RESUMO
In this paper, we describe a novel bacteriophagous biflagellate, Cafileria marina with two smooth flagellae, isolated from material collected from a rock surface in the Kvernesfjorden (Norway). This flagellate was characterized by scanning and transmission electron microscopy, fluorescence, and light microscopy. The sequence of the small subunit ribosomal RNA gene (18S) was used as a molecular marker for determining the phylogenetic position of this organism. Apart from the nuclear ribosomal gene, the whole mitochondrial genome was sequenced, assembled, and annotated. Morphological observations show that the newly described flagellate shares key ultrastructural characters with representatives of the family Bicosoecida (Heterokonta). Intriguingly, mitochondria of C. marina frequently associate with its nucleus through an electron-dense disc at the boundary of the two compartments. The function of this association remains unclear. Phylogenetic analyses corroborate the morphological data and place C. marina with other sequence data of representatives from the family Bicosoecida. We describe C. marina as a new species from a new genus in this family.
RESUMO
A marine, sand-dwelling, golden-brown alga is described from clonal cultures established from a high intertidal pool in southeastern Australia. This tiny, unicellular species, which we call the "golden paradox" (Chrysoparadoxa australica gen. et sp. nov.), is benthic, surrounded by a multilayered cell wall and attached to the substratum by a complex adhesive plug. Each vegetative cell gives rise to a single, naked zoospore with heterokont flagella that settles and may become briefly amoeboid prior to dividing. Daughter cells are initially amoeboid, then either permanently attach and return to the benthic stage or become motile again prior to final settlement. Two deeply lobed chloroplasts occupy opposite ends of the cell and are surrounded by only two membranes. The outer chloroplast membrane is continuous between the two chloroplasts via the outer membrane of the nuclear envelope. Only two membranes occupy the chloroplast-nucleus interface, the inner membrane of the nuclear envelope and the inner chloroplast membrane. A small pyrenoid is found in each chloroplast and closely abuts the nucleus or protrudes into it. It contains an unusual, membrane-bound inclusion that stains with SYBR green but is unlikely to be a nucleomorph. Phylogenies inferred from a 10-gene concatenated alignment show an early-branching position within the PX clade. The unusual morphological features and phylogenetic position indicate C. australica should be classified as a new class, Chrysoparadoxophyceae. Despite an atypical plastid, exploration of the C. australica transcriptome revealed typical heterokont protein targeting to the plastid.
Assuntos
Cloroplastos , Estramenópilas , Austrália , Filogenia , PlastídeosRESUMO
Nannochloropsis spp. are algae with high potential for biotechnological applications due to their capacity to accumulate lipids. However, little is known about their photosynthetic apparatus and acclimation/photoprotective strategies. In this work, we studied the mechanisms of non-photochemical quenching (NPQ), the fast response to high light stress, in Nannochloropsis gaditana by "locking" the cells in six different states during quenching activation and relaxation. Combining biochemical analysis with time-resolved fluorescence spectroscopy, we correlated each NPQ state with the presence of two well-known NPQ components: de-epoxidized xanthophylls and stress-related antenna proteins (LHCXs). We demonstrated that after exposure to strong light, the rapid quenching that takes place in the antennas of both photosystems was associated with the presence of LHCXs. At later stages, quenching occurs mainly in the antennas of PSII and correlates with the amount of de-epoxidised xanthophylls. We also observed changes in the distribution of excitation energy between photosystems, which suggests redistribution of excitation between photosystems as part of the photo-protective strategy. A multistep model for NPQ induction and relaxation in N. gaditana is discussed.
Assuntos
Estramenópilas/fisiologia , Proteínas de Algas/química , Proteínas de Algas/isolamento & purificação , Proteínas de Algas/fisiologia , Fluorescência , Luz , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/fisiologia , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Tolerância a Radiação/fisiologia , Espectrometria de Fluorescência , Estramenópilas/química , Estramenópilas/efeitos da radiação , Xantofilas/químicaRESUMO
Photosystem I (PSI) is a pigment protein complex catalyzing the light-driven electron transport from plastocyanin to ferredoxin in oxygenic photosynthetic organisms. Several PSI subunits are highly conserved in cyanobacteria, algae and plants, whereas others are distributed differentially in the various organisms. Here we characterized the structural and functional properties of PSI purified from the heterokont alga Nannochloropsis gaditana, showing that it is organized as a supercomplex including a core complex and an outer antenna, as in plants and other eukaryotic algae. Differently from all known organisms, the N. gaditana PSI supercomplex contains five peripheral antenna proteins, identified by proteome analysis as type-R light-harvesting complexes (LHCr4-8). Two antenna subunits are bound in a conserved position, as in PSI in plants, whereas three additional antennae are associated with the core on the other side. This peculiar antenna association correlates with the presence of PsaF/J and the absence of PsaH, G and K in the N. gaditana genome and proteome. Excitation energy transfer in the supercomplex is highly efficient, leading to a very high trapping efficiency as observed in all other PSI eukaryotes, showing that although the supramolecular organization of PSI changed during evolution, fundamental functional properties such as trapping efficiency were maintained.
Assuntos
Sequência Conservada , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/metabolismo , Subunidades Proteicas/metabolismo , Estramenópilas/metabolismo , Simbiose , Sequência de Aminoácidos , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/ultraestrutura , Modelos Biológicos , Complexo de Proteína do Fotossistema I/ultraestrutura , Pigmentos Biológicos/metabolismo , Subunidades Proteicas/química , Espectrometria de Fluorescência , Tilacoides/metabolismoRESUMO
We sequenced the complete plastid and mitochondrial genomes of the unicellular marine phytoplankton Triparma laevis, belonging to the order Parmales (Heterokonta). The cells of Parmales are surrounded by silicified cell walls, similar to Bacillariophyta (diatoms). T. laevis was recognized as a sister group of Bacillariophyta using a molecular phylogenetic analysis based on SSU rDNA and rbcL sequences. Bacillariophyta are the most successful group of phytoplankton in the modern ocean, but the origin and early evolution of them have not been clearly established. Detailed molecular analyses of T. laevis may increase our understanding of the evolutionary relationships among Parmales and Bacillariophyta. The gene contents of the plastid and mitochondrial genomes are similar between T. laevis and Bacillariophyta. The gene order of the plastid genome is also similar to Bacillariophyta, whereas the gene order of the mitochondrial genome is not conserved in Bacillariophyta, but the structure is more compact than Bacillariophyta. Phylogenetic analyses, using plastid-encoded concatenated amino acid datasets and mitochondria-encoded concatenated amino acid datasets suggest that T. laevis is a sister group of Bacillariophyta. These results suggest that the characteristics of the organellar genomes of T. laevis are similar and conserve ancestral characteristics more than Bacillariophyta.
Assuntos
Diatomáceas/classificação , Diatomáceas/genética , Genoma Mitocondrial , Plastídeos/genética , Análise de Sequência de DNA , Biologia Computacional/métodos , Evolução Molecular , Genômica , Anotação de Sequência Molecular , Fases de Leitura Aberta , FilogeniaRESUMO
The remarkable adaptability of diatoms living in a highly variable environment assures their prominence among marine primary producers. The present study integrates biochemical, biophysical and genomic data to bring new insights into the molecular mechanism of chromatic adaptation of pennate diatoms in model species Phaeodactylum tricornutum, a marine eukaryote alga possessing the capability to shift its absorption up to ~700 nm as a consequence of incident light enhanced in the red component. Presence of these low energy spectral forms of Chl a is manifested by room temperature fluorescence emission maximum at 710 nm (F710). Here we report a successful isolation of the supramolecular protein complex emitting F710 and identify a member of the Fucoxanthin Chlorophyll a/c binding Protein family, Lhcf15, as its key building block. This red-shifted antenna complex of P. tricornutum appears to be functionally connected to photosystem II. Phylogenetic analyses do not support relation of Lhcf15 of P. tricornutum to other known red-shifted antenna proteins thus indicating a case of convergent evolutionary adaptation towards survival in shaded environments.
Assuntos
Adaptação Fisiológica , Clorofila/metabolismo , Cor , Diatomáceas/fisiologia , Fluorescência , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Clorofila A , Luz , Filogenia , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização por ElectrosprayRESUMO
Nannochloropsis gaditana belongs to Eustigmatophyceae, a class of eukaryotic algae resulting from a secondary endosymbiotic event. Species of this class have been poorly characterized thus far but are now raising increasing interest in the scientific community because of their possible application in biofuel production. Nannochloropsis species have a peculiar photosynthetic apparatus characterized by the presence of only chlorophyll a, with violaxanthin and vaucheriaxanthin esters as the most abundant carotenoids. In this study, the photosynthetic apparatus of this species was analyzed by purifying the thylakoids and isolating the different pigment-binding complexes upon mild solubilization. The results from the biochemical and spectroscopic characterization showed that the photosystem II antenna is loosely bound to the reaction center, whereas the association is stronger in photosystem I, with the antenna-reaction center super-complexes surviving purification. Such a supramolecular organization was found to be conserved in photosystem I from several other photosynthetic eukaryotes, even though these taxa are evolutionarily distant. A hypothesis on the possible selective advantage of different associations of the antenna complexes of photosystems I and II is discussed.