Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Ecotoxicol Environ Saf ; 269: 115779, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056124

RESUMO

Mercury (Hg) is a serious metal environmental pollutant. HgCl2 exposure causes pyroptosis. When macrophages are severely stimulated, they often undergo M1 polarization and release inflammatory factors. However, the mechanisms by which mercuric chloride exposure induces macrophage apoptosis, M1 polarization, and inflammatory factors remain unclear. HD11 cells were exposed to different concentrations of Hg chloride (180, 210 and 240 nM HgCl2). The results showed that mercury chloride exposure up-regulated ROS, C-Nrf2 and its downstream factors (NQO1 and HO-1), and down-regulated N-Nrf2. In addition, the expressions of focal death-related indicators (Caspase-1, NLRP3, GSDMD, etc.), M1 polarization marker CD86 and inflammatory factors (TNF-α, IL-1ß) increased, and the above changes were related to mercury. Oxidative stress inhibitor (NAC) can block ROS/ NrF2-mediated oxidative stress, inhibit mercury-induced pyroptosis and M1 polarization, and effectively reduce the release of inflammatory factors. The addition of Vx-765 to inhibit pyroptosis can effectively alleviate M1 polarization of HD11 cells and reduce the expression of inflammatory factors. HgCl2 mediates pyroptosis of HD11 cells by regulating ROS/Nrf2/NLRP3, promoting M1 polarization and the release of inflammatory factors.


Assuntos
Mercúrio , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Galinhas/metabolismo , Cloretos , Inflamação/metabolismo , Mercúrio/efeitos adversos , Mercúrio/toxicidade , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais
2.
Molecules ; 28(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36770880

RESUMO

In this study, the density functional theory is used to study the ability of (ZnS)n clusters to remove Hg0, HgCl, and HgCl2 and reveals that they can be absorbed on (ZnS)n clusters. According to electron localization function (ELF) and non-covalent interactions (NCI) analyses, the adsorption of Hg0 on (ZnS)n is physical adsorption and the adsorption ability of (ZnS)n for removing Hg0 is weak. When (ZnS)n adsorbs HgCl and HgCl2, two new Hg-S and Zn-Cl bonds form in the resultant clusters. An ELF analysis identifies the formation of Hg-S and Zn-Cl bonds in (ZnS)nHgCl and (ZnS)nHgCl2. A partial density of states and charge analysis confirm that as Hg0, HgCl, and HgCl2 approach (ZnS)n clusters, atomic orbitals in Hg and Zn, Hg and S, as well as Zn and Cl overlap and hybridize. Adsorption energies of HgCl and HgCl2 on (ZnS)n clusters are obviously bigger than those of Hg0, indicating that HgCl and HgCl2 adsorption on (ZnS)n clusters is much stronger than that of Hg0. By combining ELF analysis, NCI analysis, and adsorption energies, the adsorption of HgCl, and HgCl2 on (ZnS)n clusters can be classified as chemical adsorption. The adsorption ability of (ZnS)n clusters for removing HgCl and HgCl2 is higher than that of Hg0.

3.
Environ Sci Technol ; 57(1): 697-707, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36548301

RESUMO

Recently, sulfureted metal oxides have been developed for the catalytic oxidation of Hg0 to HgCl2 using HCl as an oxidant at low temperatures, and they exhibit excellent Hg0 removal performance. Owing to the lack of reaction mechanisms and kinetics, further improvement in their performance for Hg0 conversion is extremely restricted. In this study, the reaction mechanism of Hg0 conversion over sulfureted HPMo/γ-Fe2O3 with HCl at low temperatures was investigated using Hg balance analysis and transient reaction. The chemical adsorption of Hg0 as HgS and the catalytic oxidation of Hg0 to HgCl2 both contributed to Hg0 conversion over sulfureted HPMo/γ-Fe2O3. Meanwhile, the formed HgCl2 can adsorb onto sulfureted HPMo/γ-Fe2O3. Then, the kinetics of Hg0 conversion, Hgt adsorption, and HgCl2 desorption were developed, and the kinetic parameters were gained by fitting the Hg balance curves. Subsequently, the inhibition mechanism of H2O and SO2 on Hg0 conversion over sulfureted HPMo/γ-Fe2O3 was determined by comparing the kinetic parameters. The kinetic model suggested that both HgCl2 resulting from Hg0 oxidation and unoxidized Hg0 can be completely adsorbed on sulfureted HPMo/γ-Fe2O3 with a moderate mass hourly space velocity. Therefore, sulfureted HPMo/γ-Fe2O3 can be developed as a reproducible sorbent for recovering Hg0 emitted from coal-fired power plants.


Assuntos
Poluentes Atmosféricos , Mercúrio , Temperatura , Cinética , Sulfetos , Carvão Mineral/análise , Mercúrio/análise , Centrais Elétricas , Poluentes Atmosféricos/análise
4.
Mol Biol Rep ; 50(1): 399-408, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36336778

RESUMO

BackgroundInorganic mercury is a well-known toxic substance that can cause oxidative stress and liver damage. Luteolin (Lut) is a kind of natural antioxidant, which is widely found in plants. Therefore, we focused on exploring the alleviative effect of Lut on liver injury induced by mercuric chloride (HgCl2), and the potential molecular mechanism of eliminating mercury ions in quails.Methods and resultsTwenty-one-day-old male quails were randomly split into four groups: control group, Lut group, HgCl2 group, and HgCl2 + Lut group. The test period was 12 weeks. The results showed that Lut could significantly ameliorate oxidative stress, the release of inflammatory factors, and liver damage caused by HgCl2, and reduce the accumulation of Hg2+ in quail liver. Furthermore, Lut evidently increased the levels of protein kinase C α (PKCα), nuclear factor-erythroid-2-related factor 2 (Nrf2), and its downstream proteins, and inhibited nuclear factor-kappaB (NF-κB) production in the liver of quails treated by HgCl2.ConclusionsTo sum up, our results suggest that Lut not only reduces the levels of oxidative stress and inflammation, but also promotes the excretion of Hg2+ by promoting the PKCα/Nrf2 signaling pathway to alleviate HgCl2-induced liver injury in quails.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Mercúrio , Humanos , Luteolina/farmacologia , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-alfa/farmacologia , Mercúrio/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo
5.
Neurotoxicology ; 92: 212-226, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35963490

RESUMO

BACKGROUND: Mercury compounds are the world's third most hazardous substance. Mercury (II) chloride, also known as mercuric chloride (HgCl2), has been shown to have neurotoxic properties in a variety of forms. In numerous investigations, oxidative stress has been established as a key contributor to HgCl2-induced neurotoxicity. Carveol has been researched as an antioxidant and Nrf2-activator in several studies. This study was conducted to investigate if the carveol could protect mice against HgCl2-induced neuronal damage. METHODS: Mice were exposed to a dose of 0.4 mg/kg of HgCl2 and 20 mg/kg of carveol for 21 days. Animals were then subjected to behavioral evaluation through various methods such as open field test (OFT), elevated plus maze test (EPM), morris-water maze test (MWM), and Y-maze test. RESULTS: Results indicated hippocampal-related behavior anomalies which were improved significantly after carveol treatment. Oxidative stress was accompanied by excessive neuroinflammation, which was demonstrated by elevated levels of inflammatory markers such as TNF-α, p-NFkB, and COX-2, and were measured by Western blot, ELISA, and immunohistochemistry. These elevated levels of inflammatory markers were significantly mitigated upon treatment with carveol. To further investigate the participation of the JNK pathway, we used SP-600125 to inhibit JNK, which enhanced the neuroprotective effects of carveol. Moreover, molecular docking and modeling studies were used to validate these effects. CONCLUSION: Our findings indicate that carveol can inhibit the p-JNK pathway, thereby inhibiting HgCl2-induced apoptosis and downregulating the expression of inflammatory mediators.


Assuntos
Mercúrio , Fármacos Neuroprotetores , Síndromes Neurotóxicas , Animais , Antioxidantes/farmacologia , Encéfalo/metabolismo , Cloretos , Monoterpenos Cicloexânicos , Ciclo-Oxigenase 2/metabolismo , Substâncias Perigosas/farmacologia , Mediadores da Inflamação/metabolismo , Cloreto de Mercúrio/toxicidade , Camundongos , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2/metabolismo , Doenças Neuroinflamatórias , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/tratamento farmacológico , Estresse Oxidativo , Fator de Necrose Tumoral alfa/metabolismo
6.
Curr Res Toxicol ; 3: 100071, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602005

RESUMO

Exposures to mercury and arsenic are known to pose significant threats to human health. Effects specific to organic vs. inorganic forms of these toxic elements are less understood however, especially for organic dimethylarsinic acid (DMA), which has recently been detected in pups of rodent dams orally exposed to inorganic sodium (meta)arsenite (NaAsO2). Caenorhabditis elegans is a small animal alternative toxicity model. To fill data gaps on the effects of DMA relative to NaAsO2, C. elegans were exposed to these two compounds alongside more thoroughly researched inorganic mercury chloride (HgCl2) and organic methylmercury chloride (meHgCl). For timing of developmental milestone acquisition in C. elegans, meHgCl was 2 to 4-fold more toxic than HgCl2, and NaAsO2 was 20-fold more toxic than DMA, ranking the four compounds meHgCl > HgCl2 > NaAsO2 ≫ DMA for developmental toxicity. Methylmercury induced significant decreases in population locomotor activity levels in developing C. elegans. DMA was also associated with developmental hypoactivity, but at >100-fold higher concentrations than meHgCl. Transcriptional alterations in native genes were observed in wild type C. elegans adults exposed to concentrations equitoxic for developmental delay in juveniles. Both forms of arsenic induced genes involved in immune defense and oxidative stress response, while the two mercury species induced proportionally more genes involved in transcriptional regulation. A transgenic bioreporter for activation of conserved proteosome specific unfolded protein response was strongly activated by NaAsO2, but not DMA at tested concentrations. HgCl2 and meHgCl had opposite effects on a bioreporter for unfolded protein response in the endoplasmic reticulum. Presented experiments indicating low toxicity for DMA in C. elegans are consistent with human epidemiologic data correlating higher arsenic methylation capacity with resistance to arsenic toxicity. This work contributes to the understanding of the accuracy and fit-for-use categories for C. elegans toxicity screening and its usefulness to prioritize compounds of concern for further testing.

7.
Environ Sci Pollut Res Int ; 29(19): 27862-27874, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34981388

RESUMO

Mercury (Hg) is a highly toxic heavy metal for all organisms. In the present study, the mitigative role of 190 mg/L and 380 mg/L doses of green tea extract (GTex) against mercury(II) chloride (HgCI2)-induced toxicity was evaluated in Allium cepa L. For this aim, selected physiological, genotoxicity, and biochemical parameters as well as meristematic cell injuries in the roots were investigated. Ratios of catechin and caffeine in GTex were determined by HPLC analysis. Also, free radical scavenging activity of GTex was tested against superoxide and hydrogen peroxide radicals. As a result of HgCI2 application, germination percentage, root elongation, weight gain, and mitotic index (MI) declined, while the frequency of micronucleus (MN), chromosomal abnormalities (CAs), and meristematic cell damages increased. HgCI2 administration also led to a significant increase in malondialdehyde content, superoxide dismutase, and catalase activities which are signs of oxidative stress. On contrary, applications of GTex together with HgCI2 reduced HgCI2-induced adverse effects in all parameters in a dose-dependent manner. Antioxidant components in GTex were listed as caffeine, epigallocatechin gallate, epigallocatechin, epicatechin gallate, and catechin according to their abundance. GTex exhibited a strong scavenging ability in the presence of superoxide and hydrogen peroxide radicals. The present study revealed the strong protective capacity of GTex against HgCI2-induced toxicity in A. cepa owing to its high antioxidant content with a multifaceted perspective. With this study, a reliable starting point was established for future studies investigating the more common and diverse use of GTex against toxic substances.


Assuntos
Catequina , Mercúrio , Antioxidantes/farmacologia , Cafeína , Cloretos , Peróxido de Hidrogênio , Mercúrio/toxicidade , Cebolas , Extratos Vegetais/farmacologia , Raízes de Plantas , Superóxidos , Chá
8.
Environ Toxicol ; 37(1): 69-78, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34569128

RESUMO

Mercury as a toxic heavy metal will accumulate in the body and induce various diseases through the food chain. However, it is unknown that the detailed mechanism of reproductive disorder induced by inorganic mercury in male mice to date. This study investigated the toxicological effect of mercuric chloride (HgCl2 ) exposure on reproductive system in male mice. Male Kunming mice received normal saline daily or HgCl2 (3 mg/kg bodyweight) by intraperitoneal injection for a week. The reproductive function was evaluated, and the HgCl2 exposure induced the decline of sperm quality, pregnancy rate, mean litter size, and survival rate. Notably, we firstly found the HgCl2 -induced immunosuppression and fibrosis in mice testis according to the results of RNA sequencing. Collectively, these findings demonstrate that HgCl2 exposure disrupts the reproductive system and induces testicular immunosuppression and fibrosis via inhibition of the CD74 signaling pathway in male mice.


Assuntos
Mercúrio , Testículo , Animais , Animais não Endogâmicos , Fibrose , Terapia de Imunossupressão , Masculino , Cloreto de Mercúrio/toxicidade , Camundongos , Estresse Oxidativo
9.
Biol Trace Elem Res ; 200(4): 1591-1597, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34060062

RESUMO

Mercury is widely used in industry and has caused global environmental pollution. Inorganic mercury accumulates in the body causes damage to many organs, and the kidney is the most susceptible to the toxic effects of mercury. However, the underlying specific molecular mechanism of renal injury induced by inorganic mercury remains unclear at the cellular level. Therefore, in order to understand its molecular mechanism, we used in vitro method. We established experimental models by treating human embryonic kidney epithelial cell line (HEK-293 T) cells with HgCl2 (0, 1.25, 5, and 20 µmol/L). We found that HgCl2 can lead to a decrease in cell viability and oxidative stress of HEK-293 T, which may be mediated by upregulation mitochondrial fission. In addition, HgCl2 exposure resulted in the mitochondrial disorder of HEK-293 T cells, which was mediated by downregulating the expression of silent information regulator two ortholog 1 (Sirt1)/peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) signaling pathway. In summary, our results suggest that HgCl2 induces HEK-293 T cell toxicity through promoting Sirt1/PGC-1α axis-mediated mitochondrial dynamics disorder and oxidative stress. Sirt1/PGC-1α may be an appealing pharmaceutical target curing HgCl2-induced kidney injury.


Assuntos
Mercúrio , Doenças Mitocondriais , Células Epiteliais/metabolismo , Células HEK293 , Humanos , Rim/metabolismo , Mercúrio/metabolismo , Doenças Mitocondriais/metabolismo , Dinâmica Mitocondrial , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Sirtuína 1/metabolismo
10.
J Inorg Biochem ; 224: 111583, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34428638

RESUMO

Inorganic mercury is a ubiquitous toxic pollutant in the environment. Exposure to inorganic mercury can cause various poisonous effects, including kidney injury. However, no safe and effective treatment for kidney injury caused by inorganic mercury has been found and used. Luteolin (Lut) possesses various beneficial bioactivities. Here, our research aims to investigate the protective effect of Lut on renal injury induced by mercury chloride (HgCl2) and identify the underlying autophagy regulation mechanism. Twenty-eight 6-8 weeks old Wistar rats were randomly assigned to four groups: control, HgCl2, HgCl2 + Lut, and Lut. We performed the determination of oxidative stress and renal function indicators, histopathological analysis, the terminal deoxynucleotidyl transferase-mediated deoxyuracil nucleoside triphosphate nick-end labeling assay to detect apoptosis, western blot detection of autophagy-related protein levels, and atomic absorption method to detect mercury content. Our results showed that Lut ameliorated oxidative stress, apoptosis and restored the autophagy and renal function caused by HgCl2 in rats. Concretely, the level of nuclear factor E2-related factor, renal adenosine monophosphate-activated protein kinase (AMPK) expression, and autophagy regulation-related proteins levels were down-regulated, and the mammalian target of rapamycin (mTOR) expression was up-regulated by HgCl2 treatment. However, Lut treatment reversed the above changes. Notably, Lut reduced the accumulation of HgCl2 in the kidneys and promoted the excretion of HgCl2 through urine. Collectively, our results demonstrate that Lut can attenuate inorganic mercury-induced renal injury via activating the AMPK/mTOR autophagy pathway. Therefore, Lut may be a potential biological medicine to protect against renal damage induced by HgCl2.


Assuntos
Autofagia/efeitos dos fármacos , Rim/lesões , Luteolina/farmacologia , Cloreto de Mercúrio/toxicidade , Substâncias Protetoras/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Apoptose/efeitos dos fármacos , Rim/metabolismo , Masculino , Mercúrio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Serina-Treonina Quinases TOR/metabolismo
11.
F1000Res ; 10: 203, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249337

RESUMO

Background: Zuotai (mainly ß-HgS)-containing 70 Wei-Zhen-Zhu-Wan (70W, Rannasangpei) is a famous Tibetan medicine for treating cardiovascular and gastrointestinal diseases.  We have shown that 70W protected against CCl 4 hepatotoxicity.  CCl 4 is metabolized via cytochrome P450 (CYP) to produce reactive metabolites. Whether 70W has any effect on CYPs is unknown and such effects should be compared with mercury compounds for safety evaluation.   Methods: Mice were given clinical doses of 70W (0.15-1.5 g/kg, po), Zuotai (30 mg/kg, po), and compared to HgCl 2 (33.6 mg/kg, po) and MeHg (3.1 mg/kg, po) for seven days. Liver RNA and protein were isolated for qPCR and Western-blot analysis. Results: 70W and Zuotai had no effects on hepatic mRNA expression of Cyp1a2, Cyp2b10, Cyp3a11, Cyp4a10 and Cyp7a1, and corresponding nuclear receptors [aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR), pregnane X receptor (PXR), peroxisome proliferator-activated receptor-α (PPARα); farnesoid X receptor (FXR)]. In comparison, HgCl 2 and MeHg increased mRNA expression of Cyp1a2, Cyp2b10, Cyp4a10 and Cyp7a1 except for Cyp3a11, and corresponding nuclear receptors except for PXR. Western-blot confirmed mRNA results, showing increases in CYP1A2, CYP2B1, CYP2E1, CYP4A and CYP7A1 by HgCl 2 and MeHg only, and all treatments had no effects on CYP3A. Conclusions: Zuotai and Zuotai-containing 70W at clinical doses had minimal influence on hepatic CYPs and corresponding nuclear receptors, while HgCl 2 and MeHg produced significant effects.  Thus, the use of total Hg content to evaluate the safety of HgS-containing 70W is inappropriate.


Assuntos
Compostos de Mercúrio , Mercúrio , Compostos de Metilmercúrio , Animais , Cloretos , Sistema Enzimático do Citocromo P-450 , Fígado , Cloreto de Mercúrio , Camundongos
12.
Environ Sci Pollut Res Int ; 28(44): 62868-62876, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34218367

RESUMO

Mercury (Hg) is a persistent and dangerous heavy metal with genotoxic properties. Echinacea purpurea L. is a well-known therapeutic plant with anti-inflammatory, antioxidant, and anti-tumor properties. In this study, multi-protective role of Echinacea purpurea L. extract against toxicity caused by mercury(II) chloride (HgCI2) on Allium cepa L. investigated in a multifaceted way. As a consequence of 100 mgL-1 HgCI2 administration, root elongation, weight increase, germination rate, and mitotic index were reduced, whereas micronucleus frequency, chromosomal abnormalities frequency, meristematic cell injuries severity, malondialdehyde level, catalase, and superoxide dismutase activity were increased. On the other hand, co-administration of increasing doses of E. purpurea extract (265 mgL-1 and 530 mgL-1) and HgCI2 gradually alleviated all observed toxic effects of HgCI2. Protective role of E. purpurea extract against HgCI2-toxicity on A. cepa were clearly demonstrated in this study. The results of this study will lead to future researches investigating use of E. purpurea extract against genotoxic contaminants.


Assuntos
Echinacea , Mercúrio , Cloretos , Cebolas , Extratos Vegetais/farmacologia , Raízes de Plantas , Água
13.
Int J Mol Sci ; 22(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072703

RESUMO

Mercury (Hg) is a highly toxic and widespread pollutant. We previously reported that the exposure of Mytilus galloprovincialis for 24 h to doses of HgCl2 similar to those found in seawater (range 1-100 pM) produced alterations in the properties of protamine-like (PL) proteins that rendered them unable to bind and protect DNA from oxidative damage. In the present work, to deepen our studies, we analyzed PL proteins by turbidimetry and fluorescence spectroscopy and performed salt-induced release analyses of these proteins from sperm nuclei after the exposure of mussels to HgCl2 at the same doses. Turbidity assays indicated that mercury, at these doses, induced PL protein aggregates, whereas fluorescence spectroscopy measurements showed mercury-induced conformational changes. Indeed, the mobility of the PLII band changed in sodium dodecyl sulphate-polyacrylamide gel electrophoresis, particularly after exposure to 10-pM HgCl2, confirming the mercury-induced structural rearrangement. Finally, exposure to HgCl2 at all doses produced alterations in PL-DNA binding, detectable by DNA absorption spectra after the PL protein addition and by a decreased release of PLII and PLIII from the sperm nuclei. In conclusion, in this paper, we reported Hg-induced PL protein alterations that could adversely affect mussel reproductive activity, providing an insight into the molecular mechanism of Hg-related infertility.


Assuntos
Cromatina/efeitos dos fármacos , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mercúrio/farmacologia , Mytilus , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Animais , Núcleo Celular , Cromatina/química , Cromatina/genética , Proteínas de Ligação a DNA/química , Masculino , Cloreto de Mercúrio/farmacologia , Mercúrio/toxicidade , Água do Mar , Análise Espectral , Poluentes da Água/farmacologia , Poluentes da Água/toxicidade
14.
Int J Mol Sci ; 22(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801350

RESUMO

Heavy metals are important for various biological systems, but, in excess, they pose a serious risk to human health. Heavy metals are commonly used in consumer and industrial products. Despite the increasing evidence on the adverse effects of heavy metals, the detailed mechanisms underlying their action on lung cancer progression are still poorly understood. In the present study, we investigated whether heavy metals (mercury chloride and lead acetate) affect cell viability, cell cycle, and apoptotic cell death in human lung fibroblast MRC5 cells. The results showed that mercury chloride arrested the sub-G1 and G2/M phases by inducing cyclin B1 expression. In addition, the exposure to mercury chloride increased apoptosis through the activation of caspase-3. However, lead had no cytotoxic effects on human lung fibroblast MRC5 cells at low concentration. These findings demonstrated that mercury chloride affects the cytotoxicity of MRC5 cells by increasing cell cycle progression and apoptotic cell death.


Assuntos
Ciclo Celular , Desinfetantes/farmacologia , Fibroblastos/patologia , Pulmão/patologia , Cloreto de Mercúrio/farmacologia , Compostos Organometálicos/farmacologia , Sobrevivência Celular , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Humanos , Pulmão/efeitos dos fármacos
15.
Int J Mol Sci ; 22(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562685

RESUMO

Mercury (Hg) is an environmental pollutant that impacts human and ecosystem health. In our previous works, we reported alterations in the properties of Mytilus galloprovincialis protamine-like (PL) proteins after 24 h of exposure to subtoxic doses of toxic metals such as copper and cadmium. The present work aims to assess the effects of 24 h of exposure to 1, 10, and 100 pM HgCl2 on spermatozoa and PL proteins of Mytilus galloprovincialis. Inductively coupled plasma-mass spectrometry indicated accumulation of this metal in the gonads of exposed mussels. Further, RT-qPCR analyses showed altered expression levels of spermatozoa mt10 and hsp70 genes. In Mytilus galloprovincialis, PL proteins represent the major basic component of sperm chromatin. These proteins, following exposure of mussels to HgCl2, appeared, by SDS-PAGE, partly as aggregates and showed a decreased DNA-binding capacity that rendered them unable to prevent DNA damage, in the presence of CuCl2 and H2O2. These results demonstrate that even these doses of HgCl2 exposure could affect the properties of PL proteins and result in adverse effects on the reproductive system of this organism. These analyses could be useful in developing rapid and efficient chromatin-based genotoxicity assays for pollution biomonitoring programs.


Assuntos
Cloreto de Mercúrio/toxicidade , Mytilus/genética , Protaminas/genética , Espermatozoides/efeitos dos fármacos , Animais , Cádmio/toxicidade , Cromatina/efeitos dos fármacos , Cromatina/genética , Cobre/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/genética , Peróxido de Hidrogênio/efeitos adversos , Masculino , Espectrometria de Massas , Mercúrio/análise , Mytilus/efeitos dos fármacos , Espermatozoides/química , Poluentes Químicos da Água/toxicidade
16.
Micromachines (Basel) ; 12(2)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572806

RESUMO

Cell-based biosensors harness a cell's ability to respond to the environment by repurposing its sensing mechanisms. MerR family proteins are activator/repressor switches that regulate the expression of bacterial metal resistance genes and have been used in metal biosensors. Upon metal binding, a conformational change switches gene expression from off to on. The genomes of the multimetal resistant bacterial strains, Stenotrophomonas maltophilia Oak Ridge strain 02 (S. maltophilia 02) and Enterobacter sp. YSU, were recently sequenced. Sequence analysis and gene cloning identified three mercury resistance operons and three MerR switches in these strains. Transposon mutagenesis and sequence analysis identified Enterobacter sp. YSU zinc and copper resistance operons, which appear to be regulated by the protein switches, ZntR and CueR, respectively. Sequence analysis and reverse transcriptase polymerase chain reaction (RT-PCR) showed that a CueR switch appears to activate a S. maltophilia 02 copper transport gene in the presence of CuSO4 and HAuCl4·3H2O. In previous studies, genetic engineering replaced metal resistance genes with the reporter genes for ß-galactosidase, luciferase or the green fluorescence protein (GFP). These produce a color change of a reagent, produce light, or fluoresce in the presence of ultraviolet (UV) light, respectively. Coupling these discovered operons with reporter genes has the potential to create whole-cell biosensors for HgCl2, ZnCl2, CuSO4 and HAuCl4·3H2O.

17.
Int J Environ Health Res ; 31(7): 861-871, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31793343

RESUMO

ß-HgS, differing from environmental mercury pollutants (MeHgCl and HgCl2) in chemical form, is used as traditional medicine in Asian countries for thousands of years. In this study, Neuro-2a cells were exposed to ß-HgS, MeHgCl and HgCl2 (5 µM) for 6-24 h. The cell viability of ß-HgS was higher than MeHgCl with 25.9% and 72.4% in 12 h and 24 h respectively. As the incubation time increased, MeHgCl had obvious damage to cell morphology, decreased the ratio of Bcl-2 and Bak and increased the expressions of TNF-α, IL-6 and IL-1ß significantly. Furthermore, the expressions of IL-1ß and IL-6 in HgCl2 group were increased significantly in 6 h and 24 h. The apoptotic rates in MeHgCl and HgCl2 group were respectively higher than ß-HgS with 32.2% and 7.30% in 24 h. Our findings indicate that ß-HgS is much less neurotoxicity than MeHgCl and HgCl2 in Neuro-2a cells.


Assuntos
Poluentes Ambientais/toxicidade , Compostos de Mercúrio/toxicidade , Compostos de Metilmercúrio/toxicidade , Animais , Apoptose/efeitos dos fármacos , Caspases/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Intoxicação do Sistema Nervoso por Mercúrio , Camundongos
18.
Int J Mol Sci ; 21(15)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759870

RESUMO

Aromatic isocyanides including isocyanonaphthalene derivatives have been proven to be very effective fluorescent sensors for the quantification of Hg(II) ions in water. Thus, the reaction of 1,5-isocyanoaminonaphthalene (1,5-ICAN), which is one of the most important members of this family, with water and HgCl2 as the oxidation agents, was studied by fluorescence spectroscopy and mass spectrometry in order to get deeper insight into the kinetics and mechanistic details of this complex reaction. The reactions of 1,5-ICAN with water and HgCl2 were performed in various water/co-solvent mixtures of different compositions. The co-solvents used in this study were both aprotic solvents including tetrahydrofuran, acetonitrile and N,N-dimethylformamide and protic solvents, such as ethanol and 2-propanol. It was found that in aprotic solvents the conversion of the isocyano group to amino moiety takes place, while in protic solvents the corresponding carbamate (urethane) group is formed in addition to the amino moiety. The variation of the resulting fluorescence intensities versus time curves were described using an irreversible, consecutive reaction model, in which the formation of isocyanate and carbamic acid intermediates, as well as diamino and carbamate (in the case of protic solvents) products were assumed. The formation of these intermediates and products was unambiguously confirmed by mass spectrometric measurements. Furthermore, by fitting the model to the experimental fluorescence versus time curves, the corresponding rate coefficients were determined. It was observed that the overall rate of transformation of the isocyano group to amino moiety increased with the water concentration and the polarity of the co-solvent. It was also supported that formation of diamino and carbamate derivatives in protic solvents takes place simultaneously and that the ratio of the amino to the carbamate function increased with the increasing water concentration. In addition, with an extension, the model presented herein proved to be capable of describing the kinetics of the transformation of 1,5-diisocyanonaphthalene (1,5-DIN) into 1,5-diaminonaphthalene (1,5-DAN) in the mixtures of water/aprotic solvents.


Assuntos
Aminas/química , Cianetos/química , Água/química , Corantes/química , Íons/química , Cinética , Espectrometria de Massas , Mercúrio/química , Solventes/química , Espectrometria de Fluorescência
19.
Environ Sci Pollut Res Int ; 27(15): 17891-17909, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32166690

RESUMO

Impregnating CuCl2 on AC (activated coke) support to synthesize xCuCl2/AC showed superior activity with higher 90% Hg0 removal efficiency at 80-140 °C, as well as a lower oxygen demand of 2% O2 for Hg0 removal. The acceleration on Hg0 removal was observed for NO and SO2. The BET, SEM, XRD, XPS, TPD, and FT-IR characterizations revealed that the larger surface area, sufficient active oxygen species and co-existence of Cu+ and Cu2+ may account for the efficient Hg0 removal. In addition, the low demand of gaseous O2 was contributed to higher content of active oxygen and formed active Cl. After adsorbing on Cu sites, Cl sites, and surface functional groups, the Hg0(ads) removal on xCuCl2/AC was proceeded through two ways. Part of Hg0(ads) was oxidized by active O and formed Hg0, and the other part of Hg0 combined with the active Cl, which was formed by the activation of lattice Cl with the aid of active O, and formed HgCl2. Besides, the Hg2+ detected in outlet gas through mercury speciation conversion and desorption peak of HgCl2 and Hg0 further proved it. As displayed in stability test and simulated industrial application test, CuCl2/AC has a promising industrial application prospect.


Assuntos
Coque , Mercúrio , Adsorção , Catálise , Espectroscopia de Infravermelho com Transformada de Fourier
20.
Drug Chem Toxicol ; 43(3): 287-297, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-30554537

RESUMO

Mercury (Hg) is among the most deleterious contaminant in the aquatic environment and presents a serious risk to humans and ecosystems. This study evaluated the effects of Hg on oxidative stress biomarkers, DNA integrity and histological structure of the respiratory tree of Holothuria forskali exposed to different concentrations of mercury chloride HgCl2 (0.04, 0.08 and 0.16 mg L-1) for 96 h. Exposure of H. forskali to Hg led to oxidative stress with an increase in Malondialdehyde (MDA), hydrogen peroxide (H2O2), advanced oxidation protein product (AOPP) and protein carbonyls (PCO) levels in the treated groups. Alteration of the antioxidant system was also confirmed by the significant increase in glutathione (GSH), nonprotein thiol (NPSH) and vitamin C contents. Moreover, the enzymatic activity of superoxide dismutase (SOD), Glutathione peroxidase (GPX) and Catalase (CAT) increased significantly. Our research revealed that total Metallothionein (MTs) content enhanced in a dose-dependent manner. Interestingly, the exposure to this metal provoked a decrease in Acetylcholinesterase (AChE) activity. Hg genotoxicity was further evidenced by a random DNA degradation that was observed in the treated groups. The histopathological findings confirmed the biochemical results. Overall, our results indicated that mercury-induced genotoxicity, oxidative damage and histopathological injuries in the respiratory tree of H. forskali.


Assuntos
Cloreto de Mercúrio/toxicidade , Metalotioneína/genética , Mutagênicos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Relação Dose-Resposta a Droga , Holothuria/efeitos dos fármacos , Cloreto de Mercúrio/administração & dosagem , Testes de Mutagenicidade , Mutagênicos/administração & dosagem , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Sistema Respiratório/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Poluentes Químicos da Água/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA