Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Diabetes Metab Syndr Obes ; 17: 3295-3303, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39252872

RESUMO

Objective: Tsukushi is a newly identified hepatokine. Recent studies have shown that it relates to diabetes, lipid metabolism and fibrosis, but there is currently no investigation about whether Tsukushi is associated with diabetic kidney disease. Therefore, this study aimed to investigate the relationship between Tsukushi and diabetic kidney disease by characterizing Tsukushi levels in healthy subjects and type 2 diabetes with urinary albumin-creatinine ratio. Methods: Serum Tsukushi level was quantified by enzyme-linked immunosorbent assay in 167 normoalbuminuria, 80 microalbuminuria, and 31 macroalbuminuria patients with type 2 diabetes as compared with 53 healthy subjects. The correlation analysis was used to investigate the relationship between urinary albumin-creatinine ratio or Tsukushi level and other metabolic parameters. Multiple linear regression and logistic regression analysis were used to analyze the independent factors for urinary albumin-creatinine ratio and estimated glomerular filtration rate. Results: The Tsukushi level in the macroalbuminuria group was significantly higher than that in the normoalbuminuria or the microalbuminuria group. Multiple linear regression showed that the significantly independent factors for UACR included high Tsukushi quartile, systolic blood pressure, creatinine, homeostasis model assessment of insulin resistance, low 2-h post-oral glucose tolerance test c-peptide and female. Logistic regression demonstrated that the odds ratio of Tsukushi for glomerular filtration rate ≤90(mL/min/1.73m2) was 1.636 (95% CI 1.091-2.452, P=0.017). Conclusion: The circulating Tsukushi increased in type 2 diabetes patients with albuminuria and was associated with urinary albumin-creatinine ratio, implying that Tsukushi may be involved in the pathogenesis of diabetic kidney disease, which deserves future studies.

2.
Mol Cell Endocrinol ; 594: 112350, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39233040

RESUMO

Beyond their link to metabolic issues like type 2 diabetes, factors like lifestyle, environment, and excess weight may also influence fertility. Fibroblast growth factor 21 (FGF21), a liver-derived hormone linked to energy balance, has recently emerged as a potential player in female mammalian reproduction. In male, only two studies have described potential effects of FGF21 on fertility. A recent study has described a negative correlation observed in obese patients presenting a low testosterone level associated with elevated FGF21 plasma levels. To investigate the role of FGF21 in steroidogenesis, we have studied the involvement of FGF21 in lipid and steroid activity by Leydig cells. Leydig cell model expressed all FGF21 receptors and ß-Klotho cofactor as determined by RT-qPCR and by western-blot. Cultured mLTC-1 Leydig cell line exposed to increasing FGF21 concentration induced phosphorylation (Ser 473) of Akt and modified the CREB factor activity, suggesting the functionality of the FGF21 pathway. FGF21 consequences on mLTC-1 Leydig cells are inhibition of the lipid synthesis, leading to a reduction in the content of lipid droplets. The drop in lipid synthesis is associated with a reduction in the amount of lipids (mainly PUFA, cholesterol esterified, and triglycerides) as measured by lipidomic approach. The main consequence is to reduce the quantity of cholesterol, the steroid precursor, in mLTC-1 Leydig cells and is associated with a low production in testosterone. The decrease in androgens was also associated with a reduction in the steroid enzyme genes expression, which are under the control of CREB activity, and present a lower activity due to low cAMP intracellular levels. In vivo, steroid production was lowering after FGF21 administration in adult male mice associated to a decrease in progressive motility and velocity of sperm. In addition, these experimental data are reinforced by a data mining analysis focused on "gonad" terms in 1,319,905 article references showing the link already described between FGF21 with the fatty acids pathways, cholesterol storage, and steroid production. In conclusion, we demonstrated that Leydig cells in the testes present a functional FGF21 pathway, which regulates lipid metabolism and steroid function. In mLTC-1 Leydig cells, FGF21 reduced cholesterol, PUFA content, and testosterone production. Finally, this work highlighted that the hepatokine FGF21 could have a negative impact on androgen synthesis and testicular activity.

3.
J Am Heart Assoc ; 13(17): e035139, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39189483

RESUMO

BACKGROUND: Exercise intolerance in heart failure arises from multifactorial pathophysiological mechanisms. Hepatokines, liver-synthesized molecules, regulate systemic metabolisms in peripheral tissues. We previously identified the hepatokine fetuin-A as being linked to liver hypoperfusion in heart failure. Here, we investigated the role of fetuin-A in connecting cardiac-hepatic-peripheral interaction. METHODS AND RESULTS: We conducted a prospective study involving 202 consecutive hospitalized patients (mean age, 56.8 years; 76.2% men) with heart failure who underwent cardiopulmonary exercise testing. We measured the serum concentration of fetuin-A by ELISA. Correlation analysis revealed a negative association between fetuin-A levels and the ratio of minimum minute ventilation to carbon dioxide production, its slope, and a tendency toward a positive correlation with peak oxygen uptake. Patients with impaired exercise tolerance exhibited lower fetuin-A levels. During a median follow-up of 1045 days, 18.3% experienced cardiac events, including 4 cardiac deaths and 33 cases of worsening heart failure. Classification and regression tree analysis identified a high-risk subgroup with lower fetuin-A (<24.3 mg/L) and impaired exercise tolerance (peak oxygen uptake<14.2 mL/kg per min). Kaplan-Meier analysis revealed that this subgroup had the highest risk of cardiac events. In a multivariable Cox proportional hazard model, the combination of lower fetuin-A and exercise intolerance was independently associated with increased risks of cardiac events. CONCLUSIONS: Reduced circulating fetuin-A levels were associated with exercise intolerance in heart failure patients. Fetuin-A could emerge as a target implicated in exercise capacity connecting cardiac-hepatic-peripheral interaction and as a valuable biomarker for predicting prognosis when combined with peak oxygen uptake.


Assuntos
Biomarcadores , Tolerância ao Exercício , Insuficiência Cardíaca , alfa-2-Glicoproteína-HS , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , alfa-2-Glicoproteína-HS/metabolismo , Biomarcadores/sangue , Ensaio de Imunoadsorção Enzimática , Teste de Esforço , Tolerância ao Exercício/fisiologia , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/diagnóstico , Fígado/metabolismo , Consumo de Oxigênio , Prognóstico , Estudos Prospectivos , Medição de Risco/métodos , Fatores de Risco
4.
Mol Cell Endocrinol ; 592: 112326, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38972346

RESUMO

Activin E activates brown and beige adipocytes and has been controversially implicated as a factor that induces obesity and fatty liver. Here, we sought to address this controversial issue by producing recombinant human activin E to evaluate its effects on HB2 brown adipocytes in vitro. Activin E increased uncoupling protein 1 (Ucp1) and fibroblast growth factor 21 (Fgf21) mRNA expression in the adipocytes. This upregulation was suppressed by SB431542, an inhibitor of activin receptor-like kinase (Alk) TGF-ß type I receptors. SB431542 also inhibited the activin E-induced phosphorylation of Smad2/3. A promoter assay using a CAGA-Luc reporter and Alk expression vectors revealed that activin E activated the TGF-ß/activin pathway via Alk7. The upregulation of Ucp1 and Fgf21 mRNA might be mediated through Alk7 and Smad2/3 phosphorylation. Activin E is a potential stimulator of energy expenditure by activating brown adipocytes and highlights its potential as a therapeutic target for treating obesity.


Assuntos
Receptores de Ativinas Tipo I , Ativinas , Adipócitos Marrons , Dioxóis , Fatores de Crescimento de Fibroblastos , Proteína Desacopladora 1 , Regulação para Cima , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Adipócitos Marrons/metabolismo , Adipócitos Marrons/efeitos dos fármacos , Humanos , Regulação para Cima/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Receptores de Ativinas Tipo I/metabolismo , Receptores de Ativinas Tipo I/genética , Ativinas/metabolismo , Fosforilação/efeitos dos fármacos , Dioxóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Linhagem Celular , Proteína Smad2/metabolismo , Proteína Smad2/genética , Proteína Smad3/metabolismo , Proteína Smad3/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Benzamidas
5.
Artigo em Inglês | MEDLINE | ID: mdl-38894596

RESUMO

AIM: We aimed to assess the role of FGF21 in metabolic dysfunction-associated steatotic liver disease (MASLD) at a multi-scale level. METHODS: We used human MASLD pathology samples for FGF21 gene expression analyses (qPCR and RNAseq), serum to measure circulating FGF21 levels and DNA for genotyping the FGF21 rs838133 variant in both estimation and validation cohorts. A hepatocyte-derived cell line was exposed to free fatty acids at different timepoints. Finally, C57BL/6J mice were fed a high-fat and choline-deficient diet (CDA-HFD) for 16 weeks to assess hepatic FGF21 protein expression and FGF21 levels by ELISA. RESULTS: A significant upregulation in FGF21 mRNA expression was observed in the liver analysed by both qPCR (fold change 5.32 ± 5.25 vs. 0.59 ± 0.66; p = 0.017) and RNA-Seq (3.5 fold; FDR: 0.006; p < 0.0001) in MASLD patients vs. controls. Circulating levels of FGF21 were increased in patients with steatohepatitis vs. bland steatosis (386.6 ± 328.9 vs. 297.9 ± 231.5 pg/mL; p = 0.009). Besides, sex, age, A-allele from FGF21, GG genotype from PNPLA3, ALT, type 2 diabetes mellitus and BMI were independently associated with MASH and significant fibrosis in both estimation and validation cohorts. In vitro exposure of Huh7.5 cells to high concentrations of free fatty acids (FFAs) resulted in overexpression of FGF21 (p < 0.001). Finally, Circulating FGF21 levels and hepatic FGF21 expression were found to be significantly increased (p < 0.001) in animals under CDA-HFD. CONCLUSIONS: Hepatic and circulating FGF21 expression was increased in MASH patients, in Huh7.5 cells under FFAs and in CDA-HFD animals. The A-allele from the rs838133 variant was also associated with an increased risk of steatohepatitis and significant and advanced fibrosis in MASLD patients.

6.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167055, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38325589

RESUMO

Klotho, an anti-aging protein, has gained attention for its protective effects against various diseases, including metabolic disorders, through recombinant Klotho administration. However, the potential of Klotho as a target for gene therapy requires further exploration, as it remains relatively understudied in the context of metabolic disorders. In this study, we demonstrate that AAV-full length(FL)-Klotho administration induces weight loss in mice and provides protection against high-fat diet (HFD)-induced obesity and hepatic steatosis, concurrently reducing the weights of white adipose tissue and liver. AAV-FL-Klotho administration also enhanced thermogenic gene expression in brown adipose tissue (BAT) and improved the morphology of interscapular BAT. The weight loss effect of AAV-FL-Klotho was found to be, at least in part, mediated by UCP1-dependent thermogenesis in brown adipocytes, potentially influenced by hepatokines secreted from AAV-FL-Klotho-transduced hepatocytes. These findings suggest that AAV-FL-Klotho is an attractive candidate for gene therapy to combat obesity. Nevertheless, unbiased experiments have also revealed disturbances in lipid metabolism due to AAV-FL-Klotho, as evidenced by the emergence of lipomas and increased expression of hepatic lipogenic proteins.


Assuntos
Metabolismo dos Lipídeos , Doenças Metabólicas , Animais , Camundongos , Metabolismo Energético , Obesidade/metabolismo , Redução de Peso
7.
J Trace Elem Med Biol ; 81: 127340, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984217

RESUMO

BACKGROUND: C57BL/6 mice generally show hyperglycaemia and insulin resistance when fed a high-fat diet (HFD) compared to those of BALB/c mice. However, whether these strains also show different expression profiles of selenoprotein P, a diabetes-related hepatokine, after HFD feeding is unclear. We investigated the effects of HFD on body weight, glucose metabolism, and plasma selenoprotein P levels in C57BL/6 and BALB/c mice. METHODS: Male C57BL/6 and BALB/c mice aged seven weeks were divided into normal diet (ND) and HFD groups. Fasting body weights and blood sugar levels were measured weekly. Blood specimens were collected after 16 h of fasting (in weeks 7, 9, and 11) and after 24 h of subsequent refeeding (in weeks 9 and 11) to analyse plasma selenoprotein P and insulin levels. RESULTS: The mean body weight of the HFD group was consistently higher than that of the ND group for both strains. However, a significant elevation in fasting plasma glucose levels from the early stage was observed only in the HFD group of C57BL/6 mice. In BALB/c mice, a difference in fasting glucose levels between the HFD and ND groups was observed after nine weeks. After seven, nine, and eleven weeks, the fasting plasma insulin levels were higher in the HFD group than in the ND group for both strains. During this period, plasma selenoprotein P levels in the HFD group were significantly higher than those in the ND group of C57BL/6 mice. However, BALB/c mice did not show a significant difference in plasma levels of selenoprotein P between the ND and HFD groups. After refeeding, the plasma insulin and selenoprotein P levels increased compared to those observed during fasting in the ND group for both strains. Elevation of insulin levels, but not of selenoprotein P levels, after refeeding was noticed in the HFD group for both strains. Plasma selenoprotein P level after refeeding was significantly lower than that during fasting in the HFD group of C57BL/6 mice. CONCLUSION: Unlike C57BL/6 mice, BALB/c mice did not show elevated fasting plasma selenoprotein P levels despite HFD feeding. Additionally, the pattern of selenoprotein P levels in the plasma after refeeding differed between C57BL/6 and BALB/c mice. These differences in selenoprotein P expression among strains may be related to different susceptibilities of individuals to diabetes.


Assuntos
Diabetes Mellitus , Insulinas , Animais , Masculino , Camundongos , Glicemia/metabolismo , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Selenoproteína P
8.
Front Immunol ; 14: 1314123, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38155961

RESUMO

The liver is a multifunctional organ that plays crucial roles in numerous physiological processes, such as production of bile and proteins for blood plasma, regulation of blood levels of amino acids, processing of hemoglobin, clearance of metabolic waste, maintenance of glucose, etc. Therefore, the liver is essential for the homeostasis of organisms. With the development of research on the liver, there is growing concern about its effect on immune cells of innate and adaptive immunity. For example, the liver regulates the proliferation, differentiation, and effector functions of immune cells through various secreted proteins (also known as "hepatokines"). As a result, the liver is identified as an important regulator of the immune system. Furthermore, many diseases resulting from immune disorders are thought to be related to the dysfunction of the liver, including systemic lupus erythematosus, multiple sclerosis, and heart failure. Thus, the liver plays a role in remote immune regulation and is intricately linked with systemic immunity. This review provides a comprehensive overview of the liver remote regulation of the body's innate and adaptive immunity regarding to main areas: immune-related molecules secreted by the liver and the liver-resident cells. Additionally, we assessed the influence of the liver on various facets of systemic immune-related diseases, offering insights into the clinical application of target therapies for liver immune regulation, as well as future developmental trends.


Assuntos
Lúpus Eritematoso Sistêmico , Esclerose Múltipla , Humanos , Imunidade Inata , Fígado , Imunidade Adaptativa , Lúpus Eritematoso Sistêmico/terapia
9.
Surg Today ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957316

RESUMO

PURPOSE: To clarify the relationships between the changes in hepatokines and weight loss, and between these changes and the metabolic effects, and the roles played by these changes, after laparoscopic sleeve gastrectomy (LSG). METHODS: We recruited 25 Japanese patients with severe obesity, who underwent LSG. We measured two hepatokines: selenoprotein P (SeP) and leukocyte cell-derived chemotaxin 2 (LECT2), at the baseline, and then 6 months and 1 year after LSG. Finally, we compared the changes in the hepatokines with the parameters of type 2 diabetes (T2D) and non-alcoholic steatohepatitis (NASH). RESULTS: Changes in LECT2 were correlated with the percentage of total weight loss (ρ = - 0.499, P = 0.024) and the decrease in total fat area (ρ = 0.559, P = 0.003). The changes in SeP were correlated with those in hemoglobin A1c (ρ = 0.526, P = 0.043) and the insulinogenic index (ρ = 0.638, P = 0.010) in T2D patients. In patients with NASH, the LECT2 levels were correlated with liver steatosis (ρ = 0.601). CONCLUSIONS: SeP levels decrease in association with HbA1c reduction, whereas LECT2 levels are associated with reductions in fat mass and NASH scores after LSG. Hepatokines may be involved in the pathology of obesity and its complications.

10.
Environ Sci Technol ; 57(40): 14892-14903, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37759171

RESUMO

Prenatal exposure to perfluorooctanesulfonate (PFOS) increases fetus' metabolic risk; however, the investigation of the underlying mechanism is limited. In this study, pregnant mice in the gestational days (GD, 4.5-17.5) were exposed to PFOS (0.3 and 3 µg/g of body weight). At GD 17.5, PFOS perturbed maternal lipid metabolism and upregulated metabolism-regulating hepatokines (Angptl4, Angptl8, and Selenop). Mass-spectrometry imaging and whole-genome bisulfite sequencing revealed, respectively, selective PFOS localization and deregulation of gene methylation in fetal livers, involved in inflammation, glucose, and fatty acid metabolism. PCR and Western blot analysis of lipid-laden fetal livers showed activation of AMPK signaling, accompanied by significant increases in the expression of glucose transporters (Glut2/4), hexose-phosphate sensors (Retsat and ChREBP), and the key glycolytic enzyme, pyruvate kinase (Pk) for glucose catabolism. Additionally, PFOS modulated the expression levels of PPARα and PPARγ downstream target genes, which simultaneously stimulated fatty acid oxidation (Cyp4a14, Acot, and Acox) and lipogenesis (Srebp1c, Acaca, and Fasn). Using human normal hepatocyte (MIHA) cells, the underlying mechanism of PFOS-elicited nuclear translocation of ChREBP, associated with a fatty acid synthesizing pathway, was revealed. Our finding implies that in utero PFOS exposure altered the epigenetic landscape associated with dysregulation of fetal liver metabolism, predisposing postnatal susceptibility to metabolic challenges.

11.
J Clin Transl Hepatol ; 11(5): 1246-1255, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37577236

RESUMO

Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality worldwide. Recently, accumulating evidence has revealed hepatic mediators, termed as liver-derived secretory factors (LDSFs), play an important role in regulating CVDs such as atherosclerosis, coronary artery disease, thrombosis, myocardial infarction, heart failure, metabolic cardiomyopathy, arterial hypertension, and pulmonary hypertension. LDSFs presented here consisted of microbial metabolite, extracellular vesicles, proteins, and microRNA, they are primarily or exclusively synthesized and released by the liver, and have been shown to exert pleiotropic actions on cardiovascular system. LDSFs mainly target vascular endothelial cell, vascular smooth muscle cells, cardiomyocytes, fibroblasts, macrophages and platelets, and further modulate endothelial nitric oxide synthase/nitric oxide, endothelial function, energy metabolism, inflammation, oxidative stress, and dystrophic calcification. Although some LDSFs are known to be detrimental/beneficial, controversial findings were also reported for many. Therefore, more studies are required to further explore the causal relationships between LDSFs and CVDs and uncover the exact mechanisms, which is expected to extend our understanding of the crosstalk between the liver and cardiovascular system and identify potential therapeutic targets. Furthermore, in the case of patients with liver disease, awareness should be given to the implications of these abnormalities in the cardiovascular system. These studies also underline the importance of early recognition and intervention of liver abnormalities in the practice of cardiovascular care, and a multidisciplinary approach combining hepatologists and cardiologists would be more preferable for such patients.

12.
Liver Int ; 43(12): 2668-2679, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37534777

RESUMO

BACKGROUND AND AIMS: The presence of significant liver fibrosis associated with non-alcoholic steatohepatitis (NASH) is regarded as the major prognostic factor in non-alcoholic fatty liver disease (NAFLD). Identification of patients at risk for NASH with significant fibrosis is therefore important. Although the established fibrosis score FIB-4 is suitable to exclude advanced fibrosis, it does not allow the prediction of significant fibrosis in NAFLD patients. We therefore evaluated whether the hepatokine fibroblast growth factor 21 (FGF21), a regulator of glucose and lipid metabolism, might identify 'at-risk NASH' in NAFLD. METHODS: FGF21 levels were assessed by enzyme-linked immunosorbent assay in sera from an exploration (n = 137) and a validation (n = 88) cohort of biopsy-proven NAFLD patients with different disease activity and fibrosis stages. In addition, we evaluated whether the use of FGF21 could improve risk stratification in NAFLD patients with low (<1.3) or intermediate (1.3-2.67) FIB-4. RESULTS: FGF21 levels could significantly discriminate between NASH and non-alcoholic fatty liver (NAFL) patients, even in the absence of diabetes. Moreover, patients with NASH and fibrosis ≥F2 showed significantly higher FGF21 levels compared to NAFLD patients without significant fibrosis. Significantly elevated FGF21 levels could even be detected in NAFLD patients with NASH and significant fibrosis despite low or intermediate FIB-4. CONCLUSION: Serological FGF21 detection might allow the identification of NAFLD patients at risk and improves patient stratification in combination with FIB-4.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Cirrose Hepática/patologia , Fibrose , Medição de Risco , Fígado/patologia , Biópsia
13.
Genes Dis ; 10(3): 825-847, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37396511

RESUMO

Due to excess energy intake and a sedentary lifestyle, the prevalence of obesity is rising steadily and has emerged as a global public health problem. Adipose tissue undergoes structural remodeling and dysfunction in the obese state. Secreted proteins derived from the liver, also termed as hepatokines, exert multiple effects on adipose tissue remodeling and the development of obesity, and has drawn extensive attention for their therapeutic potential in the treatment of obesity and related diseases. Several novel hepatokines and their functions on systemic metabolism have been interrogated recently as well. The drug development programs targeting hepatokines also have shown inspiring benefits in obesity treatment. In this review, we outline how adipose tissue changes during obesity. Then, we summarize and critically analyze the novel findings on the effects of metabolic "beneficial" and metabolic "harmful" hepatokines to adipose tissue. We also discuss the in-depth molecular mechanism that hepatokines may mediate the liver-adipose tissue crosstalk, the novel technologies targeting hepatokines and their receptors in vivo to explore their functions, and the potential application of these interventions in clinical practice.

14.
BMC Nephrol ; 24(1): 172, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37312105

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a highly prevalent disease that has life-threatening consequences like micro and macrovascular complication. Diabetic nephropathy (DN) is one of the common consequences of T2DM which is related to secretory factors like hepatokines. Angiopoietin-Like Protein 3 (ANGPTL3) is a hepatokine that is perturbated in cardiometabolic diseases and experimental studies showed its effect on renal functions and lipid metabolism. For the first time, ANGPTL3 was measured in patients with T2DM and DN in the present study. METHODS: Serum levels of ANGPTL3, IL-6, and TNF-α were measured in 60 healthy control, 60 T2DM patients, and 61 DN patients. RESULTS: Serum levels of ANGPTL3 increased in T2DM (252.39 ± 66.01) and DN (284.59 ± 69.27) patients compared to controls (160.22 ± 48.96), and DN patients compared with T2DM patients. Urinary albumin excretion (UAE) was higher in the DN group compared to T2DM and control groups. Moreover, serum levels of IL-6 and TNF-α were elevated in both patient groups compared to controls. Moreover, ANGPTL3 represented a positive correlation with triglycerides, creatinine, and UAE in patients with both T2DM and DN groups and showed an inverse correlation with eGFR in patients with DN. Moreover, this hepatokine had a good potential to differentiate patients from controls, especially, DN patients. CONCLUSIONS: these findings provide invivo evidence for the relation of ANGPTL3 with renal dysfunction and hypertriglyceridemia in patients with DN which is in line with experimental findings and suggested a potential role for this hepatokine in DN pathogenesis.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Humanos , Proteína 3 Semelhante a Angiopoietina , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/etiologia , Interleucina-6 , Fator de Necrose Tumoral alfa , Albuminas , Triglicerídeos , Rim/fisiologia
15.
Mol Metab ; 74: 101760, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356805

RESUMO

OBJECTIVE: Medium chain fatty acids (MCFAs), which are fatty acids with chain lengths of 8-12 carbon atoms, have been shown to reduce food intake in rodents and humans, but the underlying mechanisms are unknown. Unlike most other fatty acids, MCFAs are absorbed from the intestine into the portal vein and enter first the liver. We thus hypothesized that MCFAs trigger the release of hepatic factors that reduce appetite. METHODS: The liver transcriptome in mice that were orally administered MCFAs as C8:0 triacylglycerol (TG) was analyzed. Circulating growth/differentiation factor 15 (GDF15), tissue Gdf15 mRNA and food intake were investigated after acute oral gavage of MCFAs as C8:0 or C10:0 TG in mice. Effects of acute and subchronic administration of MCFAs as C8:0 TG on food intake and body weight were determined in mice lacking either the receptor for GDF15, GDNF Family Receptor Alpha Like (GFRAL), or GDF15. RESULTS: Hepatic and small intestinal expression of Gdf15 and circulating GDF15 increased after ingestion of MCFAs, while intake of typical dietary long-chain fatty acids (LCFAs) had no effect. Plasma GDF15 levels also increased in the portal vein with MCFA intake, indicating that in addition to the liver, the small intestine contributes to the rise in circulating GDF15. Acute oral provision of MCFAs decreased food intake over 24 h compared with a LCFA-containing bolus, and this anorectic effect required the GDF15 receptor, GFRAL. Moreover, subchronic oral administration of MCFAs reduced body weight over 7 days, an effect that was blunted in mice lacking either GDF15 or GFRAL. CONCLUSIONS: We have identified ingestion of MCFAs as a novel nutritional approach that increases circulating GDF15 in mice and have revealed that the GDF15-GFRAL axis is required for the full anorectic effect of MCFAs.


Assuntos
Depressores do Apetite , Humanos , Camundongos , Animais , Depressores do Apetite/farmacologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Peso Corporal , Ácidos Graxos/metabolismo , Dieta Hiperlipídica , Triglicerídeos , Ingestão de Alimentos , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo
16.
Cell Metab ; 35(7): 1261-1279.e11, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37141889

RESUMO

There is a significant interest in identifying blood-borne factors that mediate tissue crosstalk and function as molecular effectors of physical activity. Although past studies have focused on an individual molecule or cell type, the organism-wide secretome response to physical activity has not been evaluated. Here, we use a cell-type-specific proteomic approach to generate a 21-cell-type, 10-tissue map of exercise training-regulated secretomes in mice. Our dataset identifies >200 exercise training-regulated cell-type-secreted protein pairs, the majority of which have not been previously reported. Pdgfra-cre-labeled secretomes were the most responsive to exercise training. Finally, we show anti-obesity, anti-diabetic, and exercise performance-enhancing activities for proteoforms of intracellular carboxylesterases whose secretion from the liver is induced by exercise training.


Assuntos
Diabetes Mellitus , Secretoma , Camundongos , Animais , Proteômica , Proteínas , Obesidade
17.
Front Endocrinol (Lausanne) ; 14: 1149233, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091847

RESUMO

Both the liver and bone are important secretory organs in the endocrine system. By secreting organ factors (hepatokines), the liver regulates the activity of other organs. Similarly, bone-derived factors, osteokines, are created during bone metabolism and act in an endocrine manner. Generally, the dysregulation of hepatokines is frequently accompanied by changes in bone mass, and osteokines can also disrupt liver metabolism. The crosstalk between the liver and bone, particularly the function and mechanism of hepatokines and osteokines, has increasingly gained notoriety as a topic of interest in recent years. Here, based on preclinical and clinical evidence, we summarize the potential roles of hepatokines and osteokines in liver-bone interaction, discuss the current shortcomings and contradictions, and make recommendations for future research.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Transdução de Sinais
18.
Metabolites ; 13(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36837889

RESUMO

Obesity is characterized by an excessive accumulation of fat leading to a plethora of medical complications, including coronary artery disease, hypertension, type 2 diabetes mellitus or impaired glucose tolerance and dyslipidemia. Formerly, several physiological roles of organokines, including adipokines, hepatokines, myokines and gut hormones have been described in obesity, especially in the regulation of glucose and lipid metabolism, insulin sensitivity, oxidative stress, and low-grade inflammation. The canonical effect of these biologically active peptides and proteins may serve as an intermediate regulatory level that connects the central nervous system and the endocrine, autocrine, and paracrine actions of organs responsible for metabolic and inflammatory processes. Better understanding of the function of this delicately tuned network may provide an explanation for the wide range of obesity phenotypes with remarkable inter-individual differences regarding comorbidities and therapeutic responses. The aim of this review is to demonstrate the role of organokines in the lipid and glucose metabolism focusing on the obese non-diabetic subgroup. We also discuss the latest findings about sarcopenic obesity, which has recently become one of the most relevant metabolic disturbances in the aging population.

19.
Endocrine ; 79(3): 469-476, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36592295

RESUMO

PURPOSE: Tsukushi (TSK), a novel hepatokine, has recently been pointed out to play an important role in energy homeostasis and glycolipid metabolism. However, there are no clinical studies on the association of TSK with metabolic syndrome (MetS), the typical constellation of metabolic disorders. This study was conducted to explore the relationship between TSK and MetS as well as each of its metabolic component clinically. METHODS: We analyzed in this cross-sectional study serum TSK levels by ELISA in 392 participants, including 90 non-MetS and 302 MetS, to compare TSK in two groups and in different numbers of metabolic components. The odds ratios (OR) of TSK quartile in MetS and each metabolic component were computed by multivariate logistic regression analysis. RESULTS: TSK was substantially higher in MetS than in non-MetS subjects (P < 0.001). TSK increased with the concomitant increase of the number of metabolic components (P for <0.001). Logistic regression analyses demonstrated that the OR of MetS was 2.74 for the highest versus the lowest quartile of TSK (P < 0.001) after adjusting for age, gender, smoking status, alcohol consumption and medication use. Additionally, TSK was associated with the OR of poor HDL-C and elevated fasting glucose (P < 0.05). CONCLUSION: Circulating TSK was higher in MetS patients and linked with MetS risk, suggesting that TSK may play a role in the genesis of MetS and be a potential therapeutic target for MetS. Future study should investigate the connection between TSK levels and MetS pathogenesis.


Assuntos
Síndrome Metabólica , Humanos , Síndrome Metabólica/complicações , Estudos Transversais , Glucose , Fumar , Fatores de Risco
20.
Ther Clin Risk Manag ; 19: 77-96, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36713291

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a highly prevalent disease without any approved treatment to-date despite intensive research efforts by researchers and pharmaceutical industry. Fibroblast growth factor (FGF)-21 has been gaining increasing attention as a possible contributing factor and thus therapeutic target for obesity-related metabolic disorders, including NAFLD, mainly due to its effects on lipid and carbohydrate metabolism. Most animal and human observational studies have shown higher FGF-21 concentrations in NAFLD than non-NAFLD, implying that FGF-21 may be increased to counteract hepatic steatosis and inflammation. However, although Mendelian Randomization studies have revealed that variations of FGF-21 levels within the physiological range may have effects in hyperlipidemia and possibly nonalcoholic steatohepatitis, they also indicate that FGF-21, in physiological concentrations, may fail to reverse NAFLD and may not be able to control obesity and other diseases, indicating a state of FGF-21 resistance or insensitivity that could not respond to administration of FGF-21 in supraphysiological concentrations. Interventional studies with FGF-21 analogs (eg, pegbelfermin, efruxifermin, BOS-580) in humans have provided some favorable results in Phase 1 and Phase 2 studies. However, the definite effect of FGF-21 on NAFLD may be clarified after the completion of the ongoing clinical trials with paired liver biopsies and histological endpoints. The aim of this review is to critically summarize experimental and clinical data of FGF-21 in NAFLD, in an attempt to highlight existing knowledge and areas of uncertainty, and subsequently, to focus on the potential therapeutic effects of FGF-21 and its analogs in NAFLD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA