, it was not sufficiently representative of the breed for accurate imputation without the Hanwoo animals. Additionally, we evaluated the value of high-density 700K genotypes (n = 991) as an intermediary step in the imputation process. The imputation accuracy differences were negligible between a single-step imputation strategy from 50K directly to sequence and a two-step imputation approach (50K-700K-sequence). We also observed that imputed sequence data can be used as a reference panel for imputation (mean R = 0.9650, mean CR = 98.35%). Finally, we identified 31 poorly imputed genomic regions in the Hanwoo genome and demonstrated that imputation accuracies were particularly lower at the chromosomal ends.

6.
Foods ; 11(15)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35892776

RESUMO

This study evaluated the effects of crust derived from dry-aged beef (Hanwoo cattle) on the quality of pork patties. Pork patty samples were prepared with different amounts of crust (0­control, 1, 2, and 3%). The protein, fat, and ash contents in the crust samples were significantly higher than those in the control sample (p < 0.05). The CIE b* value of uncooked pork patties with crust added was significantly lower than that of the control patties (p < 0.05). The pH and CIE L* values of uncooked patty batter samples decreased with increasing concentrations of crust (p < 0.05). However, the viscosity increased proportionally with an increase in crust (p < 0.05). Samples containing 3% crust showed significantly higher uncooked and cooked CIE a*, water-holding capacity, cooking yield, and shear force than the control sample (p < 0.05). Moreover, samples containing 2% and 3% crust showed significantly lower diameter and thickness reductions than those of the control sample (p < 0.05). The sensory evaluation conferred by the crust was significantly higher than that of the control sample (p < 0.05). Overall, our results suggest that pork patties supplemented with 3% crust have improved properties.

7.
Vet Med Sci ; 8(3): 1258-1263, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35193169

RESUMO

BACKGROUND: With unique genetic traits, Hanwoo cattle (Bos taurus coreanae) are well-adapted to the Korean environment. However, their perinatal mortality rate is 2%-3%, which imposes an economic burden. OBJECTIVE: Due to insufficient data on hormonal changes around parturition, the timing of parturition is often predicted subjectively; few studies have examined hormones in Hanwoo cattle. We measured the changes in various hormones around parturition, to seek an objective predictor of parturition time. METHODS: In 14 female Hanwoo cattle, we measured progesterone, prolactin and cortisol concentrations daily in jugular vein blood samples, beginning 6 days before parturition until 7 days after parturition. Conception was induced in five animals using artificial insemination. Nine animals received embryo transfer. RESULTS: During parturition, the concentration of progesterone decreased significantly in the embryo transfer group (n = 9) and in the total population (n = 14); it did not change significantly in the artificial insemination group (n = 5). Prolactin concentration increased on the day of parturition but did not differ significantly among the groups. Cortisol remained constant throughout the study course. CONCLUSION: We concluded that parturition time can be predicted in Hanwoo cattle using progesterone concentration. This knowledge can reduce perinatal mortality, which would help to improve farm income and animal welfare.


Assuntos
Progesterona , Prolactina , Animais , Bovinos , Transferência Embrionária/veterinária , Feminino , Humanos , Hidrocortisona , Inseminação Artificial/veterinária , Parto , Gravidez
8.
J Anim Sci Technol ; 63(6): 1232-1246, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34957440

RESUMO

Recently, the cattle genome sequence has been completed, followed by developing a commercial single nucleotide polymorphism (SNP) chip panel in the animal genome industry. In order to increase statistical power for detecting quantitative trait locus (QTL), a number of animals should be genotyped. However, a high-density chip for many animals would be increasing the genotyping cost. Therefore, statistical inference of genotype imputation (low-density chip to high-density) will be useful in the animal industry. The purpose of this study is to investigate the effect of the reference population size and marker density on the imputation accuracy and to suggest the appropriate number of reference population sets for the imputation in Hanwoo cattle. A total of 3,821 Hanwoo cattle were divided into reference and validation populations. The reference sets consisted of 50k (38,916) marker data and different population sizes (500, 1,000, 1,500, 2,000, and 3,600). The validation sets consisted of four validation sets (Total 889) and the different marker density (5k [5,000], 10k [10,000], and 15k [15,000]). The accuracy of imputation was calculated by direct comparison of the true genotype and the imputed genotype. In conclusion, when the lowest marker density (5k) was used in the validation set, according to the reference population size, the imputation accuracy was 0.793 to 0.929. On the other hand, when the highest marker density (15k), according to the reference population size, the imputation accuracy was 0.904 to 0.967. Moreover, the reference population size should be more than 1,000 to obtain at least 88% imputation accuracy in Hanwoo cattle.

9.
Animals (Basel) ; 11(6)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203963

RESUMO

Understanding animals' genetic potential for carcass traits is the key to genetic improvements in any beef cattle. In this study, we investigated the genetic merits of carcass traits using Hanwoo males raised in a 30-month production system (PROD30). We achieved this using a dataset comprising 6092 Hanwoo males born between 2005 and 2017 and measures of four carcass traits (carcass weight, CWT; eye muscle area, EMA; backfat thickness, BFT; and marbling score, MS). Genetic parameters were estimated using a multiple-trait animal model through the AIREMLF90 program. According to the multiple-trait model, the h2 of CWT, EMA, BFT, and MS were 0.35 ± 0.04, 0.43 ± 0.05, 0.48 ± 0.05, and 0.56 ± 0.05, respectively. The strongest genetic correlation (rg) was obtained between CWT and EMA (0.49 ± 0.07), whereas it was negligible between CWT and BFT. EMA and MS were also moderately correlated, whereas there was a relatively low negative correlation between EMA and BFT (-0.26 ± 0.08). Our study revealed a consistent indirect genetic improvement in animals from 2005 onwards. Although Hanwoo improvement has mainly focused on males under a 24-month production cycle, we observed PROD30 males to have somewhat similar genetic potential. Our results provide useful insights into the genetic merits of PROD30 males for the first time, which may facilitate future studies on them and their integration into the Hanwoo National Evaluation for genomic selection.

10.
Animals (Basel) ; 11(5)2021 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-34065714

RESUMO

Genetic parameters have a significant role in designing a breeding program and are required to evaluate economically important traits. The objective of this study was to estimate heritability and genetic correlation between yearling ultrasound measurements, such as backfat thickness (UBFT), eye muscle area (UEMA), intramuscular fat content (UIMF), and carcass traits, such as backfat thickness (BFT), carcass weight (CW), eye muscle area (EMA), marbling score (MS) at approximately 24 months of age, as well as yearling weight (YW) in Hanwoo bulls (15,796) and steers (5682). The (co) variance components were estimated using a multi-trait animal model. Moderate to high heritability estimates were obtained and were 0.42, 0.50, 0.56, and 0.59 for CW, EMA, BFT, and MS, respectively. Heritability estimates for yearling measurements of YW, UEMA, UBFT, and UIMF were 0.31, 0.32, 0.30, and 0.19, respectively. Favorable and strong genetic correlations were observed between UIMF and MS (0.78), UBFT and BFT (0.63), and UEMA and EMA (0.65). Moreover, the estimated genetic correlation between YW and CW was high (0.84) and relatively moderate between YW and EMA (0.43). These results suggest that genetic improvement can be achieved for carcass traits when using yearling ultrasound measurements as selection criteria in ongoing Hanwoo breeding programs.

11.
Genes (Basel) ; 12(2)2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673102

RESUMO

The weighted single-step genomic best linear unbiased prediction (GBLUP) method has been proposed to exploit information from genotyped and non-genotyped relatives, allowing the use of weights for single-nucleotide polymorphism in the construction of the genomic relationship matrix. The purpose of this study was to investigate the accuracy of genetic prediction using the following single-trait best linear unbiased prediction methods in Hanwoo beef cattle: pedigree-based (PBLUP), un-weighted (ssGBLUP), and weighted (WssGBLUP) single-step genomic methods. We also assessed the impact of alternative single and window weighting methods according to their effects on the traits of interest. The data was comprised of 15,796 phenotypic records for yearling weight (YW) and 5622 records for carcass traits (backfat thickness: BFT, carcass weight: CW, eye muscle area: EMA, and marbling score: MS). Also, the genotypic data included 6616 animals for YW and 5134 for carcass traits on the 43,950 single-nucleotide polymorphisms. The ssGBLUP showed significant improvement in genomic prediction accuracy for carcass traits (71%) and yearling weight (99%) compared to the pedigree-based method. The window weighting procedures performed better than single SNP weighting for CW (11%), EMA (11%), MS (3%), and YW (6%), whereas no gain in accuracy was observed for BFT. Besides, the improvement in accuracy between window WssGBLUP and the un-weighted method was low for BFT and MS, while for CW, EMA, and YW resulted in a gain of 22%, 15%, and 20%, respectively, which indicates the presence of relevant quantitative trait loci for these traits. These findings indicate that WssGBLUP is an appropriate method for traits with a large quantitative trait loci effect.


Assuntos
Genoma/genética , Genômica , Locos de Características Quantitativas/genética , Seleção Genética/genética , Animais , Cruzamento , Bovinos , Genótipo , Linhagem
12.
Foods ; 10(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33435606

RESUMO

This study examined the effects of stevioside (S) and organic selenium (O-Se) supplementation on the sensory attributes, microbial activity, fatty acid composition, and meat quality traits of Hanwoo cattle (Korean native cattle). Twenty-four Hanwoo cattle (663 ± 22 kg body weight) were assigned to two dietary treatments for 8 months: control diet and 1% stevioside with 0.08% organic selenium supplemented diet. S and O-Se inclusion in the diet enhanced the final body weight, weight gain, and carcass crude protein (p < 0.05). Moreover, supplementation with S and O-Se had a significant effect on lowering the drip loss and shear force and enhanced the a* (redness) of the longissimus dorsi muscle (p < 0.05). The inclusion of dietary S and O-Se improved the sum of the polyunsaturated fatty acid (ΣPUFAs) content of the meat, and the oxidative status (TBARS) values during second week of storage decreased by 42% (p < 0.05). On the other hand, the microbial count tended to decrease (7.62 vs. 7.41 log10 CFU), but it was not significant (p > 0.05), and all sensory attributes were enhanced in the S and O-Se supplemented diet. Overall, these results suggest that supplementation of the ruminant diet with stevioside and organic selenium improves the growth performance, carcass traits, and meat quality with enriched PUFAs profile and retards the lipid oxidation during the storage period in beef.

13.
Anim Biosci ; 34(5): 824-832, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32898962

RESUMO

OBJECTIVE: This study aimed to estimate the genetic parameters and genetic correlations for related feed efficiency, growth, and carcass traits in Hanwoo cattle. METHODS: Phenotypic data from 15,279 animals born between 1989 and 2015 were considered. The related feed efficiency traits considered were Kleiber ratio (KR) and relative growth rate (RGR). Carcass traits analyzed were backfat thickness (BT), carcass weight, eye muscle area, and marbling score. Growth traits were assessed by the average daily gain (ADG), metabolic body weight (MBW) at mid-test age from 6 to 24 months, and yearling weight (YW). Variance and covariance components were estimated using restricted maximum likelihood using nine multi-trait animal models. RESULTS: The heritability estimates for related feed efficiency (0.28±0.04 for KR and RGR) and growth traits (0.26±0.02 to 0.33±0.04) were moderate, but the carcass traits tended to be higher (0.38±0.04 to 0.61±0.06). The related feed efficiency traits were positively genetically correlated with all the carcass traits (0.37±0.09 to 0.47±0.07 for KR, and 0.14±0.09 to 0.37±0.09 for RGR), except for BT, which showed null to weak correlation. Conversely, the genetic correlations of RGR with MBW (-0.36±0.08) and YW (-0.30±0.08) were negative, and those of KR with MBW and YW were close to zero, whereas the genetic correlations of ADG with RGR (0.40±0.08) and KR (0.70±0.05) were positive and relatively moderate to high. The genetic (0.92±0.02) correlations between KR and RGR were very high. CONCLUSION: Sufficient genetic variability and heritability were observed for traits of interest. Moreover, the inclusion of KR and/or RGR in Hanwoo cattle breeding programs could improve the feed efficiency without producing any unfavorable effects on the carcass traits.

14.
BMC Genet ; 21(1): 144, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33267771

RESUMO

BACKGROUND: Recently, there has been a growing interest in the genetic improvement of body measurement traits in farm animals. They are widely used as predictors of performance, longevity, and production traits, and it is worthwhile to investigate the prediction accuracies of genomic selection for these traits. In genomic prediction, the single-step genomic best linear unbiased prediction (ssGBLUP) method allows the inclusion of information from genotyped and non-genotyped relatives in the analysis. Hence, we aimed to compare the prediction accuracy obtained from a pedigree-based BLUP only on genotyped animals (PBLUP-G), a traditional pedigree-based BLUP (PBLUP), a genomic BLUP (GBLUP), and a single-step genomic BLUP (ssGBLUP) method for the following 10 body measurement traits at yearling age of Hanwoo cattle: body height (BH), body length (BL), chest depth (CD), chest girth (CG), chest width (CW), hip height (HH), hip width (HW), rump length (RL), rump width (RW), and thurl width (TW). The data set comprised 13,067 phenotypic records for body measurement traits and 1523 genotyped animals with 34,460 single-nucleotide polymorphisms. The accuracy for each trait and model was estimated only for genotyped animals using five-fold cross-validations. RESULTS: The accuracies ranged from 0.02 to 0.19, 0.22 to 0.42, 0.21 to 0.44, and from 0.36 to 0.55 as assessed using the PBLUP-G, PBLUP, GBLUP, and ssGBLUP methods, respectively. The average predictive accuracies across traits were 0.13 for PBLUP-G, 0.34 for PBLUP, 0.33 for GBLUP, and 0.45 for ssGBLUP methods. Our results demonstrated that averaged across all traits, ssGBLUP outperformed PBLUP and GBLUP by 33 and 43%, respectively, in terms of prediction accuracy. Moreover, the least root of mean square error was obtained by ssGBLUP method. CONCLUSIONS: Our findings suggest that considering the ssGBLUP model may be a promising way to ensure acceptable accuracy of predictions for body measurement traits, especially for improving the prediction accuracy of selection candidates in ongoing Hanwoo breeding programs.


Assuntos
Pesos e Medidas Corporais/veterinária , Bovinos/genética , Genômica , Fenótipo , Animais , Cruzamento , Bovinos/anatomia & histologia , Genótipo , Masculino , Modelos Genéticos , Linhagem , Polimorfismo de Nucleotídeo Único , República da Coreia
15.
Animals (Basel) ; 10(6)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585973

RESUMO

Hanwoo is one of the most economically important animal species in Korea due to its significant contribution to nutrition. However, the current selection index only focuses to improve carcass traits of Hanwoo. Thus, this study aimed to estimate the genetic parameters of birth weight (BW) and weaning weight (WW) and their genetic and phenotypic relationship to the age at first calving (AFC) and gestation length (GL) of Hanwoo. The genetic parameters for birth weight (BW) and weaning weight (WW) were estimated using the data obtained from 52,173 and 35,800 Hanwoo calves born from February 1998 to March 2017, respectively. Further, these data were used to determine their genetic and phenotypic correlation to age at first calving (AFC) and gestation length (GL). The heritability estimates of BW and WW and correlation coefficients were obtained using the average information restricted maximum likelihood (AIREML) procedure, fit in single and two-trait linear animal models. The estimated direct heritability for BW and WW was moderate (0.22 ± 0.02) and high (0.51 ± 0.03), respectively, while the maternal heritability for both traits was 0.12 ± 0.01 and 0.17 ± 0.01, respectively. The genetic correlation of BW and reproductive traits (AFC and GL) showed a moderate and high positive correlation coefficient of 0.33 ± 0.06 and 0.53 ± 0.02, respectively, while close to zero and low positive phenotypic correlations of 0.06 ± 0.01 and 0.21 ± 0.06 were also observed between the correlated traits, respectively. For the correlation analysis between WW and AFC, both the genetic and phenotypic correlation showed close to zero values of 0.04 ± 0.06 and -0.01 ± 0.01, respectively. Meanwhile, the genetic and phenotypic correlation between WW and GL showed low and negative correlations of -0.09 ± 0.06 and -0.09 ± 0.01, respectively. These obtained estimated variances for BW and WW and their corresponding genetic and phenotypic correlation to AFC and GL can be used as information for genetic improvement and subsequent economic improvement of Hanwoo farming.

16.
Asian-Australas J Anim Sci ; 33(10): 1544-1557, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32054201

RESUMO

OBJECTIVE: Genomic selection (GS) is becoming popular in animals' genetic development. We, therefore, investigated the single-step genomic best linear unbiased prediction (ssGBLUP) as tool for GS, and compared its efficacy with the traditional pedigree BLUP (pedBLUP) method. METHODS: A total of 9,952 males born between 1997 and 2018 under Hanwoo proven-bull selection program was studied. We analyzed body weight at 12 months and carcass weight (kg), backfat thickness, eye muscle area, and marbling score traits. About 7,387 bulls were genotyped using Illumina 50K BeadChip Arrays. Multiple-trait animal model analyses were performed using BLUPF90 software programs. Breeding value accuracy was calculated using two. METHODS: i) Pearson's correlation of genomic estimated breeding value (GEBV) with EBV of all animals (rM1) and ii) correlation using inverse of coefficient matrix from the mixed-model equations (rM2). Then, we compared these accuracies by overall population, info-type (PHEN, phenotyped-only; GEN, genotyped-only; and PH+GEN, phenotyped and genotyped), and bull-types (YBULL, young male calves; CBULL, young candidate bulls; and PBULL, proven bulls). RESULTS: The rM1 estimates in the study were between 0.90 and 0.96 among five traits. The rM1 estimates varied slightly by population and info-type, but noticeably by bull-type for traits. Generally average rM2 estimates were much smaller than rM1 (pedBLUP, 0.40 to0.44; ssGBLUP, 0.41 to 0.45) at population level. However, rM2 from both BLUP models varied noticeably across info-types and bull-types. The ssGBLUP estimates of rM2 in PHEN, GEN, and PH+ GEN ranged between 0.51 and 0.63, 0.66 and 0.70, and 0.68 and 0.73, respectively. In YBULL, CBULL, and PBULL, the rM2 estimates ranged between 0.54 and 0.57, 0.55 and 0.62, and 0.70 and 0.74, respectively. The pedBLUP based rM2 estimates were also relatively lower than ssGBLUP estimates. At the population level, we found an increase in accuracy by 2.0% to 4.5% among traits. Traits in PHEN were least influenced by ssGBLUP (0% to 2.0%), whereas the highest positive changes were in GEN (8.1% to 10.7%). PH+GEN also showed 6.5% to 8.5% increase in accuracy by ssGBLUP. However, the highest improvements were found in bull-types (YBULL, 21% to 35.7%; CBULL, 3.3% to 9.3%; PBULL, 2.8% to 6.1%). CONCLUSION: A noticeable improvement by ssGBLUP was observed in this study. Findings of differential responses to ssGBLUP by various bulls could assist in better selection decision making as well. We, therefore, suggest that ssGBLUP could be used for GS in Hanwoo provenbull evaluation program.

17.
Asian-Australas J Anim Sci ; 33(7): 1057-1067, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32054237

RESUMO

OBJECTIVE: This study evaluated the effect of pedigree errors (PEs) on the accuracy of estimated breeding value (EBV) and genetic gain for carcass traits in Korean Hanwoo cattle. METHODS: The raw data set was based on the pedigree records of Korean Hanwoo cattle. The animals' information was obtained using Hanwoo registration records from Korean animal improvement association database. The record comprised of 46,704 animals, where the number of the sires used was 1,298 and the dams were 38,366 animals. The traits considered were carcass weight (CWT), eye muscle area (EMA), back fat thickness (BFT), and marbling score (MS). Errors were introduced in the pedigree dataset through randomly assigning sires to all progenies. The error rates substituted were 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, and 80%, respectively. A simulation was performed to produce a population of 1,650 animals from the pedigree data. A restricted maximum likelihood based animal model was applied to estimate the EBV, accuracy of the EBV, expected genetic gain, variance components, and heritability (h2) estimates for carcass traits. Correlation of the simulated data under PEs was also estimated using Pearson's method. RESULTS: The results showed that the carcass traits per slaughter year were not consistent. The average CWT, EMA, BFT, and MS were 342.60 kg, 78.76 cm2, 8.63 mm, and 3.31, respectively. When errors were introduced in the pedigree, the accuracy of EBV, genetic gain and h2 of carcass traits was reduced in this study. In addition, the correlation of the simulation was slightly affected under PEs. CONCLUSION: This study reveals the effect of PEs on the accuracy of EBV and genetic parameters for carcass traits, which provides valuable information for further study in Korean Hanwoo cattle.

18.
Front Genet ; 11: 576377, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424920

RESUMO

The phenotype of carcass traits in beef cattle are affected by random genetic and non-genetic effects, which both can be modulated by an environmental variable such as Temperature-Humidity Index (THI), a key environmental factor in cattle production. In this study, a multivariate reaction norm model (MRNM) was used to assess if the random genetic and non-genetic (i.e., residual) effects of carcass weight (CW), back fat thickness (BFT), eye muscle area (EMA), and marbling score (MS) were modulated by THI, using 9,318 Hanwoo steers (N = 8,964) and cows (N = 354) that were genotyped on the Illumina Bovine SNP50 BeadChip (50K). THI was measured based on the period of 15-45 days before slaughter. Both the correlation and the interaction between THI and random genetic and non-genetic effects were accounted for in the model. In the analyses, it was shown that the genetic effects of EMA and the non-genetic effects of CW and MS were significantly modulated by THI. No significant THI modulation of such effects was found for BFT. These results highlight the relevance of THI changes for the genetic and non-genetic variation of CW, EMA, and MS in Hanwoo beef cattle. Importantly, heritability estimates for CW, EMA, and MS from additive models without considering THI interactions were underestimated. Moreover, the significance of interaction can be biased if not properly accounting for the correlation between THI and genetic and non-genetic effects. Thus, we argue that the estimation of genetic parameters should be based on appropriate models to avoid any potential bias of estimates. Our finding should serve as a basis for future studies aiming at revealing genotype by environment interaction in estimation and genomic prediction of breeding values.

19.
Front Genet ; 11: 603822, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33552124

RESUMO

Whole-genome sequence (WGS) data are increasingly being applied into genomic predictions, offering a higher predictive ability by including causal mutations or single-nucleotide polymorphisms (SNPs) putatively in strong linkage disequilibrium with causal mutations affecting the trait. This study aimed to improve the predictive performance of the customized Hanwoo 50 k SNP panel for four carcass traits in commercial Hanwoo population by adding highly predictive variants from sequence data. A total of 16,892 Hanwoo cattle with phenotypes (i.e., backfat thickness, carcass weight, longissimus muscle area, and marbling score), 50 k genotypes, and WGS imputed genotypes were used. We partitioned imputed WGS data according to functional annotation [intergenic (IGR), intron (ITR), regulatory (REG), synonymous (SYN), and non-synonymous (NSY)] to characterize the genomic regions that will deliver higher predictive power for the traits investigated. Animals were assigned into two groups, the discovery set (7324 animals) used for predictive variant detection and the cross-validation set for genomic prediction. Genome-wide association studies were performed by trait to every genomic region and entire WGS data for the pre-selection of variants. Each set of pre-selected SNPs with different density (1000, 3000, 5000, or 10,000) were added to the 50 k genotypes separately and the predictive performance of each set of genotypes was assessed using the genomic best linear unbiased prediction (GBLUP). Results showed that the predictive performance of the customized Hanwoo 50 k SNP panel can be improved by the addition of pre-selected variants from the WGS data, particularly 3000 variants from each trait, which is then sufficient to improve the prediction accuracy for all traits. When 12,000 pre-selected variants (3000 variants from each trait) were added to the 50 k genotypes, the prediction accuracies increased by 9.9, 9.2, 6.4, and 4.7% for backfat thickness, carcass weight, longissimus muscle area, and marbling score compared to the regular 50 k SNP panel, respectively. In terms of prediction bias, regression coefficients for all sets of genotypes in all traits were close to 1, indicating an unbiased prediction. The strategy used to select variants based on functional annotation did not show a clear advantage compared to using whole-genome. Nonetheless, such pre-selected SNPs from the IGR region gave the highest improvement in prediction accuracy among genomic regions and the values were close to those obtained using the WGS data for all traits. We concluded that additional gain in prediction accuracy when using pre-selected variants appears to be trait-dependent, and using WGS data remained more accurate compared to using a specific genomic region.

20.
Genes (Basel) ; 10(12)2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31817753

RESUMO

The genomic best linear unbiased prediction (GBLUP) method has been widely used in routine genomic evaluation as it assumes a common variance for all single nucleotide polymorphism (SNP). However, this is unlikely in the case of traits influenced by major SNP. Hence, the present study aimed to improve the accuracy of GBLUP by using the weighted GBLUP (WGBLUP), which gives more weight to important markers for various carcass traits of Hanwoo cattle, such as backfat thickness (BFT), carcass weight (CWT), eye muscle area (EMA), and marbling score (MS). Linear and different nonlinearA SNP weighting procedures under WGBLUP were evaluated and compared with unweighted GBLUP and traditional pedigree-based methods (PBLUP). WGBLUP methods were assessed over ten iterations. Phenotypic data from 10,215 animals from different commercial herds that were slaughtered at approximately 30-month-old of age were used. All these animals were genotyped using Illumina Bovine 50k SNP chip and were divided into a training and a validation population by birth date on 1 November 2015. Genomic prediction accuracies obtained in the nonlinearA weighting methods were higher than those of the linear weighting for all traits. Moreover, unlike with linear methods, no sudden drops in the accuracy were noted after the peak was reached in nonlinearA methods. The average accuracies using PBLUP were 0.37, 0.49, 0.40, and 0.37, and 0.62, 0.74, 0.67, and 0.65 using GBLUP for BFT, CWT, EMA, and MS, respectively. Moreover, these accuracies of genomic prediction were further increased to 4.84% and 2.70% for BFT and CWT, respectively by using the nonlinearA method under the WGBLUP model. For EMA and MS, WGBLUP was as accurate as GBLUP. Our results indicate that the WGBLUP using a nonlinearA weighting method provides improved predictions for CWT and BFT, suggesting that the ability of WGBLUP over the other models by weighting selected SNPs appears to be trait-dependent.


Assuntos
Bovinos/genética , Genoma , Genótipo , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Animais , Feminino , Masculino , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA