Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(15): e202400428, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38291811

RESUMO

Tandem nitrate electroreduction reaction (NO3 -RR) is a promising method for green ammonia (NH3) synthesis. However, the mismatched kinetics processes between NO3 --to-NO2 - and NO2 --to-NH3 results in poor selectivity for NH3 and excess NO2 - evolution in electrolyte solution. Herein, a Ni2+ substitution strategy for developing oxide heterostructure in Co/Fe layered double oxides (LDOs) was designed and employed as tandem electrocataltysts for NO3 -RR. (Co0.83Ni0.16)2Fe exhibited a high NH3 yield rate of 50.4 mg ⋅ cm-2 ⋅ h-1 with a Faradaic efficiency of 97.8 % at -0.42 V vs. reversible hydrogen electrode (RHE) in a pulsed electrolysis test. By combining with in situ/operando characterization technologies and theoretical calculations, we observed the strong selectivity of NH3 evolution over (Co0.83Ni0.16)2Fe, with Ni playing a dual role in NO3 -RR by i) modifying the electronic behavior of Co, and ii) serving as complementary site for active hydrogen (*H) supply. Therefore, the adsorption capacity of *NO2 and its subsequent hydrogenation on the Co sites became more thermodynamically feasible. This study shows that Ni substitution promotes the kinetics of the NO3 -RR and provides insights into the design of tandem electrocatalysts for NH3 evolution.

2.
Angew Chem Int Ed Engl ; 62(47): e202311693, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37672488

RESUMO

High interconversion energy barriers, depressive reaction kinetics of sulfur species, and sluggish Li+ transport inhibit the wide development of high-energy-density lithium sulfur (Li-S) batteries. Herein, differing from random mixture of selected catalysts, the composite catalyst with outer delocalized isoelectronic heterostructure (DIHC) is proposed and optimized, enhancing the catalytic efficiency for decreasing related energy barriers. As a proof-of-content, the FeCoOx Sy composites with different degrees of sulfurization are fabricated by regulating atoms ratio between O and S. The relationship of catalytic efficiency and principal mechanism in DIHCs are deeply understood from electrochemical experiments to in situ/operando spectral spectroscopies i.e., Raman, XRD and UV/Vis. Consequently, the polysulfide conversion and Li2 S precipitation/dissolution experiments strongly demonstrate the volcano-like catalytic efficiency of various DIHCs. Furthermore, the FeCoOx Sy -decorated cell delivers the high performance (1413 mAh g-1 at 0.1 A g-1 ). Under the low electrolyte/sulfur ratio, the high loading cell stabilizes the areal capacity of 6.67 mAh cm-2 at 0.2 A g-1 . Impressively, even resting for about 17 days for possible polysulfide shuttling, the high-mass-loading FeCoOx Sy -decorated cell stabilizes the same capacity, showing the practical application of the DIHCs in improving catalytic efficiency and reaching high electrochemical performance.

3.
J Hazard Mater ; 460: 132413, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37666167

RESUMO

The increasing consumption of antibiotics and their subsequent release to wastewater or groundwater and ultimately to the water supply (or drinking water) has great concerns. This paper presents a visible light (VL) activated ferrate(VI) (FeVIO42-, Fe(VI)) system to degrade the selected antibiotic, trimethoprim (TMP), efficiently. An oxygen doped ZnIn2S4 nanosheet (O-ZIS) coupled with a black phosphorus (BP) heterostructure (O-ZIS/BP), is fabricated by a simple electrostatic self-assembly method. The O-ZIS/BP photocatalyst is comprehensively characterized by surface and analytical techniques, which show superior separation efficiency of the photoinduced charge carriers in the heterostructure. A VL-O-ZIS/BP-Fe(VI) system achieves more than 80% removal in 1.0 min and complete removal of TMP in 3.0 min. Comparatively, only ⁓7% and ⁓24% of TMP are degraded by O-ZIS/BP and Fe(VI) in 1.0 min, respectively. The degradation experiments using probe molecules of reactive species and electron paramagnetic resonance (EPR) measurements reveal involvement of superoxide (O2-•), hydroxyl radical (•OH), and iron(V)/iron (IV) (FeV/FeIV) species in the mechanism of TMP degradation. Oxidized products of TMP are identified and reaction pathways are given. Theoretical calculations predict the initial attack on the TMP molecule by the reactive species in the VL-O-ZIS/BP-Fe(VI) system. The activation of Fe(VI) by VL-heterostructure photocatalysts accelerates the degradation of antibiotics, demonstrating its potential for water depollution.

4.
J Colloid Interface Sci ; 646: 361-369, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37201464

RESUMO

Developing efficient and robust non-precious-metal-based hydrogen evolution reaction (HER) catalysts is highly desirable but remains quite challenging for alkaline freshwater/seawater electrolysis. In the present study, we report a theory-guided design and synthesis of a nickel foam (NF) supported N-doped carbon-coated (NC) nickel (Ni)/chromium nitride (CrN) nanosheets (NC@CrN/Ni) as a highly active and durable electrocatalyst. Our theoretical calculation firstly reveals that CrN/Ni heterostructure can greatly promote the H2O dissociation via hydrogen-bond induced effect, and the N site can be optimized by hetero coupling to achieve a facile hydrogen associative desorption, thereby significantly boosting alkaline HER. Guided by theoretical calculation, we prepared the nickel-based metal-organic framework as a precursor, and introduced the Cr by the subsequent hydrothermal treatment, finally obtained the target catalyst by ammonia pyrolysis. Such a simple process ensures the exposure of abundant accessible active sites. Consequently, the as-prepared NC@CrN/Ni catalyst exhibits outstanding performance in both alkaline freshwater and seawater, with the respective overpotential of only 24 and 28 mV at a current density of 10 mA cm-2, respectively. More impressively, the catalyst also possesses superior durability in the constant-current test of 50 h at the different current densities of 10, 100, and 1000 mA cm-2.

5.
Angew Chem Int Ed Engl ; 62(10): e202217275, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36629025

RESUMO

Alkaline fuel cells can permit the adoption of platinum group metal-free (PGM-free) catalysts and cheap bipolar plates, thus further lowering the cost. With the exploration of PGM-free hydrogen oxidation reaction (HOR) catalysts, nickel-based compounds have been considered as the most promising HOR catalysts in alkali. Here we report an interfacial engineering through the formation of nickel-vanadium oxide (Ni/V2 O3 ) heterostructures to activate Ni for efficient HOR catalysis in alkali. The strong electron transfer from Ni to V2 O3 could modulate the electronic structure of Ni sites. The optimal Ni/V2 O3 catalyst exhibits a high intrinsic activity of 0.038 mA cm-2 and outstanding stability. Experimental and theoretical studies reveal that Ni/V2 O3 interface as the active sites can enable to optimize the hydrogen and hydroxyl bindings, as well as protect metallic Ni from extensive oxidation, thus achieving the notable activity and durability.

6.
ACS Appl Mater Interfaces ; 13(8): 9865-9874, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33594893

RESUMO

Electrocatalytic water splitting is a promising technology for large-scale hydrogen production. However, it requires efficient catalysts to overcome the large overpotentials in the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, we report a novel heterostructure catalyst Co9S8/Cu2S on copper foam (Co9S8/Cu2S/CF) with multistep impregnation and electrodeposition. Due to the strong interfacial interaction, the interfacial electrons transfer from Co sites to S sites, which promote the adsorption of oxygen-containing intermediates, water molecules, as well as the dissociation of water molecules. Therefore, the heterostructure catalyst exhibits low overpotentials of 195 mV for OER and 165 mV for HER at 10 mA cm-2, respectively. Moreover, it only needs 1.6 V to realize water splitting at 10 mA cm-2 in a two-electrode cell. This work provides an efficient method to tailor the surface electronic structure through specific morphological design and construct a heterostructure interface to achieve alkaline water splitting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA