Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Int J Mol Sci ; 25(16)2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39201339

RESUMO

In polymicrobial sepsis, the extracellular histones, mainly released from activated neutrophils, significantly contribute to cardiac dysfunction (septic cardiomyopathy), as demonstrated in our previous studies using Echo-Doppler measurements. This study aims to elucidate the roles of extracellular histones and their interactions with Toll-like receptors (TLRs) in cardiac dysfunction. Through ex vivo assessments of ECG, left ventricle (LV) function parameters, and in vivo Echo-Doppler studies in mice perfused with extracellular histones, we aim to provide comprehensive insights into the mechanisms underlying sepsis-induced cardiac dysfunction. Langendorff-perfused hearts from both wild-type and TLR2, TLR3, or TLR4 knockout (KO) mice were examined. Paced mouse hearts were perfused with histones to assess contractility and relaxation. Echo-Doppler studies evaluated cardiac dysfunction after intravenous histone injection. Histone perfusion caused defects in contractility and relaxation, with TLR2 and TLR3 KO mice being partially protected. Specifically, TLR2 KO mice exhibited the greatest reduction in Echo-Doppler abnormalities, while TLR4 KO exacerbated cardiac dysfunction. Among individual histones, H1 induced the most pronounced abnormalities in cardiac function, apoptosis of cardiomyocytes, and LDH release. Our data highlight significant interactions between histones and TLRs, providing insights into histones especially H1 as potential therapeutic targets for septic cardiomyopathy. Further studies are needed to explore specific histone-TLR interactions and their mechanisms.


Assuntos
Histonas , Camundongos Knockout , Animais , Histonas/metabolismo , Camundongos , Receptores Toll-Like/metabolismo , Masculino , Sepse/metabolismo , Sepse/complicações , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Coração/fisiopatologia
2.
Environ Sci Technol ; 58(19): 8228-8238, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38695658

RESUMO

Inhalation of fine particulate matter PM2.5-bound arsenic (PM2.5-As) may cause significant cardiovascular damage, due to its high concentration, long transmission range, and good absorption efficiency in organisms. However, both the contribution and the effect of the arsenic exposure pathway, with PM2.5 as the medium, on cardiovascular system damage in nonferrous smelting sites remain to be studied. In this work, a one-year site sample collection and analysis work showed that the annual concentration of PM2.5-As reached 0.74 µg/m3, which was 120 times the national standard. The predominant species in the PM2.5 samples were As (V) and As (III). A panel study among workers revealed that PM2.5-As exposure dominantly contributed to human absorption of As. After exposure of mice to PM2.5-As for 8 weeks, the accumulation of As in the high exposure group reached equilibrium, and its bioavailability was 24.5%. A series of animal experiments revealed that PM2.5-As exposure induced cardiac injury and dysfunction at the environmental relevant concentration and speciation. By integrating environmental and animal exposure assessments, more accurate health risk assessment models exposed to PM2.5-As were established for metal smelting areas. Therefore, our research provides an important scientific basis for relevant departments to formulate industry supervision, prevention and control policies.


Assuntos
Arsênio , Material Particulado , Humanos , Camundongos , Animais , Exposição Ocupacional , Doenças Cardiovasculares , Medição de Risco , Disponibilidade Biológica , Poluentes Atmosféricos , Metalurgia
3.
Adv Clin Chem ; 119: 71-116, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38514212

RESUMO

Cardiac fibrosis, associated with right heart dysfunction, results in significant morbidity and mortality. Stimulated by various cellular and humoral stimuli, cardiac fibroblasts, macrophages, CD4+ and CD8+ T cells, mast and endothelial cells promote fibrogenesis directly and indirectly by synthesizing numerous profibrotic factors. Several systems, including the transforming growth factor-beta and the renin-angiotensin system, produce type I and III collagen, fibronectin and α-smooth muscle actin, thus modifying the extracellular matrix. Although magnetic resonance imaging with gadolinium enhancement remains the gold standard, the use of circulating biomarkers represents an inexpensive and attractive means to facilitate detection and monitor cardiovascular fibrosis. This review explores the use of protein and nucleic acid (miRNAs) markers to better understand underlying pathophysiology as well as their role in the development of therapeutics to inhibit and potentially reverse cardiac fibrosis.


Assuntos
Meios de Contraste , Miocárdio , Humanos , Miocárdio/patologia , Meios de Contraste/metabolismo , Células Endoteliais , Gadolínio/metabolismo , Fibrose
4.
EMBO J ; 43(3): 362-390, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38212381

RESUMO

Impaired autophagy is known to cause mitochondrial dysfunction and heart failure, in part due to altered mitophagy and protein quality control. However, whether additional mechanisms are involved in the development of mitochondrial dysfunction and heart failure in the setting of deficient autophagic flux remains poorly explored. Here, we show that impaired autophagic flux reduces nicotinamide adenine dinucleotide (NAD+) availability in cardiomyocytes. NAD+ deficiency upon autophagic impairment is attributable to the induction of nicotinamide N-methyltransferase (NNMT), which methylates the NAD+ precursor nicotinamide (NAM) to generate N-methyl-nicotinamide (MeNAM). The administration of nicotinamide mononucleotide (NMN) or inhibition of NNMT activity in autophagy-deficient hearts and cardiomyocytes restores NAD+ levels and ameliorates cardiac and mitochondrial dysfunction. Mechanistically, autophagic inhibition causes the accumulation of SQSTM1, which activates NF-κB signaling and promotes NNMT transcription. In summary, we describe a novel mechanism illustrating how autophagic flux maintains mitochondrial and cardiac function by mediating SQSTM1-NF-κB-NNMT signaling and controlling the cellular levels of NAD+.


Assuntos
Insuficiência Cardíaca , Doenças Mitocondriais , Humanos , NAD/metabolismo , NF-kappa B/metabolismo , Proteína Sequestossoma-1/genética , Homeostase , Autofagia , Mononucleotídeo de Nicotinamida
5.
Methods Cell Biol ; 180: 127-146, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37890926

RESUMO

Cancer survivors who have received thoracic radiation as part of their primary treatment are at risk for developing radiation-induced cardiotoxicity (RICT) due to incidental radiation delivered to the heart. In recent decades, advancements in radiation delivery have dramatically improved the therapeutic ratio of radiation therapy (RT)-efficiently targeting malignancies while sparing the heart; yet, in many patients, incidental radiation to the heart cannot be fully avoided. Cardiac radiation exposure can cause long-term morbidity and contribute to poorer survival in cancer patients. Severe cardiac effects can occur within 2years of treatment. Currently, there is no way to predict who is at higher or lower risk of developing cardiotoxicity from radiation, and the critical factors that alter RICT have not yet been clearly identified. Thus, pre-clinical investigations are an important step towards better prevention, detection, and management of RICT in cancer survivors. The overarching aim of this chapter is to provide researchers with foundational and technical knowledge in the use of mice and rats for RICT investigations. After a brief overview of RICT pathophysiology and clinical manifestations, we discuss important considerations of RICT study design, including animal selection and radiation planning. We then provide example protocols for murine tissue harvesting and processing that can support use in downstream applications of the reader's choosing.


Assuntos
Cardiotoxicidade , Neoplasias , Camundongos , Humanos , Ratos , Animais , Cardiotoxicidade/etiologia , Cardiotoxicidade/diagnóstico , Cardiotoxicidade/prevenção & controle , Roedores , Neoplasias/radioterapia , Coração
7.
Antioxidants (Basel) ; 12(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36978846

RESUMO

The mitochondrial protease Lonp1 is a multifunctional enzyme that regulates crucial mitochondrial functions, including the degradation of oxidized proteins, folding of imported proteins and maintenance the correct number of copies of mitochondrial DNA. A series of recent studies has put Lonp1 at the center of the stage in the homeostasis of cardiomyocytes and muscle skeletal cells. During heart development, Lonp1 allows the metabolic shift from anaerobic glycolysis to mitochondrial oxidative phosphorylation. Knock out of Lonp1 arrests heart development and determines cardiomyocyte apoptosis. In adults, Lonp1 acts as a cardioprotective protein, as its upregulation mitigates cardiac injury by preventing the oxidative damage of proteins and lipids, and by preserving mitochondrial redox balance. In skeletal muscle, Lonp1 is crucial for cell development, as it mediates the activation of PINK1/Parkin pathway needed for proper myoblast differentiation. Skeletal muscle-specific ablation of Lonp1 in mice causes reduced muscle fiber size and strength due to the accumulation of mitochondrial-retained protein in muscle. Lonp1 expression and activity decline with age in different tissues, including skeletal muscle, and are associated with a functional decline and structural impairment of muscle fibers. Aerobic exercise increases unfolded protein response markers including Lonp1 in the skeletal muscle of aged animals and is associated with muscle functional recovery. Finally, mutations of Lonp1 cause a syndrome named CODAS (Cerebral, Ocular, Dental, Auricular, and Skeletal anomalies) characterized by the impaired development of multiple organs and tissues, including myocytes. CODAS patients show hypotonia and ptosis, indicative of skeletal muscle reduced performance. Overall, this body of observations points Lonp1 as a crucial regulator of mitochondrial functions in the heart and in skeletal muscle.

8.
Respir Med Case Rep ; 41: 101789, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36530864

RESUMO

Dyspnea is a common presenting complaint seen by hospitalists. The differential is broad, including life-threatening and less urgent etiologies. We report a 43-year-old male presenting to an inpatient medicine service with dyspnea in the setting of asthma, tobacco and occupational exposures, and no prior cardiac history. Use of point-of-care ultrasound (POCUS) immediately confirmed diagnosis of acute decompensated heart failure, allowing prompt decision making and care. Use of POCUS is widespread among emergency physicians and intensivists; however, use among medical students, internal medicine residents, and hospitalists remains variable. Increased use of POCUS by hospitalists may increase speed and accuracy of diagnosis.

9.
Afr Health Sci ; 23(2): 530-536, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38223635

RESUMO

Background: Heart failure is now a significant contributor to the burden of non-communicable diseases in developing countries like Nigeria which is experiencing epidemiologic and demographic transition. The epidemiology of heart failure in this country is poorly characterized. The aim of the review is to determine the prevalence of heart failure, the associated risk factors, the aetiology, management, and outcomes of the condition in the country. Methods: Relevant databases such as PubMed /Medline, EMBASE, Web of Science, Google Scholar, African Index Medicus, and African journal online would be searched for articles published in English from January 2000 to December 2021. The analysis will include observational studies conducted among Nigerian adults aged 12 years and above. Article selection shall be conducted by pairs of independent reviewers. Data extraction shall be done by 2 independent reviewers. Results: The primary outcome would be the pooled prevalence of heart failure while the secondary outcomes would be to identify the risk factors and management of heart failure in Nigeria. Conclusion: This will be the first systematic review and meta-analysis of heart failure epidemiology in Nigeria which will hopefully identify gaps for future research and guidance for policy interventions.


Assuntos
Insuficiência Cardíaca , Projetos de Pesquisa , Humanos , Nigéria/epidemiologia , Revisões Sistemáticas como Assunto , Metanálise como Assunto , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/terapia , Prevalência
10.
J Pers Med ; 12(11)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36579591

RESUMO

In 2016, an estimated 486,000 individuals sustained burn injuries requiring medical attention. Severe burn injuries lead to a persistent, hyperinflammatory response that may last up to 2 years. The persistent release of inflammatory mediators contributes to end-organ dysfunction and changes in genome expression. Burn-induced cardiac dysfunction may lead to heart failure and changes in cardiac remodeling. Cytokines promote the inflammatory cascade and promulgate mechanisms resulting in cardiac dysfunction. Here, we review the mechanisms by which TNFα, IL-1 beta, IL-6, and IL-10 cause cardiac dysfunction in post-burn injuries. We additionally review changes in the cytokine transcriptome caused by inflammation and burn injuries.

11.
J Feline Med Surg ; 24(12): e636-e646, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36350715

RESUMO

Pulmonary hypertension (PH) is a potential complication in many disease states, yet it has been largely overlooked in feline medicine. Recently, increased awareness of potential underlying causes has led to a wider understanding of the disease process in humans, with a focus on tailoring therapy to include specific treatment of the underlying etiology. Most of these treatments are not yet available in veterinary medicine, but as they move from the human to the veterinary field, it would be beneficial to better understand the forms of PH encountered in different species. Recently, diagnosis and classification of PH in dogs has been the focus of an American College of Veterinary Internal Medicine consensus statement, yet this condition has received little attention in cats. It is therefore our intention to raise awareness of this condition in cats and to propose a classification system for the types of PH seen in feline patients. As new medications are developed for the treatment of PH, it is important to recognize which forms of PH are seen in feline patients and understand the etiology of the disease. There are many reports of PH (or suspected PH based on echocardiographic assessment) in cats. In this review, we highlight the large number of conditions, and different etiologies, that are associated with PH. Improving understanding of this condition will bring us closer to being able to investigate the benefits of potential new diagnostics and therapies as they become available.


Assuntos
Doenças do Gato , Doenças do Cão , Hipertensão Pulmonar , Gatos , Humanos , Animais , Cães , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/terapia , Hipertensão Pulmonar/veterinária , Doenças do Gato/diagnóstico , Doenças do Gato/epidemiologia , Doenças do Gato/terapia , Doenças do Cão/diagnóstico , Doenças do Cão/epidemiologia , Doenças do Cão/terapia
12.
Vet World ; 15(9): 2259-2268, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36341078

RESUMO

Background and Aim: It is known that during the early postpartum and lactation periods in dairy cows, metabolic disorders develop, that is, ketosis, which can lead to secondary damage to internal organs. Therefore, it is important to address the issues of changing the lactating cows' clinical, laboratory, and physiological parameters regarding the development of hepatocardial syndrome. This study aimed to provide clinical and diagnostic justification for developing hepatocardial syndrome in highly productive dairy cows. Materials and Methods: The study was conducted on 20 black and white cows in the early postpartum period (7-10 days after birth), with a milk production level of >4500 kg of milk during the previous lactation period, a positive result in the formol colloid sedimentary test, the presence of deafness and splitting of heart sounds, changes in the size, or increased pain sensitivity of the percussion field of the liver. Clinically healthy dairy cows in the early postpartum period were used as controls (n = 24). Clinical, electrocardiographic, echocardiographic, and biochemical parameters were also evaluated. Results: Dairy cows with hepatocardial syndrome developed arterial hypertension and sinus tachycardia, which led to a significant decrease in PQ and QT intervals at ECG. A significant increase in the diastolic size of the interventricular septum, systolic size of the free wall of the left ventricle, and diastolic and systolic sizes of the left ventricle and a significant decrease in the shortening fraction of the left ventricular myocardium were observed in the cows due to the development of hepatocardial syndrome. The affected cows demonstrated a significant increase in serum activity of gamma-glutamyl transferase, alanine aminotransferase, lactate dehydrogenase, creatine phosphokinase, alkaline phosphatase, troponin, malondialdehyde, diene conjugates, and ceruloplasmin and a decrease in glucose concentration. In addition, they demonstrated decreased activity of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase. Conclusion: Hepatocardial syndrome in dairy cows occurs due to ketosis, characterized by arterial hypertension, sinus tachycardia, a moderate decrease in myocardial contractility, oxidative stress, and cytolysis of cardiomyocytes and hepatocytes. Therefore, the control and prevention of the development of hepatocardial syndrome will make it possible to maintain the productive health and longevity of dairy cows.

13.
Clin Sci (Lond) ; 136(21): 1537-1554, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36285636

RESUMO

Cardiovascular diseases are the main cause of death worldwide. Recent studies have revealed the influence of histone-modifying enzymes in cardiac remodeling and heart dysfunction. The Set7 methyltransferase regulates the expression of several genes through the methylation of histones and modulates the activity of non-histone proteins. However, the role of Set7 in cardiac remodeling and heart dysfunction remains unknown. To address this question, wild-type (WT) and Set7 knockout (KO) male mice were injected with isoproterenol or saline. WT mice injected with isoproterenol displayed a decrease in Set7 activity in the heart. In addition, WT and Set7 KO mice injected with isoproterenol exhibited cardiac hypertrophy. Interestingly, Set7 deletion exacerbated cardiac hypertrophy in response to isoproterenol but attenuated myocardial fibrosis. Echocardiograms revealed that WT mice injected with isoproterenol had lowered ejection fractions and fractional shortening, and increased E'-wave deceleration time and E/A ratio compared with their controls. Conversely, Set7 KO mice did not show alteration in these parameters in response to isoproterenol. However, prolonged exposure to isoproterenol induced cardiac dysfunction both in WT and Set7 KO mice. Both isoproterenol and Set7 deletion changed the transcriptional profile of the heart. Moreover, Set7 deletion increased the expression of Pgc1α and mitochondrial DNA content in the heart, and reduced the expression of cellular senescence and inflammation markers in response to isoproterenol. Taken together, our data suggest that Set7 deletion attenuates isoproterenol-induced myocardial fibrosis and delays heart dysfunction, suggesting that Set7 plays an important role in cardiac remodeling and dysfunction in response to stress.


Assuntos
Cardiomiopatias , Remodelação Ventricular , Camundongos , Masculino , Animais , Isoproterenol/efeitos adversos , Isoproterenol/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/genética , Cardiomegalia/metabolismo , Camundongos Knockout , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/genética , Fibrose , Miócitos Cardíacos/metabolismo , Camundongos Endogâmicos C57BL
15.
Acta Pharmacol Sin ; 43(11): 2873-2884, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35986214

RESUMO

Calpains have been implicated in heart diseases. While calpain-1 has been detrimental to the heart, the role of calpain-2 in cardiac pathology remains controversial. In this study we investigated whether sustained over-expression of calpain-2 had any adverse effects on the heart and the underlying mechanisms. Double transgenic mice (Tg-Capn2/tTA) were generated, which express human CAPN2 restricted to cardiomyocytes. The mice were subjected to echocardiography at age 3, 6, 8 and 12 months, and their heart tissues and sera were collected for analyses. We showed that transgenic mice over-expressing calpain-2 restricted to cardiomyocytes had normal heart function with no evidence of cardiac pathological remodeling at age 3 months. However, they exhibited features of dilated cardiomyopathy including increased heart size, enlarged heart chambers and heart dysfunction from age 8 months; histological analysis revealed loss of cardiomyocytes replaced by myocardial fibrosis and cardiomyocyte hypertrophy in transgenic mice from age 8 months. These cardiac alterations closely correlated with aberrant autophagy evidenced by significantly increased LC3BII and p62 protein levels and accumulation of autophagosomes in the hearts of transgenic mice. Notably, injection of 3-methyladenine, a well-established inhibitor of autophagy (30 mg/kg, i.p. once every 3 days starting from age 6 months for 2 months) prevented aberrant autophagy, attenuated myocardial injury and improved heart function in the transgenic mice. In cultured cardiomyocytes, over-expression of calpain-2 blocked autophagic flux by impairing lysosomal function. Furthermore, over-expression of calpain-2 resulted in lower levels of junctophilin-2 protein in the heart of transgenic mice and in cultured cardiomyocytes, which was attenuated by 3-methyladenine. In addition, blockade of autophagic flux by bafilomycin A (100 nM) induced a reduction of junctophilin-2 protein in cardiomyocytes. In summary, transgenic over-expression of calpain-2 induces age-dependent dilated cardiomyopathy in mice, which may be mediated through aberrant autophagy and a reduction of junctophilin-2. Thus, a sustained increase in calpain-2 may be detrimental to the heart.


Assuntos
Cardiomiopatia Dilatada , Camundongos , Animais , Humanos , Lactente , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Calpaína , Miócitos Cardíacos , Autofagia , Camundongos Transgênicos
16.
J Am Heart Assoc ; 11(14): e023990, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35861819

RESUMO

Background Pulmonary and cardiac functions decline with age, but the associations of pulmonary dysfunction with cardiac function and heart failure (HF) risk in late life is not known. We aimed to determine the associations of percent predicted forced vital capacity (ppFVC) and the ratio of forced expired volume in 1 second (FEV1) to forced vital capacity (FVC; FEV1/FVC) with cardiac function and incident HF with preserved or reduced ejection fraction in late life. Methods and Results Among 3854 HF-free participants in the ARIC (Atherosclerosis Risk in Communities) cohort study who underwent echocardiography and spirometry at the fifth study visit (2011-2013), associations of FEV1/FVC and ppFVC with echocardiographic measures, cardiac biomarkers, and risk of HF, HF with preserved ejection fraction, and HF with reduced ejection fraction were assessed. Multivariable linear and Cox regression models adjusted for demographics, body mass index, coronary disease, atrial fibrillation, hypertension, and diabetes. Mean age was 75±5 years, 40% were men, 19% were Black, and 61% were ever smokers. Mean FEV1/FVC was 72±8%, and ppFVC was 98±17%. In adjusted analyses, lower FEV1/FVC and ppFVC were associated with higher NT-proBNP (N-terminal pro-B-type natriuretic peptide; both P<0.001) and pulmonary artery pressure (P<0.004). Lower ppFVC was also associated with higher left ventricular mass, left ventricular filling pressure, and high-sensitivity C-reactive protein (all P<0.01). Lower FEV1/FVC was associated with a trend toward higher risk of incident HF with preserved ejection fraction (hazard ratio [HR] per 10-point decrease, 1.31; 95% CI, 0.98-1.74; P=0.07) and HF with reduced ejection fraction (HR per 10-point decrease, 1.24; 95% CI, 0.91-1.70; P=0.18), but these associations did not reach statistical significance. Lower ppFVC was associated with incident HF with preserved ejection fraction (HR per 10-unit decrease, 1.21; 95% CI, 1.04-1.41; P=0.013) but not with HF with reduced ejection fraction (HR per 10-unit decrease, 0.90; 95% CI, 0.76-1.07; P=0.24). Conclusions Subclinical reductions in FEV1/FVC and ppFVC differentially associate with cardiac function and HF risk in late life.


Assuntos
Insuficiência Cardíaca , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/epidemiologia , Humanos , Pulmão , Masculino , Volume Sistólico , Função Ventricular Esquerda , Capacidade Vital
17.
J Am Heart Assoc ; 11(13): e025554, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35766277

RESUMO

Background Few studies have examined the association between the early diastolic mitral inflow velocity/early diastolic mitral annulus velocity ratio (E/e') and chronic kidney disease progression. Methods and Results We reviewed data from 2238 patients with nondialysis chronic kidney disease from the KNOW-CKD (Korean Cohort Study for Outcome in Patients With Chronic Kidney Disease); data from 163 patients were excluded because of missing content. A >50% decrease in estimated glomerular filtration rate from baseline, doubling of serum creatinine, or dialysis initiation and/or kidney transplantation were considered renal events. At baseline, median (interquartile range) ejection fraction and E/e' were 64.0% (60.0%-68.0%) and 9.1 (7.4-11.9), respectively. Proportions of ejection fraction <50% and E/e' ≥15 were 1.3% and 9.6%, respectively. More than one quarter of patients (27.2%) had an estimated glomerular filtration rate <30 mL/min per 1.73 m2. During the mean 59.1-month follow-up period, 724 patients (34.9%) experienced renal events. In multivariable Cox proportional hazard regression analysis, the hazard ratio with 95% CI per 1-unit increase in E/e' was 1.027 (1.005-1.050; P=0.016). Penalized spline curve analysis yielded a suggested threshold of E/e' for renal events of 12; in our data set, the proportion of E/e' ≥12 was 4.1%. Conclusions Increased E/e' was associated with an increased hazard of renal events, suggesting that diastolic heart dysfunction is a novel risk factor for chronic kidney disease progression.


Assuntos
Insuficiência Renal Crônica , Disfunção Ventricular Esquerda , Estudos de Coortes , Diástole , Humanos , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/epidemiologia , Disfunção Ventricular Esquerda/etiologia , Função Ventricular Esquerda
18.
Pulmonology ; 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35568651

RESUMO

INTRODUCTION AND OBJECTIVE: Left-heart dysfunction and pulmonary vasculopathy are increasingly recognized as contributing factors of exercise capacity limitation in interstitial fibrosing lung disease (IFLD). Moreover, the clinical significance of exercise pulmonary hypertension (ePH) in pulmonary and cardiac diseases has been documented, representing a risk factor for decreased exercise capacity and survival, progression to resting pulmonary hypertension (PH) and overall clinical worsening. We conducted a prospective study aiming at: (a) assessing the prevalence of PH and ePH in a cohort of 40 functionally limited patients with IFLD, (b) determining the post-capillary (postC) or pre-capillary (preC) etiology of either PH or ePH in this cohort, and (c) examining the correlations between invasively and non-invasively measured exercise variables among hemodynamic groups. PATIENTS AND METHODS: 40 IFLD patients underwent cardiopulmonary evaluation, including: clinical examination, lung function tests, 6-minute walking test, heart ultrasonography, cardiopulmonary exercise test and, finally, right heart catheterization (RHC). Resting hemodynamic evaluation was followed by the exercise protocol proposed by Herve et al, using a bedside cycle ergometer in the supine position. Abnormal elevation of mean pulmonary artery pressure (mPAP) above 30mmHg during exercise, with respect to abnormal elevation of cardiac output (CO) below 10 L/min (mPAP-CO ratio ⩾3 mmHg·min·L-1) was used to define ePH (Herve et al, 2015). Secondary hemodynamic evaluation involved detection of abnormal pulmonary arterial wedge pressure (PAWP) increase at peak exercise in relation to CO. Specifically, ΔPAWP/ΔCO >2 mmHg/L per minute determined an abnormal PAWP elevation (Bentley et al, 2020). RESULTS: Among the 40-patient cohort, 25% presented postC PH, 37.5% preC PH, 27.5% ePH, with the remaining 10% recording normal hemodynamics. PAWP evaluation during exercise revealed a postC etiology in 4 out of the 11 patients presenting ePH, and a postC etiology in 6 out of the 15 patients presenting resting preC PH. Mean values of non-invasive variables did not display statistically significant differences among hemodynamic groups, except for: diffusing capacity for carbon monoxide (DLCO), carbon monoxide transfer coefficient (KCO) and the ratio of functional vital capacity to DLCO (FVC%/DLCO%), which were lower in both ePH and PH groups (p < 0.05). Resting values of CO, cardiac index (CI), stroke volume (SV) and pulmonary vascular compliance (PVC) were significantly impaired in ePH, preC-PH and postC-PH groups when compared to the normal group. CONCLUSIONS: Both PH and ePH were highly prevalent within the IFLD patient group, suggesting that RHC should be offered more frequently in functionally limited patients. Diffusion capacity markers must thus guide decision making, in parallel to clinical evaluation. ePH was associated to lower resting CO and PVC, in a similar way to resting PH, indicating the relevance of cardiopulmonary function to exercise limitation. Finally, the use of the ΔPAWP/ΔCO>2 criterion further uncovered PH of postcapillary etiology, highlighting the complexity of hemodynamics in IFLD. CLINICALTRIALS: gov ID: NCT03706820.

19.
Int J Mol Sci ; 23(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35216295

RESUMO

Lipid overload contributes to cardiac complications of diabetes and obesity. However, the underlying mechanisms remain obscure. This study investigates the role of gamma-aminobutyrate transaminase (ABAT), the key enzyme involved in the catabolism of γ-aminobutyric acid (GABA), in lipid overload-induced cardiac injury. Microarray revealed a down-regulation of ABAT mRNA expression in high fat diet (HFD)-fed mouse hearts, which correlated with a reduction in ABAT protein level and its GABA catabolic activity. Transgenic mice with cardiomyocyte-specific ABAT over-expression (Tg-ABAT/tTA) were generated to determine the role of ABAT in lipid overload-induced cardiac injury. Feeding with a HFD to control mice for 4 months reduced ATP production and the mitochondrial DNA copy number, and induced myocardial oxidative stress, hypertrophy, fibrosis and dysfunction. Such pathological effects of HFD were mitigated by ABAT over-expression in Tg-ABAT/tTA mice. In cultured cardiomyocytes, palmitate increased mitochondrial ROS production, depleted ATP production and promoted apoptosis, all of which were attenuated by ABAT over-expression. With the inhibition of ABAT's GABA catabolic activity, the protective effects of ABAT remained unchanged in palmitate-induced cardiomyocytes. Thus, ABAT protects the mitochondrial function in defending the heart against lipid overload-induced injury through mechanisms independent of its GABA catabolic activity, and may represent a new therapeutic target for lipid overload-induced cardiac injury.


Assuntos
4-Aminobutirato Transaminase , Traumatismos Cardíacos , 4-Aminobutirato Transaminase/genética , 4-Aminobutirato Transaminase/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Traumatismos Cardíacos/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Palmitatos/metabolismo , Ácido gama-Aminobutírico/metabolismo
20.
J Cell Physiol ; 237(2): 1353-1371, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34632595

RESUMO

Insufficient-heart function is associated with myocardial insulin resistance in the elderly, particularly associated with long-QT, in a dependency on dysfunctional KCNQ1/KCNE1-channels. So, we aimed to examine the contribution of alterations in KCNQ1/KCNE1-current (IKs ) to the aging-related remodeling of the heart as well as the role of insulin treatment on IKs in the aged rats. Prolonged late-phase action potential (AP) repolarization of ventricular cardiomyocytes from insulin-resistant 24-month-old rats was significantly reversed by in vitro treatment of insulin or PKG inhibitor (in vivo, as well) via recovery in depressed IKs . Although the protein level of either KCNQ1 or KCNE1 in cardiomyocytes was not affected with aging, PKG level was significantly increased in those cells. The inhibited IKs in ß3 -ARs-stimulated cells could be reversed with a PKG inhibitor, indicating the correlation between PKG-activation and ß3 -ARs activation. Furthermore, in vivo treatment of aged rats, characterized by ß3 -ARs activation, with either insulin or a PKG inhibitor for 2 weeks provided significant recoveries in IKs , prolonged late phases of APs, prolonged QT-intervals, and low heart rates without no effect on insulin resistance. In vivo insulin treatment provided also significant recovery in increased PKG and decreased PIP2 level, without the insulin effect on the KCNQ1 level in ß3 -ARs overexpressed cells. The inhibition of IKs in aged-rat cardiomyocytes seems to be associated with activated ß3 -ARs dependent remodeling in the interaction between KCNQ1 and KCNE1. Significant recoveries in ventricular-repolarization of insulin-treated aged cardiomyocytes via recovery in IKs strongly emphasize two important issues: (1) IKs can be a novel target in aging-associated remodeling in the heart and insulin may be a cardioprotective agent in the maintenance of normal heart function during the aging process. (2) This study is one of the first to demonstrate insulin's benefits on long-QT in insulin-resistant aged rats by accelerating the ventricular AP repolarization through reversing the depressed IKs via affecting the ß3 -ARs signaling pathway and particularly affecting activated PKG.


Assuntos
Resistência à Insulina , Síndrome do QT Longo , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Potenciais de Ação , Animais , Insulina/metabolismo , Insulina/farmacologia , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Síndrome do QT Longo/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Ratos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA