Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 355
Filtrar
1.
Heliyon ; 10(14): e34404, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39149007

RESUMO

A catalyst from the pharmaceutical waste of calcium and magnesium tablets was synthesized for biodiesel production from waste Pistacia-Terebinthus (PT) oil with the aim of creating added value and presenting a new approach for the management of such wastes. For this purpose, magnesium and calcium tablet wastes with a mass ratio of 70:30 (wt%) were calcined. The catalyst was investigated by several methods, such as thermal gravimetric analysis, X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, Brunauer-Emmett-Teller analysis, X-ray photoelectron spectroscopy, and CHNS/O elemental analysis. The high specific surface area of the catalyst confirms that the utilized synthesis method resulted in the formation of a high number of active sites in its structure, which allows it to function as a suitable catalyst for this reaction. Furthermore, the impact of effective parameters on the treansestrification reaction was optimized and investigated by designing the experiments and applying the RSM method. The maximum mass yield of 96 % was obtained in optimal conditions (temperature of 70 °C, catalyst loading of 4.498 wt%, methanol:oil ratio of 1.968 (vol:vol), and reaction time of 120 min). The reusability of the catalyst was investigated in four successive cycles. The mass yield of the last test declined from 96 % to 71.4 %. Gas chromatography-mass spectrometry analysis of the produced biofuel revealed that it comprises 91.37 % methyl ester compounds (64.28 % 12-Octadecenoic Acid, Methyl Ester). To evaluate the external costs of biofuel (B100) and compare it with diesel, combustion simulation was done with Diesel-RK software, which showed that its external costs were 0.05388 (€/Lit fuel) less than those of diesel.

2.
Heliyon ; 10(13): e33563, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39040245

RESUMO

Malang quartzite contains a highly silica content. The silica changes the structural composition of Zeolite Y. Currently, a heterogeneous catalyst is developed to optimize transesterification of Off Grade CPO (Crude Palm Oil). The aims of this study are: (1) synthesize K2O/Zeolite Y using silica from Malang quartzite, (2) synthesize methyl esters from Off Grade CPO using K2O/Zeolite Y catalyst, and (3) to evaluate quartzite based-silica contribution in Zeolite Y for the reaction activity via GC-MS analysis. The experimental stages were: the oil preparation, esterification of the prepared oil, preparation of K2O/zeolite Y catalyst, and the transesterification. This study applied variations of [KOH] in Zeolite Y (10, 20, and 30 % w/w) and the concentration of the transesterification catalyst (2, 3, and 4 % w/w). The K2O/Zeolite Y catalyst was successfully synthesized by impregnation method. Methyl esters of Off Grade CPO resulted the highest yield of 95.05 % with 4 wt% of 30-K2O/Zeolite Y (30 % KOH impregnation). The synthesized methyl esters have a density of 0.877 g/mL, a viscosity of 4.6 cSt, a refractive index of 1.445 and an acid number of 0.384 mg/g according to the standard (SNI 7182:2015). The main components of the methyl ester based on GC-MS results were methyl octanoate, methyl decanoate, methyl dodecanoate, methyl 9-octadecanoate, methyl octadecanoate and methyl tetracosanoate. Using quartzite-based silica, a co-activity of the reaction has occurred.

3.
Carbohydr Polym ; 342: 122418, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39048205

RESUMO

The functionalization of materials via multicomponent reactions (MCRs) led to a recent surge in the interest of researchers, owing to the creation of exceptional properties in materials. Herein, a novel robust porous catalyst was prepared via the conjugation of MIL-88-NH2(Fe) and pectin (DAP/MIL-88-NH2(Fe)) through the post-modification Ugi four-component reaction (Ugi-4CR) for the first time. To achieve this aim, pectin was oxidized using sodium periodate as an oxidant agent to produce dialdehyde pectin (DAP). Next, the generated carbonyl functional groups participated in the Ugi-4CR of MIL-88-NH2(Fe), 4-methyl carboxylic acid, and cyclohexyl (c-hex) isocyanide to produce DAP/MIL-88-NH2(Fe) catalyst. The catalytic activity of the prepared bio-based catalyst was examined in producing cyclic carbonates through the chemical fixation of CO2 with epoxides in the presence of TBAB as a co-catalyst. Interestingly, catalytic experiments revealed that the prepared bio-based catalyst could be remarkably active regarding the CO2 fixation reaction and performed it in the shortest reaction time (1 h) via high CO2 adsorbent capacity. The outstanding benefits of the prepared bio-based catalyst include its non-hazardous nature, inexpensive, green and gentle reaction conditions, and ability to be reusable in several runs with slight loss of catalytic activity due to a more durable framework with high chemical and thermal stability.

4.
J Mol Model ; 30(8): 278, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39034330

RESUMO

CONTEXT: This study investigates the ethylene insertion reaction mechanism for polymerization catalysis, aiming to discern differences between Ni-α-imine ketone-type catalyst and their SiO2-supported counterpart. The reaction force analysis unveils a more intricate mechanism with SiO2 support, shedding light on unexplored factors and elucidating the observed lower catalytic activity. Furthermore, reactivity indexes suggest earlier ethylene activation in the supported catalyst, potentially enhancing overall selectivity. Finally, the reaction electronic flux analysis provides detailed insights into the electronic activity at each step of the reaction mechanism. In sum, this study offers a comprehensive understanding of the ethylene insertion reaction mechanism in both molecular and supported catalysts, underscoring the pivotal role of structural and electronic factors in catalytic processes. METHODS: Density functional theory (DFT) calculations were conducted using the ωB97XD functional and the 6-31 + G(d,p) basis sets with Gaussian16 software. Computational techniques utilized in this study encompassed the IRC method, reaction force analysis, and evaluation of electronic descriptors such as electronic chemical potential, molecular hardness, and electrophilicity reactivity indexes. Additionally, reaction electronic flux analysis was employed to investigate electronic activity along the reaction coordinate.

5.
Environ Sci Pollut Res Int ; 31(32): 45204-45216, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38958860

RESUMO

Ionic polymers functionalized with hydroxyl, carboxyl, and amino groups can enhance the catalytic activity of catalysts. However, the straightforward preparation of bifunctional ionic polymers containing abundant ionic active sites and hydrogen bond donors remains challenging. In this study, a series of porous ionic polymers (BZIs) containing different hydrogen bond donors (-NH2, -OH, -COOH) were prepared through a simple one-pot Friedel-Crafts alkylation using benzimidazole derivatives and benzyl bromide. The structures and properties of BZIs were characterized by various techniques such as Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, solid-state nuclear magnetic resonance, and scanning electron microscopy. Among the prepared catalysts (BZI-NH2, BZI-OH, and BZI-COOH), BZI-NH2 exhibited the highest catalytic activity and recyclability, achieving a yield of 97% in the CO2 cycloaddition. The synergistic effect of Br-, hydrogen bond donors (-NH-, -NH2), and N+ in BZI-NH2 was found to contribute to its superior catalytic performance. DFT calculations were employed to study the effect of hydrogen bonds, Br-, and N+ in BZI-NH2 and BZI-OH on the CO2 cycloaddition. Using BZI-NH2 as an example, a mechanism was proposed for the synergistic effect between amino groups and bromide ions in catalyzing the CO2 cycloaddition reaction.


Assuntos
Benzimidazóis , Dióxido de Carbono , Reação de Cicloadição , Benzimidazóis/química , Catálise , Dióxido de Carbono/química , Ligação de Hidrogênio , Polímeros/química
6.
ChemSusChem ; : e202401248, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984843

RESUMO

Despite possessing numerous catalytic advantages of MOFs, developing 2D frameworks having excellent chemical stability along with new catalytic properties, remains a grand challenge. Herein, by employing a mixed ligand synthetic approach, we have constructed a 2D Ni-MOF, IITKGP-52, which exhibits excellent framework robustness in open air, water, as well as over a wide range of pH solutions (2-12). Benefitting from its robustness and abundant Lewis acidic open metal sites, IITKGP-52 is explored in catalyzing the heterogeneous three-component condensation reaction for the tandem synthesis of bioactive 2-amino-3-cyano-4H-pyran derivatives with low catalytic loading, greater compatibility for a wide range of substrates, excellent recyclability and superior catalytic efficiency than the previously employed homo and heterogeneous systems. IITKGP-52 inaugurates the employment of MOF-based catalysts for one-pot synthesis of therapeutic and bioactive 2-amino-3-cyano-4H-pyran derivatives.

7.
Heliyon ; 10(11): e31798, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38841498

RESUMO

In light of environmental and economic concerns, the use of heterogeneous catalysts that can function under gentler reaction conditions has recently become popular. In this study by using the precipitation method, CdS/CeO2/Ag3PO4 ternary nanocomposites with varied molar proportions of CdS:CeO2/Ag3PO4 were produced. The catalysts' surface functional groups; morphology and crystal structures were examined using FTIR, SEM-EDX and XRD respectively. The catalytic efficiency of all synthesized nanomaterials was tested on a model Knoevenagel condensation reaction. For the best catalyst, selected from the screening, the optimization of reaction conditions such as the solvent, catalyst load, concentration of reagents such as malononitrile/acetic anhydride, and temperature. The ternary nanocomposite CdS/CeO2/Ag3PO4 (4:1) displayed higher catalytic activity (95.4 ± 3.2 %) than the rest of the nanomaterials prepared. Thus, the ternary nanocomposite CdS/CeO2/Ag3PO4 with 4:1 mol ratio with optimized reaction conditions was used to check the substrate scope of Knoevenagel condensation and acetylation reaction. The synthesized Knoevenagel condensation and acetylation reaction products were also characterized by proton and carbon NMR for their structure determination. The nanocomposite's reusability was carried out and only 7.5 ± 2 % decrement was witnessed after four runs and 23.3 % after the fifth run. and this indicates the potential application of the catalyst to organic reactions. Furthermore, we have proposed the possible catalytic mechanisms for both organic reactions.

8.
Sci Rep ; 14(1): 14386, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909146

RESUMO

Burning fossil fuels causes toxic gas emissions to increase, therefore, scientists are trying to find alternative green fuels. One of the important alternative fuels is biodiesel. However, using eco-friendly primary materials is a main factor. Sustainable catalysts should have high performance, good activity, easy separation from reaction cells, and regenerability. In this study, to solve the mentioned problem NaOH@Graphene oxide-Fe3O4 as a magnetic catalyst was used for the first time to generate biodiesel from waste cooking oil. The crystal structure, functional groups, surface area and morphology of catalyst were studied by XRD, FTIR, BET, and FESEM techniques. The response surface methodology based central composite design (RSM-CCD) was used for biodiesel production via ultrasonic technique. The maximum biodiesel yield was 95.88% in the following operation: 10.52:1 molar ratio of methanol to oil, a catalyst weight of 3.76 wt%, a voltage of 49.58 kHz, and a time of 33.29 min. The physiochemical characterization of biodiesel was based to ASTM standard. The magnetic catalyst was high standstill to free fatty acid due to the five cycle's regeneration. The kinetic study results possess good agreement with first-order kinetics as well as the activation energy and Arrhenius constant are 49.2 kJ/min and 16.47 * 1010 min-1, respectively.

9.
Molecules ; 29(12)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38930818

RESUMO

This study prepared sulfonated Camellia oleifera shell biochar using Camellia oleifera shell agricultural waste as a carbon source, and evaluated its performance as a catalyst for preparing biodiesel. The biochar obtained from carbonizing Camellia oleifera shells at 500 °C for 2 h serves as the carbon skeleton, and then the biochar is sulfonated with chlorosulfonic acid. The sulfonic acid groups are mainly grafted onto the surface of Camellia oleifera shell biochar through covalent bonding to obtain sulfonic acid type biochar catalysts. The catalysts were characterized by Scanning Electron Microscope (SEM), X-ray diffraction (XRD), Nitrogen adsorption-desorption Brunel-Emmett-Taylor Theory (BET), and Fourier-transform infrared spectroscopy (FT-IR). The acid density of the sulfonated Camellia oleifera fruit shell biochar catalyst is 2.86 mmol/g, and the specific surface area is 2.67 m2/g, indicating high catalytic activity. The optimal reaction conditions are 4 wt% catalyst with a 6:1 alcohol to oil ratio. After esterification at 70 °C for 2 h, the yield of biodiesel was 91.4%. Under the optimal reaction conditions, after four repeated uses of the catalyst, the yield of biodiesel still reached 90%. Therefore, sulfonated Camellia oleifera shell biochar is a low-cost, green, non-homogeneous catalyst with great potential for biodiesel production by esterification reaction in future development.


Assuntos
Biocombustíveis , Camellia , Carvão Vegetal , Camellia/química , Carvão Vegetal/química , Catálise , Ácidos Sulfônicos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Esterificação , Difração de Raios X
10.
ChemistryOpen ; : e202400110, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738745

RESUMO

Catalytic transformation of CO2 into value-added chemical products can provide an appropriate solution for the raising environmental issues. To date, various metal-organic frameworks (MOFs) with transition metal ions have been explored for CO2 capture and conversion, but alkaline earth metal-based MOFs are comparatively less studied. Metal ions like Sr(II) having relatively large radius give rise to a high coordination number resulting in higher stability of the MOFs. Moreover, the introduction of N-rich functional group in organic linker like -NH2, -CONH- and triazole into MOF backbone enhance their CO2 capture and conversion efficiency. Herein, the effect of amine group on the catalytic efficiency of MOFs for CO2 cycloaddition with epoxides under solvent free and ambient conditions are presented. The di-carboxylates, such as 5-aminoisophthalate (AmIP) and 5-bromoisophthalate (BrIP) were utilized to synthesize Sr(II) based MOFs. The Zn(II) MOF was synthesized using tetra-carboxylate containing amide spacer (OAT) and 4-amino-4H-1,2,4-triazole (AMT). All three MOFs exhibited porous networks with guest available volume ranging from 15 to 58 %. The catalytic efficiency of the MOFs towards carbon dioxide fixation reaction was explored. The catalytic performances revealed that the presence of amine group in the channels enhances the catalytic efficiency of the MOFs.

11.
Methods Protoc ; 7(2)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38668135

RESUMO

This research focuses on the development of a state observer for performing indirect measurements of the main variables involved in the soybean oil transesterification reaction with a guishe biochar-based heterogeneous catalyst; the studied reaction takes place in a batch reactor. The mathematical model required for the observer design includes the triglycerides' conversion rate, and the reaction temperature. Since these variables are represented by nonlinear differential equations, the model is linearized around an operation point; after that, the pole placement and linear quadratic regulator (LQR) methods are considered for calculating the observer gain vector L(x). Then, the estimation of the conversion rate and the reaction temperature provided by the observer are used to indirectly measure other variables such as esters, alcohol, and byproducts. The observer performance is evaluated with three error indexes considering initial condition variations up to 30%. With both methods, a fast convergence (less than 3 h in the worst case) of the observer is remarked.

12.
Molecules ; 29(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38675704

RESUMO

Although Hantzsch synthesis has been an established multicomponent reaction method for more than a decade, its derivative, whereby an aniline replaces ammonium acetate as the nitrogen source, has not been explored at great length. Recent studies have shown that the products of such a reaction, N-aryl-4-aryldihydropyridines (DHPs), have significant anticancer activity. In this study, we successfully managed to synthesize a wide range of DHPs (18 examples, 8 of which were novel) using a metal-free, mild, inexpensive, recoverable, and biopolymer-based heterogeneous catalyst, known as piperazine, which was supported in agar-agar gel. In addition, 8 further examples (3 novel) of such dihydropyridines were synthesized using isatin instead of aldehyde as a reactant, producing spiro-linked structures. Lastly, this catalyst managed to afford an unprecedented product that was derived using an innovative technique-a combination of multicomponent reactions. Essentially, the product of our previously reported aza-Friedel-Crafts multicomponent reaction could itself be used as a reactant instead of aniline in the synthesis of more complex dihydropyridines.

13.
Chemosphere ; 358: 142132, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670505

RESUMO

The escalation of industrial activities has escalated the production of pharmaceutical and dyeing effluents, raising significant environmental issues. In this investigation, a hybrid approach of Fenton-like reactions and adsorption was used for deep treatment of these effluents, focusing on effects of variables like hydrogen peroxide concentration, catalyst type, pH, reaction duration, temperature, and adsorbent quantity on treatment effectiveness, and the efficacy of acid-modified attapulgite (AMATP) and ferric iron (Fe(III))-loaded AMATP (Fe(III)-AMATP) was examined. Optimal operational conditions were determined, and the possibility of reusing the catalysts was explored. Employing Fe3O4 as a heterogeneous catalyst and AMATP for adsorption, CODCr was reduced by 78.38-79.14%, total nitrogen by 71.53-77.43%, and phosphorus by 97.74-98.10% in pharmaceutical effluents. Similarly, for dyeing effluents, Fe(III)-AMATP achieved 79.87-80.94% CODCr, 68.59-70.93% total nitrogen, and 79.31-83.33% phosphorus reduction. Regeneration experiments revealed that Fe3O4 maintained 59.48% efficiency over three cycles, and Fe(III)-AMATP maintained 62.47% efficiency over four cycles. This work offers an economical, hybrid approach for effective pharmaceutical and dyeing effluent treatment, with broad application potential.


Assuntos
Compostos Férricos , Peróxido de Hidrogênio , Resíduos Industriais , Compostos de Magnésio , Compostos de Silício , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Compostos Férricos/química , Adsorção , Compostos de Silício/química , Compostos de Magnésio/química , Peróxido de Hidrogênio/química , Catálise , Ferro/química , Fósforo/química , Nitrogênio/química , Corantes/química , Concentração de Íons de Hidrogênio , Purificação da Água/métodos
14.
Angew Chem Int Ed Engl ; 63(28): e202403093, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38679566

RESUMO

The synthesis of covalent organic frameworks (COFs) at bulk scale require robust, straightforward, and cost-effective techniques. However, the traditional solvothermal synthetic methods of COFs suffer low scalability as well as requirement of sensitive reaction environment and multiday reaction time (2-10 days) which greatly restricts their practical application. Here, we report microwave assisted rapid and optimized synthesis of a donor-acceptor (D-A) based highly crystalline COF, TzPm-COF in second (10 sec) to minute (10 min) time scale. With increasing the reaction time from seconds to minutes crystallinity, porosity and morphological changes are observed for TzPm-COF. Owing to visible range light absorption, suitable band alignment, and low exciton binding energy (Eb=64.6 meV), TzPm-COF can efficaciously produce superoxide radical anion (O2 .-) after activating molecular oxygen (O2) which eventually drives aerobic photooxidative amidation reaction with high recyclability. This photocatalytic approach works well with a variety of substituted aromatic aldehydes having electron-withdrawing or donating groups and cyclic, acyclic, primary or secondary amines with moderate to high yield. Furthermore, catalytic mechanism was established by monitoring the real-time reaction progress through in situ diffuse reflectance infrared Fourier transform spectroscopic (DRIFTS) study.

15.
Sci Rep ; 14(1): 8655, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622185

RESUMO

In this research, a new and eco-friendly heterogeneous catalyst (ND@Tannicacid-Cu) was synthesized based on nanodiamond and copper tannic acid via esterification process. The as-prepared catalyst was characterized by Fourier transforms infrared spectroscopy (FT-IR), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and X-ray diffraction (XRD) methods. The catalytic efficacy of the intended catalyst was examined by one-step three-component reaction of 1,4-benzodiazepine derivatives from a mixture of ortho-phenylenediamine, aromatic aldehydes, and dimedone under mild conditions. In all instances, corresponding 2,4-benzodiazepines derivatives were synthesized with high efficiency, short reaction time, straightforward work up procedure, no requirement for column-chromatography, and cost-effective catalyst. The heterogeneous catalyst was easily recycled using fillers, and it can be reused for eight cycles without significantly diminishing its performance.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38602509

RESUMO

Unique active sites make single-atom (SA) catalysts promising to overcome obstacles in homogeneous catalysis but challenging due to their fixed coordination environment. Click chemistry is restricted by the low activity of more available Cu(II) catalysts without reducing agents. Herein, we develop efficient, O-coordinated SA Cu(II) directly catalyzed click chemistry. As revealed by theoretical calculations of the superior coordination structure to promote the click reaction, an organic molecule-assisted strategy is applied to prepare the corresponding SA Cu catalysts with respective O and N coordination. Although they both belong to Cu(II) centers, the O-coordinated one exhibits a 5-fold higher activity than the other and even much better activity than traditional homogeneous and heterogeneous Cu(II) catalysts. Control experiments further proved that the O-coordinated SA Cu(II) catalyst tends to be reduced by alkyne into Cu acetylide rather than the N-coordinated catalyst and thus facilitates click chemistry.

17.
BMC Chem ; 18(1): 78, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643240

RESUMO

In this study, novel nanomagnetic catalysts, namely Fe2O3-MgO@choline formate (Ch. F.) and Fe2O3-MgO@choline cyanide (Ch. CN), were synthesized through immobilizing choline-based ion liquids to magnetic support via a simple and cost-effective methodology. FT-IR, TGA, FE-SEM, VSM, EDS, BET, and XRD techniques were employed to assess and characterize these organic-inorganic compounds. Following the successful preparation of nanoparticles, the catalysts were utilized in Knoevenagel and benzoin condensations. Fe2O3-MgO@Ch.F. exhibited exceptional activity in Knoevenagel condensation under solvent-free conditions at room temperature, achieving high yields (91-98%) in a short timeframe. Similarly, Fe2O3-MgO@Ch.CN demonstrated remarkable activity in benzoin condensation under environmentally friendly solvent conditions, yielding higher isolated yields (76-88%). Furthermore, these magnetically recyclable multifunctional catalysts displayed the ability to be reused up to five times without a significant loss in efficiency. Additionally, the heterogeneity of this nanocatalyst was investigated using the hot filtration technique. The findings indicated that the reaction primarily occurs via a heterogeneous pathway.

18.
Chimia (Aarau) ; 78(4): 226-230, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38676614

RESUMO

From energy-related transformations to organic syntheses, single-atom heterogeneous catalysts (SACs) are offering new prospects to tackle sustainability challenges. However, scarce design guidelines and poor mechanistic understanding due to a lack of discovery and operando characterization tools impede theirbroader development. This perspective offers a glimpse into how droplet-based microfluidic technologies mayhelp solve both of these issues, and provides technical considerations for platform design to systematically fabricate SACs and study them under operational conditions during liquid-phase organic syntheses.

19.
Nano Lett ; 24(17): 5197-5205, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634879

RESUMO

Highly active nonprecious-metal single-atom catalysts (SACs) toward catalytic transfer hydrogenation (CTH) of α,ß-unsaturated aldehydes are of great significance but still are deficient. Herein, we report that Zn-N-C SACs containing Zn-N3 moieties can catalyze the conversion of cinnamaldehyde to cinnamyl alcohol with a conversion of 95.5% and selectivity of 95.4% under a mild temperature and atmospheric pressure, which is the first case of Zn-species-based heterogeneous catalysts for the CTH reaction. Isotopic labeling, in situ FT-IR spectroscopy, and DFT calculations indicate that reactants, coabsorbed at the Zn sites, proceed CTH via a "Meerwein-Ponndorf-Verley" mechanism. DFT calculations also reveal that the high activity over Zn-N3 moieties stems from the suitable adsorption energy and favorable reaction energy of the rate-determining step at the Zn active sites. Our findings demonstrate that Zn-N-C SACs hold extraordinary activity toward CTH reactions and thus provide a promising approach to explore the advanced SACs for high-value-added chemicals.

20.
Chempluschem ; 89(6): e202300744, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38450881

RESUMO

Development of the efficient and practical method for the synthesis of deuterated compounds which occupies the broadest area among stable isotopes is one of the most essential issues toward the industrial advance and building a sustainable society. This review describes recent advances in deuteration reactions, where the continuous flow chemistry plays pivotal roles for the successful installation of deuterium atom into diverse organic frameworks, opening new fields of isotope-based synthetic chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA