Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Diabetologia ; 60(6): 1076-1083, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28299379

RESUMO

AIMS/HYPOTHESIS: Liver glycogen plays a key role in regulating food intake and blood glucose. Mice that accumulate large amounts of this polysaccharide in the liver are protected from high-fat diet (HFD)-induced obesity by reduced food intake. Furthermore, these animals show reversal of the glucose intolerance and hyperinsulinaemia caused by the HFD. The aim of this study was to examine the involvement of the hepatic branch of the vagus nerve in regulating food intake and glucose homeostasis in this model. METHODS: We performed hepatic branch vagotomy (HBV) or a sham operation on mice overexpressing protein targeting to glycogen (Ptg OE). Starting 1 week after surgery, mice were fed an HFD for 10 weeks. RESULTS: HBV did not alter liver glycogen or ATP levels, thereby indicating that this procedure does not interfere with hepatic energy balance. However, HBV reversed the effect of glycogen accumulation on food intake. In wild-type mice, HBV led to a significant reduction in body weight without a change in food intake. Consistent with their body weight reduction, these animals had decreased fat deposition, adipocyte size, and insulin and leptin levels, together with increased energy expenditure. Ptg OE mice showed an increase in energy expenditure and glucose oxidation, and these differences were abolished by HBV. Moreover, Ptg OE mice showed an improvement in HFD-induced glucose intolerance, which was suppressed by HBV. CONCLUSIONS/INTERPRETATION: Our results demonstrate that the regulation of food intake and glucose homeostasis by liver glycogen is dependent on the hepatic branch of the vagus nerve.


Assuntos
Glicemia/fisiologia , Ingestão de Alimentos/fisiologia , Glicogênio Hepático/metabolismo , Nervo Vago/metabolismo , Nervo Vago/fisiologia , Animais , Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Homeostase , Fígado/metabolismo , Camundongos , Obesidade/etiologia , Obesidade/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Reação em Cadeia da Polimerase
2.
Adv Pharm Bull ; 7(4): 507-513, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29399541

RESUMO

The hepatic vagus branches innervate the liver and serve an important role in liver-brain connection. It appears that brain modulates inflammatory responses by activation of vagal efferent fibers. This activation and subsequent acetylcholine releases from vagus nerve terminals leads to inhibition of inflammatory cytokines through α7 nicotinic acetylcholine receptors (α7nAChRs) which located on the surface of different cell types such as liver Kupffer cells. This protective role of vagus-α7nAChR axis in liver diseases has been shown in several experimental studies. On the other hand, accumulated evidence clearly demonstrate that, autonomic dysfunction which is reduced functioning of both vagal and sympathetic nervous system, occurs during chronic liver disease and is well-known complication of patients suffering from cirrhosis. This review describes the impact and significance of cholinergic anti-inflammatory pathway in the liver and discusses about its disease-related dysfunction on the progression of cirrhosis. Considering the fact that sepsis is major cause of death in cirrhotic patients, convergence of these findings, may lead to designing novel therapeutic strategies in the field of chronic liver diseases management involving selective drug targeting and electrical nerve stimulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA