Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 527
Filtrar
1.
Food Chem ; 459: 140354, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39003863

RESUMO

A novel superparamagnetic photonic crystal DNA probe (Fe3O4@SiO2@amino@DNA SPC) was developed to enable rapid visual detection of Hg2+. This unique photonic crystal (PC) was synthesized by combining superparamagnetic nanospheres with DNA probes. The DNA probe, rich in thymine (T), detects mercury ions through base mismatch, resulting in the formation of T-Hg2+-T loop hairpin structures. With the binding of Hg2+ to the probe attached to superparamagnetic nanospheres, the PC structure assembled by these nanospheres, formed by the magnetic field, was changed. This change enhanced the reflection intensity; it could be quantified using a fiber optic spectrometer and was visible to the naked eye. The Fe3O4@SiO2@amino@DNA SPC, specific to Hg2+, exhibited a reflection peak at 679 nm, which intensified with increasing Hg2+ concentration. The reflection intensity increased by 132.58 a.u., and the PC color shifted from red to yellow as the Hg2+ concentration increased from 0.1 µg/L to 1 mg/L.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124696, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38950475

RESUMO

Metal-organic gels (MOGs) are a type of metal-organic colloid material with a large specific surface area, loose porous structure, and open metal active sites. In this work, FeNi-MOGs were synthesized by the simple one-step static method, using Fe(III) and Ni(II) as the central metal ions and terephthalic acid as the organic ligand. The prepared FeNi-MOGs could effectively catalyze the chemiluminescence of luminol without the involvement of H2O2, which exhibited good catalytic activity. Then, the multifunctional detected platform was constructed for the detection of GSH and Hg2+, based on the antioxidant capacity of GSH, and the strong affinity between mercury ion (Hg2+) and GSH which inactivated the antioxidant capacity of GSH. The experimental limits of detection (LOD) for GSH and Hg2+ were 76 nM and 210 nM, and the detection ranges were 2-100 µM and 8-4000 µM, respectively. The as-proposed sensor had good performance in both detection limit and detection range of GSH and Hg2+, which fully met the needs of daily life. Surprisingly, the sensor had low detection limits and an extremely wide detection range for Hg2+, spanning five orders of magnitude. Furthermore, the detection of mercury ions in actual lake water and GSH in human serum showed good results, with recovery rates ranging from 90.10 % to 105.37 %, which proved that the method was accurate and reliable. The as-proposed sensor had great potential as the platform for GSH and Hg2+ detection applications.

3.
Food Chem ; 458: 140275, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38964102

RESUMO

Enzyme-inhibited electrochemical sensor is a promising strategy for detecting organophosphorus pesticides (OPs). However, the poor stability of enzymes and the high oxidation potential of thiocholine signal probe limit their potential applications. To address this issue, an indirect strategy was proposed for highly sensitive and reliable detection of chlorpyrifos by integrating homogeneous reaction and heterogeneous catalysis. In the homogeneous reaction, Hg2+ with low oxidation potential was employed as signal probe for chlorpyrifos detection since its electroactivity can be inhibited by thiocholine, which was the hydrolysate of acetylthiocholine catalyzed by acetylcholinesterase. Additionally, Co,N-doped hollow porous carbon nanocage@carbon nanotubes (Co,N-HPNC@CNT) derived from ZIF-8@ZIF-67 was utilized as high-performance electrode material to amplify the stripping voltammetry signal of Hg2+. Thanks to their synergistic effect, the sensor exhibited outstanding sensing performance, excellent stability and good anti-interference ability. This strategy paves the way for the development of high-performance OP sensors and their application in food safety.

4.
J Fluoresc ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39009903

RESUMO

Oleic acid-capped CdSe/ZnS quantum dots (QDs) were used to investigate their photoluminescence (PL) response to Hg2+ ions as a function of the surface properties of QDs. Three distinctly-size CdSe/ZnS QDs were obtained by varying the molar ratio of shell precursors, which were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), Fourier-Transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), absorption spectroscopy, and time-resolved fluorescence spectroscopy. Results revealed the obtention of zinc blende nanocrystals with sizes ranging from 2.7 to 3.2 nm (± 0.5) and ZnS thickness between 0.3 and 1.0 monolayer (ML). The variation of the [S]/[Zn] molar ratio introduced chemical species that act as traps, affecting the PL properties differently. Depending on the thickness of the shell and chemical speciation on surface, Hg2+ ions could induce quenching or enhancement of PL. Detection of mercury ions was evaluated in terms of Stern-Volmer equation, where the limit of detection (LOD) for the PL quenching system was 11.2 nM, while for the PL enhancing systems were 8.98 nM and 10.7 nM. Results demonstrate the performance of oleic acid-capped CdSe/ZnS QDs to detect Hg2+ and their capacity to turn the PL on/off depending on surface properties.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124835, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39024787

RESUMO

The excited (S1) state charge distribution characteristics and fluorescence mechanism of fluorescence probes benzyl (6-cyano-2-naphthoyl)-L-valinate (NPI) and benzyl (6-amino-2-naphthoyl)-L-valinate (NPA) have been discussed using density functional theory (DFT) and time-dependent density functional theory (TD-DFT). Further analysis by constructing a torsional potential energy curve (PEC) shows that a well-defined minimum energy conformation is observed when the C-C single bond between the valine benzyl ester and naphthalene ring in NPI rotates. For NPA, the most stable conformation is the naphthalene ring conformation with dihedral angle N2C1C2C3 of -30.60°, whose total energy is 0.17 kcal/mol lower than that of the second most stable conformer. The frontier molecular orbitals (FMOs) demonstrate that NPI exhibits a low degree of charge coupling, and the oscillator intensity is close to zero, indicating that it is not conducive to luminescence. However, in the S1 state, the oscillator strength of NPA is 1.2044, which is a bright state, resulting in the strong emitting. Additionally, fluorescence imaging is favored as a visual observation technique, and Stokes shift is an important physical parameter to measure fluorescence. According to the idea that changing the number and position of functional groups can affect the photophysical properties of fluorescent dyes, o-NPDI, p-NPDI and m-NPDI dyes were newly designed and o-NPDA, p-NPDA, m-NPDA produced after recognition of Hg2+. The spectral performance results show that the newly designed fluorescent dye (p-NPDA) can not only emit in the near infrared region after recognizing Hg2+, but also has a large Stokes shift (236 nm). This indirectly reflects that para-substitution is more conducive to Stokes shift, and has become one of the strategies for fluorescent dye design.

6.
Int Microbiol ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028370

RESUMO

In this study, the mercury-tolerant strain LTC105 was isolated from a contaminated soil sample collected from a molybdenum-lead mine in Luanchuan County, Henan Province, China. The strain was shown to be highly resistant to mercury, with a minimum inhibitory concentration (MIC) of 32 mg·L-1. After a 24-h incubation in LB medium with 10 mg·L-1 Hg2+, the removal, adsorption, and volatilization rates of Hg2+ were 97.37%, 7.3%, and 90.07%, respectively, indicating that the strain had significant influence on mercury removal. Based on the results of Fourier infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), the investigation revealed that the primary function of LTC105 was to encourage the volatilization of mercury. The LTC105 strain also showed strong tolerance to heavy metals such as Mn2+, Zn2+, and Pb2+. According to the results of the soil incubation test, the total mercury removal rate of the LTC105 inoculation increased by 16.34% when the initial mercury concentration of the soil was 100 mg·L-1 and by 62.28% when the initial mercury concentration of the soil was 50 mg·kg-1. These findings indicate that LTC105 has certain bioremediation ability for Hg-contaminated soil and is a suitable candidate strain for microbial remediation of heavy metal-contaminated soil in mining areas.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124766, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38968902

RESUMO

In this work, we developed a fast and straightforward colorimetric and photoluminescent chemosensor probe (P1), featuring bis-thiophene-thiosemicarbazide moieties as its signaling and binding unit. This probe exhibited rapid sensitivity to Hg2+ and Cu2+ ions in a semi-aqueous medium, resulting in distinct colorimetric and photoluminescent changes. In the presence of Cu2+, P1 displayed an impressive 50-fold increase in photoluminescence (PL) at 450 nm (with excitation at 365 nm). The probe P1 formed a 1:1 complex with Hg2+ and Cu2+ ions, featuring association constant values of 4.04 × 104 M-1 and 1.25 × 103 M-1, respectively. P1 has demonstrated its efficacy in the analysis of real samples, yielding promising results. Additionally, the probe successfully visualized copper ions on a mouse fibroblast cell line (NIH3T3), highlighting its potential as an intracellular probe for copper ion detection.

8.
Anal Chim Acta ; 1316: 342800, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969435

RESUMO

Heavy metal pollution in the environment has become a significant global concern due to its detrimental effects on human health and the environment. In this study, we report an electrochemical aptasensor for the simultaneous detection of Hg2+ and Pb2+. Gold nanoflower/polyethyleneimine-reduced graphene oxide (AuNFs/PEI-rGO) was introduced on the surface of a gold electrode to improve sensing performance. The aptasensor is based on the formation of a T-Hg2+-T mismatch structure and specific cleavage of the Pb2+-dependent DNAzyme, resulting in a dual signal generated by the Exo III specific digestion of methylene blue (MB) labeled at the 3' end of probe DNA-1 and the reduction of the substrate ascorbic acid (AA) catalyzed by the signal label. The decrease of MB signal and the increase of AA oxidation peak was used to indicate the content of Hg2+ and Pb2+, respectively, with detection limits of 0.11 pM (Hg2+) and 0.093 pM (Pb2+). The aptasensor was also used for detecting Hg2+ and Pb2+ in water samples with good recoveries. Overall, this electrochemical aptasensor shows promising potential for sensitive and selective detection of heavy metals in environmental samples.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Exodesoxirribonucleases , Chumbo , Mercúrio , Estruturas Metalorgânicas , Poluentes Químicos da Água , Mercúrio/análise , Chumbo/análise , Chumbo/química , Estruturas Metalorgânicas/química , Aptâmeros de Nucleotídeos/química , Exodesoxirribonucleases/química , Exodesoxirribonucleases/metabolismo , Poluentes Químicos da Água/análise , Técnicas Biossensoriais/métodos , Grafite/química , Ouro/química , Limite de Detecção , Eletrodos , DNA Catalítico/química
9.
Sci Rep ; 14(1): 16376, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013906

RESUMO

One of the important problems in the environment is heavy metal pollution, and fluorescence is one of the best methods for their detection due to its sensitivity, selectivity, and relatively rapid and easy operation. In this study, 1,8-diaminonaphthalene functionalized super-stable mesoporous silica (DAN-LUS-1) was synthesized and used as a fluorescence probe to identify Hg2+ and Fe3+ in food samples. The TGA and FT-IR spectra illustrated that 1,8-diaminonaphthalene was grafted into LUS-1. XRD patterns verified that the LUS-1 and functionalized mesoporous silica have a hexagonal symmetrical array of nano-channels. SEM images showed that the rod-like morphology of LUS-1 was preserved in DAN-LUS-1. Also, surface area and pore diameter decreased from 824 m2 g⁻1 and 3.61 nm for the pure LUS-1 to 748 m2 g⁻1 and 3.43 nm for the DAN-LUS-1, as determined by N2 adsorption-desorption isotherms. This reduction demonstrated that 1,8-diaminonaphthalene immobilized into the pore of LUS-1. The DAN-LUS-1 fluorescence properties as a chemical sensor were studied with a 340/407 nm excitation/emission wavelength that was quenched by Hg2+ and Fe3+ ions. Hg2+ and Fe3+ were quantified using the fluorescence response in the working range 8.25-13.79 × 10-6 and 3.84-10.71 × 10-6 mol/L, with detection limits of 8.5 × 10-8 M and 1.3 × 10-7 M, respectively. Hg2+ and Fe3+ were measured in vetiver grass and spinach. Since the Fe3+ quenching can move in the opposite direction with sodium hexametaphosphate (SHMP) as a hiding compound for Fe3+, consequently, the circuit logic system was established with Fe3+, Hg2+, and SHMP as inputs and the fluorescent quench as the output.

10.
Talanta ; 277: 126379, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38852343

RESUMO

Mercury (Hg) is a notorious toxic heavy metal, causing neurotoxicity and liver damage, posing grave threats to human health and environmental safety. There is an urgent imperative for developing novel Hg2+ detection methods. In this work, we developed a CRISPR-based method for Hg2+ detection named CRISPR-Hg. A CRISPR/Cas12a system was employed and could be activated by the PCR product, generating fluorescence signals based on the trans-cleavage activity. CRISPR-Hg exhibited remarkable selectivity and specificity, achieving a detection limit of 10 pM and minimal interference with background signals. This approach has been successfully applied to detect Hg2+ in real samples, including water, soil, and mushroom. Ulteriorly, a portable device was devised to streamline the readout of fluorescence signals by a smartphone within 30 min. We offer an affordable, highly selective and visually interpretable method for Hg2+ detection, with the potential for broad application in Hg2+ monitoring for food safety and public health.


Assuntos
Sistemas CRISPR-Cas , Mercúrio , Reação em Cadeia da Polimerase , Mercúrio/análise , Sistemas CRISPR-Cas/genética , Reação em Cadeia da Polimerase/métodos , Limite de Detecção , Técnicas Biossensoriais/métodos
11.
J Hazard Mater ; 475: 134914, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885588

RESUMO

Due to the highly toxic nature of mercury ions to living organisms, accurately detecting Hg2+ in water samples and biological systems is of great significance. In this study, we designed and synthesized a novel red-to-near-infrared Aggregation-Induced Emission (AIE) fluorescent probe (named as DS) based Fluorene derivatives on specifically for Hg2+ detection. Probe DS can visually identify Hg2+ through an red-to-near-infrared fluorescence enhancement change, characterized by a large Stokes shift (130 nm) and AIE feature. This probe offers a fast response, high selectivity and sensitivity. The Hg2+-induced deprotection reaction of the thioketal mechanism was thoroughly investigated using nuclear magnetic resonance spectroscopy (NMR), mass spectrometry (MS) and density functional theory (DFT) calculation. Additionly, dynamic light scattering (DLS) results indicated that the aggregation states changes of the molecular play a crucial role in the AIE fluorescence response of probe DS toward Hg2+. The red-to-near-infrared response with AIE feature not only avoids the interference of auto-fluorescence signals in complex environments, but also reduces the fluorescence quenching caused by probe molecular aggregation. This makes probe DS highly suitable for high-quality imaging detection of Hg2+ in aqueous environments. Furthermore, probe DS demonstrates the capability for visual fluorescence detection of Hg2+ concentrations in water sample, plant roots and living cells.


Assuntos
Corantes Fluorescentes , Mercúrio , Mercúrio/análise , Mercúrio/química , Corantes Fluorescentes/química , Humanos , Espectrometria de Fluorescência , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Fluorenos/química , Fluorenos/toxicidade , Células HeLa
12.
Food Chem ; 456: 139998, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38852458

RESUMO

Heavy metal ion pollution poses significant risks to human health and ecological systems, and its monitoring is important. A sensitive and accurate surface-enhanced Raman spectroscopy (SERS) detection assay for Hg2+ was developed using Au@Ag/COF substrates and Y-shaped DNA labeled with two Raman reporters. The Au@Ag NPs in the COF produced robust and uniform E-fields, improving their detection reproducibility. The Y-shaped DNA design increased sensitivity with a low detection limit of 5.0 × 10-16 M by bringing the Raman reporter closer to the substrate surface. Additionally, the use of two Raman reporters allowed for a ratiometric method, improving detection accuracy by detecting both "signal-off" and "signal-on" signals. This selective sensor exhibited excellent recovery in river water, tap water, and milk samples, showcasing its robust biosensing capability for the detection of Hg2+ and its potential for sensing other heavy-metal ions in food and environmental applications.

13.
J Hazard Mater ; 476: 134967, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38936190

RESUMO

Hg2+ contamination poses a serious threat to the environment and human health. Although gold nanoclusters (Au NCs) have been utilized as fluorescence probes or colorimetric nanozymes for performing Hg2+ assays by using a single method, designing multifunctional nanoclusters as fluorescent nanozyme remains challenging. Herein, Ce-aggregated gold nanoclusters (Ce-Au NCs) were reported with "three in one" functions to generate strong fluorescence, excellent peroxidase-like activity, and the highly specific recognition of Hg2+ via its metallophilic interaction. A portable fluorescence and colorimetric dual-mode sensing device based on Ce-Au NCs was developed for on-site visual analysis of Hg2+. In the presence of Hg2+, fluorescence was effectively quenched and the paper-based chips gradually darkened from green till they became completely absent, while peroxidase-like activity was significantly enhanced. Two independent signals were captured by one identification unit, which provided self-validation to improve reliability and accuracy. Therefore, this work presents a simple synthesis of a multifunctional fluorescent nanozyme, and the developed portable device for on-site visual detection has considerable potential for application in the rapid on-site analysis of heavy metal ions in the environment.

14.
Mikrochim Acta ; 191(7): 378, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853206

RESUMO

Porphyrin-based porous organic polymer (POP) with uniformly immobilized platinum nanoparticles (Pt NPs) were designed and synthesized, and it was demonstrated that such nanocomposites (Pt/POP) have oxidase-like activity. Surprisingly, Hg2+ significantly enhanced the oxidase-like activity of Pt/POP. The enhancement was attributed to the capture of Hg2+ by the thioether group in Pt/POP and the subsequent redox reaction of Hg2+ with Pt NPs, accelerating the electron transfer. In the presence of Hg2+, Pt/POP catalyzed the colorless 3,3',5,5'-tetramethylbenzidine (TMB) to turn blue rapidly and changed its absorbance at 652 nm. Based on this, a fast-response colorimetric sensor was constructed for the sensitive detection of Hg2+ with a linear range of 0.2-50 µM and a detection limit of 36.5 nM. Importantly, Pt/POP can be used as an adsorbent for the efficient removal of Hg2+ with a removal efficiency as high as 99.4%. This work provides a valuable strategy for colorimetric detection and efficient removal of Hg2+.

15.
Mikrochim Acta ; 191(7): 392, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874768

RESUMO

A self-powered photoelectrochemical (PEC) aptamer sensor based on ZnIn2S4 as the photoanode and Cu2O@Ag@Ag3PO4 as the sensing cathode is designed for the detection of Hg2+. An indium tin oxide (ITO) electrode modified with ZnIn2S4 was used instead of a platinum (Pt) counter electrode to provide an obviously stable photocurrent signal. The suitable band gap width of ZnIn2S4 can generate photogenerated electrons well. The unique hydrangea structure of ZnIn2S4 can enhance light absorption and accelerate the separation and transfer of photocarriers. At the same time, Cu2O@Ag@Ag3PO4 with excellent electrical conductivity further enhances the photocurrent provided by the ZnIn2S4 photoanode. Because the reducing substances in the biological medium can change the photoanode characteristics of the photoanode interface, the separation of the photoanode and the sensing bicathode is beneficial to improve the anti-interference ability of the sensor. Under optimized conditions, the PEC aptamer sensor realizes the detection of Hg2+ (1 mM-1 fM), and the detection limit is 0.4 fM. In addition, the constructed self-powered PEC sensor has good selectivity, repeatability, and stability, which provides a new idea for the design of the PEC aptamer sensor platform.

16.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124514, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38805991

RESUMO

Mercury ions (Hg2+) and sulfur ions (S2-), have caused serious harm to the ecological environment and human health as two kinds of highly toxic pollutants widely used. Therefore, the visual quantitative determination of Hg2+ and S2- is of great significance in the field of environmental monitoring and medical therapy. In this study, a novel fluorescent "on-off-on" peptide-based probe DNC was designed and synthesized using dipeptide (Asn-Cys-NH2) as the raw material via solid phase peptide synthesis (SPPS) technology with Fmoc chemistry. DNC displayed high selectivity in the recognition of Hg2+, and formed non-fluorescence complex (DNC-Hg2+) through 2:1 binding mode. Notably, DNC-Hg2+ complex generated in situ was used as relay response probe for highly selective sequential detection of S2- through reversible formation-separation. DNC achieved highly sensitive detection of Hg2+ and S2- with the detection limits (LODs) of 8.4 nM and 5.5 nM, respectively. Meanwhile, DNC demonstrated feasibility for Hg2+ and S2- detections in two water samples, and the considerable recovery rate was obtained. More importantly, DNC showed excellent water solubility and low toxicity, and was successfully used for consecutive discerning Hg2+ and S2- in test strips, living cells and zebrafish larvae. As an effective visual analysis method in the field, smartphone RGB Color Picker APP realized semi-quantitative detections of Hg2+ and S2- without the need for complicated device.


Assuntos
Corantes Fluorescentes , Mercúrio , Peptídeos , Peixe-Zebra , Mercúrio/análise , Animais , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Humanos , Peptídeos/química , Peptídeos/análise , Espectrometria de Fluorescência , Limite de Detecção , Enxofre/química , Enxofre/análise , Poluentes Químicos da Água/análise , Imagem Óptica , Células HeLa , Íons/análise
17.
Mikrochim Acta ; 191(6): 352, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806756

RESUMO

Developing convenient and reliable methods for Hg2+ monitoring is highly important. Some precious metal nanomaterials with intriguing peroxidase-like activity have been used for highly sensitive Hg2+ detection. However, H2O2 must be added during these detections, which impedes practical applications of Hg2+ sensors due to its susceptible decomposition by environmental factors. Herein, we discovered that the combination of Hg2+ and palladium metal-organic framework@graphene (Pd-MOF@GNs) exhibits oxidase-like activity (OXD). In the absence of H2O2, this activity not only catalyzes the oxidation of chromogenic substrates such as 3,3',5,5'-tetramethylbenzidine (TMB) or o-phenylenediamine (OPD) to produce a color change but also enhances the electrical signals during OPD oxidation. Based on these properties, an effective and convenient dual-mode colorimetric and electrochemical sensor for Hg2+ has been developed. The colorimetric and amperometric linear relationships for Hg2+ were 0.045 µM-0.25 mM and 0.020 µM-2.0 mM, respectively. The proposed strategy shows good recovery in real sample tests, indicating promising prospects for multiple environmental sample detection of Hg2+ without relying on H2O2. The colorimetric and electrochemical dual-mode Hg2+ sensor is expected to hold great potentials in applications such as environmental monitoring, rapid field detection, and integration into smartphone detection of Hg2+.


Assuntos
Colorimetria , Técnicas Eletroquímicas , Grafite , Limite de Detecção , Mercúrio , Estruturas Metalorgânicas , Paládio , Grafite/química , Colorimetria/métodos , Mercúrio/análise , Mercúrio/química , Estruturas Metalorgânicas/química , Paládio/química , Técnicas Eletroquímicas/métodos , Benzidinas/química , Oxirredução , Poluentes Químicos da Água/análise , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Oxirredutases/química , Oxirredutases/metabolismo , Fenilenodiaminas/química
18.
Biochimie ; 225: 146-155, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38821199

RESUMO

The industrial world exposes living organisms to a variety of metal pollutants. Here we investigated whether such elements affect G-rich sequences susceptible to fold into G-quadruplex (GQ) structures. Thermal stability and conformation of these oligoncleotides was studied at various molar ratios of a variety of heavy metal salts using thermal FRET, transition-FRET (t-FRET) and circular dichroism. Metal ions affected the thermal stability of the GQs to different extents; some metals had no effect on Tm while other metals caused small to moderate changes in Tm at 1:1 or 1:10 molar ratio. While most of the metals had no major effect, Al3+, Cd2+, Pb2+, Hg2+ and Zn2+ altered the thermal stability and structural features of the GQs. Some metals such as Pb2+ and Hg2+ exhibit differential interactions with telomere, c-myc and c-kit GQs. Overall, toxic heavy metals affect G-quadruplex stability in a sequence and topology dependent manner. This study provides new insight into how heavy metal exposure may affect gene expression and cellular responses.

19.
Food Chem ; 454: 139755, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38810445

RESUMO

Accurate and rapid monitoring of organophosphorus pesticides (OPs) residues is crucial for regulating food safety. Herein, dual-emission carbon dots (de-CDs) were fabricated for the ratiometric detection of OPs and Hg2+. The de-CDs exhibited two emission peaks at 678 and 485 nm when excited with visible light. Interestingly, the fluorescence at 678 nm was significantly quenched by Hg2+ mainly because of the static quenching effect, whereas that at 485 nm exhibited a slight change. More significantly, the quenched fluorescence of the de-CDs recovered remarkably after introducing omethoate, diazinon and malathion. Accordingly, the ratiometric detection of the three OPs and Hg2+ was achieved with high selectivity and robust performance. In addition, the OPs residues assay in Brassica chinensis was successfully performed with satisfactory results. This study not only provides an attractive tool for the simple and rapid assay of OPs but also offers new insights into the fabrication of multi-functional carbon dots.


Assuntos
Brassica , Carbono , Mercúrio , Compostos Organofosforados , Pontos Quânticos , Brassica/química , Carbono/química , Mercúrio/análise , Pontos Quânticos/química , Compostos Organofosforados/análise , Concentração de Íons de Hidrogênio , Praguicidas/análise , Praguicidas/química , Espectrometria de Fluorescência/métodos , Contaminação de Alimentos/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/química
20.
Anal Chim Acta ; 1307: 342607, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719400

RESUMO

2-(((5-mercapto-1,3,4-thiadiazol-2-yl)imino)methyl)phenol (MTP) was synthesized, self-assembled on the surface of gold (Au) electrode (Au-MTP) followed by characterization using Cyclic voltammetry (CV) and Electrochemical impedance spectroscopy (EIS). CV and EIS confirmed the formation of well-organized Au-MTP SAM free from defects and pinholes. Au-MTP was further utilized as a platform for sensing of Hg2+ using EIS. The results showed sensitive and selective response of Au-MTP towards Hg2+ in the linear concentration range from 1.0 × 10-10 M to 1.0 × 10-4 M with limit of detection (LoD) of 5.6 × 10-11 M. Furthermore, MTP was self-assembled on gold nanoparticles (AuNPs) and MTP bound gold nanoparticles (MTP-AuNPs) so obtained were used as modifier for construction of carbon paste electrode (CPE). Hg2+-CPE exhibited Nernstian response towards Hg2+ with slope of 28.3 mV/decade in the concentration range from 1.0 × 10-5 M to 1.0 × 10-1 M with LoD of 6.3 × 10-6 M. Both the Au-MTP EIS sensor and Hg2+-CPE were successfully applied for estimation of Hg2+ content in tap water samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA