Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Physiol ; 13: 880465, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505079

RESUMO

Evaluating populational trends of health condition has become an important topic for marine mammal populations under the Marine Strategy Framework Directive (MSFD). In the Baltic Sea, under the recommendation of Helsinki Commission (HELCOM), efforts have been undertaken to use blubber thickness as an indicator of energy reserves in marine mammals. Current values lack geographical representation from the entire Baltic Sea area and a large dataset is only available for grey seals (Halichoerus grypus) from Sweden and Finland. Knowledge on variation of blubber thickness related to geography throughout the Baltic Sea is important for its usage as an indicator. Such evaluation can provide important information about the energy reserves, and hence, food availability. It is expected that methodological standardization under HELCOM should include relevant datasets with good geographical coverage that can also account for natural variability in the resident marine mammal populations. In this study, seasonal and temporal trends of blubber thickness were evaluated for three marine mammal species-harbor seal (Phoca vitulina), grey seal (Halichoerus grypus) and harbor porpoise (Phocoena phocoena)-resident in the southern Baltic Sea collected and investigated under stranding networks. Additionally, the effects of age, season and sex were analyzed. Seasonal variation of blubber thickness was evident for all species, with harbor seals presenting more pronounced effects in adults and grey seals and harbor porpoises presenting more pronounced effects in juveniles. For harbor seals and porpoises, fluctuations were present over the years included in the analysis. In the seal species, blubber thickness values were generally higher in males. In harbor seals and porpoises, blubber thickness values differed between the age classes: while adult harbor seals displayed thicker blubber layers than juveniles, the opposite was observed for harbor porpoises. Furthermore, while an important initial screening tool, blubber thickness assessment cannot be considered a valid methodology for overall health assessment in marine mammals and should be complemented with data on specific health parameters developed for each species.

2.
Environ Int ; 137: 105525, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32028175

RESUMO

The exposure of marine mammals to phthalates has received considerable attention due to the ubiquitous occurrence of these pollutants in the marine environment and their potential adverse health effects. The occurrence of phthalate metabolites is well established in human populations, but data is scarce for marine mammals. In this study, concentrations of 17 phthalate metabolites were determined in liver samples collected from one hundred (n = 100) by-caught harbor porpoises (Phocoena phocoena) along the coast of Norway. Overall, thirteen phthalate metabolites were detected in the samples. Monoethyl phthalate (mEP), mono-iso-butyl phthalate (mIBP), mono-n-butyl phthalate (mBP) and phthalic acid (PA) were the most abundant metabolites, accounting for detection rates ≥ 85%. The highest median concentrations were found for mIBP (30.6 ng/g wet weight [w.w.]) and mBP (25.2 ng/g w.w.) followed by PA (7.75 ng/g w.w.) and mEP (5.67 ng/g w.w.). The sum of the median phthalate metabolites concentrations that were found in the majority of samples (detection rates > 50%) indicated that concentrations were lower for porpoises collected along the coastal area of Bodø (Nordland), Lebesby (Finnmark) and Varangerfjord (as compared to other coastal areas); these areas are among the least populated coastal areas but also the most distant (>700 km) from offshore active oil and gas fields. The monomethyl phthalate metabolite (mMP) was detected in 69% of the samples, and to our knowledge, alongside with PA, this is the first report of their occurrence in marine mammals. PA, as the non-specific marker of phthalate exposures, showed a statistically significant negative association with the body mass and length of the harbor porpoises. Among the phthalate metabolites, statistically significant positive associations were found between mBP and mIBP, mMP and mEP, PA and mEP, mIBP and mono(2-ethyl-5-oxohexyl) phthalate (mEOHP), mIBP and mono(2-ethyl-5-hydroxyhexyl) phthalate (mEHHP), mBP and mEHHP, mono-n-nonyl phthalate (mNP) and PA, and between monobenzyl phthalate (mBzP) and mNP. To our knowledge, this is the first study on the biomonitoring of 17 phthalate metabolites in harbor porpoises.


Assuntos
Poluentes Ambientais , Phocoena , Ácidos Ftálicos , Animais , Exposição Ambiental , Humanos , Noruega , Ácidos Ftálicos/metabolismo
3.
Sci Total Environ ; 708: 134835, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31806345

RESUMO

Polychlorinated biphenyls (PCBs) are a group of 209 persistent and bio-accumulative toxic pollutants present as complex mixtures in human and animal tissues. Harbor porpoises accumulate some of the highest levels of PCBs because they are long-lived mammals that feed at a high trophic level. Studies typically use the sum of a suite of individual chlorobiphenyl congeners (CBs) to investigate PCBs in wildlife. However, toxic effects and thresholds of CB congeners differ, therefore population health risks of exposure may be under or over-estimated dependent on the congener profiles present. In this study, we found congener profiles varied with age, sex and location, particularly between adult females and juveniles. We found that adult females had the highest proportions of octa-chlorinated congeners whilst juveniles had the highest proportions of tri- and tetra-chlorinated congeners. This is likely to be a consequence of pollutant offloading between mothers and calves during lactation. Analysis of the individual congener toxicities found that juveniles were exposed to a more neurotoxic CB mixture at a time when they were most vulnerable to its effects. These findings are an important contribution towards our understanding of variation in congener profiles and the potential effects and threats of PCB exposure in cetaceans.


Assuntos
Phocoena , Animais , Animais Selvagens , Poluentes Ambientais , Feminino , Bifenilos Policlorados , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA