RESUMO
The study was conducted to determine the proportion and concentration of enterohemorrhagic Escherichia coli (EHEC) O157 and six non-O157 (O26, O45, O103, O111, O121, and O145) serogroups and identify seasonal and processing plant differences in feces and on hides of cull dairy cattle processed in commercial slaughterhouses in the United States. Approximately 60 rectal and 60 hide-on samples from matched carcasses were collected in each of three processing plants, in two periods; summer of 2017 and spring of 2018. Samples before enrichment were spiral plated to quantify EHEC, and postenriched samples underwent culture methods that included immuno-magnetic separation, plating on selective media, and PCR assays for identification and serogroup confirmation of putative isolates. An isolate was considered EHEC O157 positive if it harbored serogroup-specific (rfbE), Shiga toxin (stx1 and/or stx2), and intimin (eae) genes and EHEC non-O157 positive if at least one of the non-O157 serogroup-specific, stx1 and/or stx2, and eae genes was identified. Generalized linear mixed models were fitted to estimate overall proportion of positives for EHEC O157 and non-O157 EHEC serogroups, as well as seasonal and processing plant differences in fecal and hide-on proportion of positives. The fecal EHEC proportion at the sample level was 1.8% (95% CI = 0.0-92.2%) and 4.2% (95% CI = 0.0-100.0%) for EHEC O157 and EHEC non-O157, respectively. Hide sample level proportion of positives was 3.0% (95% CI = 0.0-99.9%) for EHEC O157 and 1.6% (95% CI = 0.0-100.0%) for EHEC non-O157. The proportion of EHEC O157 and non-O157 significantly differed by processing plant and sample type (hide vs. feces), but not by season. The association between proportion of EHEC serogroups in feces with the proportion on hides collected from matched cattle was 7.8% (95% CI = 0.6-53.3%) and 3.8% (95% CI = 0.3-30.8%) for EHEC O157 and non-O157, respectively. Taken together, our findings provide evidence of a low proportion of EHEC serogroups in the feces and on hides of cull dairy cattle and that their proportion varies across processing plants.
RESUMO
The use of collagen is the recent development in various medical fields. Huge quantities of hide and skin trimmings are generated during the leather processing are wasted or underutilized. Trimmings contain collagen which can be beneficially extracted and utilized for high value products. Poly methyl methacrylate based denture materials exhibit serious concerns such as high porosity, presence of residual monomer, shrinkage, distortion and high rate of deterioration of the materials. This study aims to incorporate extracted Type I collagen with polymer to obtain denture base and investigate its chemical and mechanical properties. The present research methodology also reduces the quantity of monomer and acrylic resin usage. The collagen was extracted from animal skin and hide trimmings which are otherwise disposed as wastes. This study investigated the effect of visco-elastic characteristics of resulted specimens and their transition temperature, mechanical properties, decomposition temperature and leachability. The collagen-based specimens have better tensile strength with high decomposition temperature compared to control specimens. Scanning Electron Microscopy analysis revealed that the experimental specimens was cohesive and homogeneous which explained the higher tensile and decomposition values. The study suggests that collagen cross-linked acrylic denture base exhibit better mechanical and thermal resistance properties when compared to control specimens. The study indicates that biomaterials are emerging as smart products of value in human health.
Assuntos
Materiais Biocompatíveis , Colagem Dentária , Humanos , Colágeno Tipo I , Saúde Bucal , Teste de Materiais , Propriedades de Superfície , Polimetil Metacrilato/química , Dentaduras , Resistência à Tração , Materiais Dentários/químicaRESUMO
Dermatan sulfate is one of the major glycosaminoglycan (GAG) present in the animal hides, which is a waste/byproduct from meat industry. Efficient utilization of these meat industry wastes is garnering attention because these wastes render a possibility for their conversion into useful products. With the increased concerns over health, various initiatives have been developed to permit more efficient utilization of these by-products and thereby directly impacting environmental sustainability. Herein, we demonstrate for the first time an efficient and environmentally safe ionic liquid-assisted enzymatic process for the extraction of dermatan sulfate from buffalo hides. Dermatan sulfate has been extracted, separated, and purified from the GAG mixture using IL-assisted enzymatic digestions and chromatographic separations. NMR, FT-IR, and ESI-MS measurements showed typical characteristic peaks for dermatan sulfate. The advantages of this eco-friendly process adopted include i) use of fewer chemicals, ii) elimination of harsh chemicals, iii) elimination of various steps and sub-steps, iv) reduction in process time (12 h), and v) increase in extraction yield by 75% when compared to conventional enzymatic process (57%). Thus, the use of ionic liquids alongside enzymes will serve as an efficient methodology for the futuristic development of these derived GAGs for their potential applications.
Assuntos
Dermatan Sulfato , Líquidos Iônicos , Animais , Dermatan Sulfato/química , Espectroscopia de Infravermelho com Transformada de Fourier , Glicosaminoglicanos/química , DigestãoRESUMO
Finalyse, a T4 bacteriophage, is a pre-harvest intervention that utilizes a combination of bacteriophages to reduce incoming Escherichia coli O157:H7 prevalence by destroying the bacteria on the hides of harvest-ready cattle entering commercial abattoirs. The objective of this study was to evaluate the efficacy of Finalyse, as a pre-harvest intervention, on the reduction in pathogens, specifically E. coli O157:H7, on the cattle hides and lairage environment to overall reduce incoming pathogen loads. Over 5 sampling events, a total of 300 composite hide samples were taken using 25 mL pre-hydrated Buffered Peptone Water (BPW) swabs, collected before and after the hide wash intervention, throughout the beginning, middle, and end of the production day (n = 10 swabs/sampling point/timepoint). A total of 171 boot swab samples were also simultaneously taken at the end of the production day by walking from the front to the back of the pen in a pre-determined 'Z' pattern to monitor the pen floor environment from 3 different locations in the lairage area. The prevalence of pathogens was analyzed using the BAX® System Real-Time PCR Assay. There were no significant reductions observed for Salmonella and/or any Shiga toxin-producing E. coli (STEC) on the hides after the bacteriophage application (p > 0.05). Escherichia coli O157:H7 and O111 hide prevalence was very low throughout the study; therefore, no further analysis was conducted. However, boot swab monitoring showed a significant reduction in E. coli O157:H7, O26, and O45 in the pen floor environment (p < 0.05). While using Finalyse as a pre-harvest intervention in the lairage areas of commercial beef processing facilities, this bacteriophage failed to reduce E. coli O157:H7 on the hides of beef cattle, as prevalence was low; however, some STECs were reduced in the lairage environment, where the bacteriophage was applied. Overall, an absolute conclusion was not formed on the effectiveness of Finalyse and its ability to reduce E. coli O157:H7 on the hides of beef cattle, as prevalence on the hides was low.
RESUMO
The art of using animal hides, an apparent waste from the meat processing industry, goes back to the dawn of humanity and was highly demanded for leather manufacturing. In Ontario (Canada), small- and medium-sized abattoirs process all together approximately 300,000 sheep and 100,000 cattle per year, and for decades, the collected hides and skins have been processed into leather. However, there has been a decline in the price as well as in the demand for animal hides in the last few years, mainly due to increased customer interest in synthetic materials. This has significantly impacted small- and medium-scale abattoirs as they are left with no other option but to landfill these hides, which is not a sustainable approach. This review discusses the alternative approaches available for the management of animal hides, including those also suitable for tannery residues, which can economically and environmentally benefit society. These benefits include the production or generation of energy, compost, yarn, and medicinal goods, among other beneficial uses.
Assuntos
Matadouros , Gerenciamento de Resíduos , Animais , Bovinos , Ontário , Ovinos , PeleRESUMO
This research investigated the variations in the occurrence of Salmonella, STEC O157:H7 and non-O157 in the beef production chain in Colombia affected by seasons, hypothesizing that pathogen prevalence will be highest in the rainy season owing to soil moisture promoting bacteria multiplication and transfer between animals. To test this hypothesis, samples were obtained from five abattoirs, which represent 50% of the beef production in this country. A total of 1017 samples were collected, from which 606 were bovine feces, 206 were hide swabs, and 205 corresponded to carcass post-intervention. From the 1017 samples, 49.9% (n = 507) were collected during dry season, while 50.1% (n = 510) during rainy season. All samples (n = 1017) underwent screening for E. coli O157:H7 and Salmonella, while only a proportion of fecal samples (n = 339) were screened for the big six STEC serogroups and their virulence markers. The effect of season, age of animal and sex of animal were correlated with the prevalence results. A total of 84.7% of fecal samples carried virulence genes associated to STEC (stx or eae), suggesting that testing and control should be increased for the big-six STEC compared to E. coli O157:H7. Pathogen prevalence in feces was found to be 8.3%, 5.0%, and 51.0% for Salmonella, E. coli O157:H7 and STEC non-O157, respectively. Hides had a prevalence of 15.0% and 6.8% of Salmonella and E. coli O157:H7, respectively. Carcasses post-intervention were found to have 4.4% and 2.5% prevalence of Salmonella and E. coli O157:H7, respectively. A seasonal effect was found for fecal samples. E. coli O157 and non-O157 STEC shedding were significantly higher (P ≤ 0.05) during rainy season compared to dry season. In contrast, hides and carcasses were more likely to present lower incidence of pathogens during rainy months compared to dry season; however, it was significant only for Salmonella on carcasses with estimated odds of detection almost six times higher in the dry season relative to the rainy season (OR = 5.90, 95% CI 1.18-29.57).
RESUMO
At slaughter plants, live cattle are often scored for mud coverage as mud on hides can impact food safety and drives decisions regarding interventions during processing. Currently, there is no standardized method utilized to assess mud coverage. The aim of this study was to determine the intraobserver and interobserver reliability of 3, 4, and 5 point mud scoring systems. Beef cattle (n = 110) were videotaped during movement to holding pens upon arrival at a commercial slaughter facility. Five scorers were assigned to a 3, 4, or 5 point scoring system (n = 15), reviewed the video and assigned the cattle a mud score. A multi-rater weighted kappa analysis was used to determine intraobserver and interobserver reliability for each system. Although all scorers in the 3 point analysis and one scorer each for the 4 and 5 point analysis demonstrated moderate intraobserver reliability, all interobserver reliability kappas were poor (kappa ≤0.12). Further exploration to develop a suitable system that is repeatable is recommended.
Assuntos
Bovinos , Variações Dependentes do Observador , Matadouros , Animais , Feminino , Humanos , Masculino , EstercoRESUMO
Growing demand for ejiao gelatin produced from donkey skin and used in Traditional Chinese Medicine is putting global donkey populations at risk and threatening the livelihoods of millions of people that depend on them in lower and middle-income countries. Hundreds of thousands of donkeys are slaughtered for their skins and exported annually, mostly from Africa to China. However, the trade is spreading across the globe, including Brazil. This article highlights the appalling welfare conditions for donkeys caught up in both the legal and illegal trade, as well as the effects on vulnerable people and the potential for disease spread and hazards to human health.(AU)
A crescente demanda por ejiao uma gelatina produzida a partir da pele de jumento e usada na medicina tradicional chinesa está colocando em risco as populações globais de jumentos e ameaçando a subsistência de milhões de pessoas que dependem delas em países de renda média e baixa. Centenas de milhares de jumentos são abatidos para obter suas peles e exportados anualmente, principalmente da África para a China. No entanto, o comércio está se espalhando pelo globo, inclusive para o Brasil. Este artigo destaca as péssimas condições de bem-estar para os jumentos apanhados no comércio legal e ilegal, bem como os efeitos sobre as pessoas vulneráveis e o potencial de propagação de doenças e riscos para a saúde humana.(AU)
Assuntos
Animais , Pele , Comércio , Equidae , Fatores de RiscoRESUMO
A Gram-stain-negative, moderately halophilic strain, designated strain L5T, was isolated from wetsalted hides collected from Chengdu, south-west PR China. The cells were motile, facultative aerobic, short rod-shaped and non-endospore-forming. Growth of strain L5T occurred at pH 6-10 (optimum, pH 8), 10-45 °C (optimum, 30 °C) and in the presence of 1-17â% (w/v) NaCl (optimum, 10â%). Results of phylogenetic analyses based on 16S rRNA, gyrB and rpoD gene sequences and its genome revealed that strain L5T belonged to the genus Halomonas. Strain L5T was found to be most closely related to the type strains of Halomonas saliphila, Halomonas lactosivorans, Halomonas kenyensis, Halomonas daqingensis and Halomonas desiderata (98.8, 98.6, 98.3, 97.9 and 97.4â% 16S rRNA gene sequence similarity, respectively). The draft genome was approximately 4.2 Mb in size with a G+C content of 63.5 mol%. The average nucleotide identity (ANI) and digital DNA-DNA hybridization values among strain L5T and the selected Halomonas species were 83.3-88.9â% (ANIm), 71.1-87.3â% (ANIb) and 20.2-34.6â%, which are below the recommended cutoff values. Major fatty acids were C16â:â0, C16â:â1 ω7c, C18â:â1 ω7c and C19â:â0 cyclo ω8c and the predominant ubiquinone was Q-9, with minor ubiquinone Q-8 also present. The phospholipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, four unidentified aminophospholipids and three unidentified phospholipids. Based on the mentioned polyphasic taxonomic evidence, strain L5T represents a novel species within the genus Halomonas, for which Halomonas pellis sp. nov. is proposed. The type strain is L5T (=CGMCC 1.17335T=KCTC 72573T).
Assuntos
Cabras/microbiologia , Halomonas/classificação , Filogenia , Pele/microbiologia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Halomonas/isolamento & purificação , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio , Ubiquinona/químicaRESUMO
The demand for donkey hides for ejiao, a Traditional Chinese Medicine, has resulted in rapidly increasing prices for donkey hides and donkeys. This has put pressure on donkey populations globally and has implications for donkey welfare and the livelihoods of those who rely on donkeys as working animals. The aim of the research was to explore the feasibility of setting up new donkey farming systems to supply the rising demand for ejiao using a system dynamics model of donkey production. Results show that the size of the initial female breeding herd, reproductive performance, age of reproduction, percentage of female births and average breeding life of donkeys are key variables affecting the time to build up the donkey population to supply the demand for hides, which will be at least ten to fifteen years. The implications of this are: (i) prices for donkey hides will continue to increase, (ii) companies producing ejiao will use other ingredients, (iii) China will continue to source donkey hides from around the world, and (iv) there will be continued theft and illegal trade of donkeys and concerns for rural households reliant on donkeys for their livelihoods and adverse impacts on donkey welfare.
RESUMO
The objectives of this study were (1) to estimate the prevalence and concentration of the seven major Shiga toxin-producing Escherichia coli (STEC) serogroups (O26, O45, O103, O111, O121, O145, and O157), collectively called STEC-7, on cattle hides collected in different seasons and beef processing plants; and (2) to determine associations of season, plant, and hide cleanliness scores with the prevalence and concentration of STEC-7. A total of 720 hide surface samples (240/season) were collected over three seasons (summer and fall 2015 and spring 2016) from beef cattle carcasses in four commercial processing plants in the United States. Samples were subjected to selective culture and spiral plating methods. Overall model-adjusted mean prevalence (95% confidence interval) was 0.3% (0.03-2.3%) for STEC O26; 0.05% (<0.01-8.5%) for STEC O45; 0.2% (0.02-1.9%) for STEC O103; 0.05% (<0.01-8.5%) for STEC O145; and 3.1% (0.6-15.2%) for STEC O157. Four percent of hide samples were enumerable for STEC O157; mean concentration (standard deviation) = 2.1 (0.7) log10 colony-forming units (CFUs)/100 cm2. No samples were enumerable for non-O157 STEC. Hide-on prevalence of STEC O157 and STEC non-O157 (specifically of STEC O103) was higher in summer and spring, respectively. Across seasons and plants, the most common STEC non-O157 serogroups in this study (O26 and O103) were associated with a higher prevalence of STEC O157. Season and plant played a role in prevalence and concentration of STEC in beef cattle hides, varying by serogroup. Tailoring mitigation strategies at the plant can be challenging and processors would benefit from supplementary preharvest interventions to reduce overall contamination pressure at the plant, especially in fall and spring months when hide-on prevalence of STEC non-O157 is higher.
Assuntos
Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Carne Vermelha/microbiologia , Escherichia coli Shiga Toxigênica/isolamento & purificação , Pele/microbiologia , Matadouros , Animais , Bovinos , Contagem de Colônia Microbiana , Proteínas de Escherichia coli/genética , Fezes/microbiologia , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Reação em Cadeia da Polimerase , Prevalência , Estações do Ano , Sorogrupo , Toxina Shiga/genética , Escherichia coli Shiga Toxigênica/classificação , Escherichia coli Shiga Toxigênica/genética , Estados Unidos/epidemiologiaRESUMO
Animal hides are one of man's earliest and mostly used materials; many rawhide products, primarily leather, have for centuries been used for several purposes. The peculiar mechanical properties of leather depend on the hide composition, a dense collagen feltwork. Unfortunately, due to their proteic composition, rawhides may undergo microbial attack and biodeterioration. Over centuries, different processes and treatments (brining, vegetal or chrome tanning, tawing, etc.) were set up to face the biological attack and modify/stabilise the hide's mechanical properties. Nevertheless, even present-day rawhides are subjected to biological colonisation, and traces of this colonisation are clearly shown in Chrome(III) tanned leathers (in the wet blue stage), with obvious economic damages. The colonisation traces on tanned leathers consist of isolated or coalescent red patches, known as red heat deterioration. Parchments are rawhide products, too; they derive from another manufacturing procedure. Even parchments undergo microbial attack; the parchment biodeterioration seems comparable to leather red heat deterioration and is known as purple spots. Recently, an ecological succession model explained the process of historical parchment purple spot deterioration; the haloarchaea Halobacterium salinarum is the pioneer organism triggering this attack. The marine salt used to prevent rawhide rotting is the carrier of haloarchaea colonisers (Migliore et al., 2019). The aim of this study was to investigate the dynamics of biodeterioration on Chrome(III) tanned leathers and its effects on the stability/integrity of collagen structure. To this end, standard cultivation methods were integrated with three updated technologies, Next-Generation Sequencing (NGS), Raman spectroscopy, and Light Transmitted Analysis (LTA). A bioinformatic comparison between chrome tanned leather vs. historical parchment colonisers was performed to evaluate if leather and parchment share common culprits; furthermore, the effect of the biodeterioration on the physical properties of the hide product was evaluated.
RESUMO
Use of sodium chloride to preserve animal skins and hides is becoming increasingly untenable due to stringent environmental regulations. In the present research work, a combination of sparingly soluble alkali and water-soluble polymer of ethylene oxide has been used to preserve skins with an objective of total elimination of common salt for preservation. A comprehensive study has been made for evaluating various parameters, such as dehydration and rehydration behaviours of skins, microbial growth, emission loads and physico-chemical characteristics of the cured skin to validate the salt-free preservation system developed. The shrinkage temperature, denaturation temperature and mechanical strength of tanned leather were analysed by using shrinkage, differential scanning calorimetric and thermomechanical analysis techniques. The new curing system has been found to be effective in preserving the skin as indicated by the various parameters studied and the final leather quality. The significant reduction in total solids content such as dissolved solids and suspended solids present in the effluent compared to conventional preservation method is evident from environmental impact assessment studies.
Assuntos
Salinidade , Curtume , Animais , Varredura Diferencial de Calorimetria , Temperatura , ÁguaRESUMO
Microbiological safety of beef products can be protected by application of antimicrobial interventions throughout the beef chain. This study evaluated a commercial prototype antimicrobial intervention comprised of lytic bacteriophages formulated to reduce O157 and non-O157 Shiga-toxigenic Escherichia coli (STEC) on beef cattle hide pieces, simulating commercial pre-harvest hide decontamination. STEC reduction in vitro by individual and cocktailed phages was determined by efficiency of plating (EOP). Following STEC inoculation onto hide pieces, the phage intervention was applied and hide pieces were analyzed to quantify reductions in STEC counts. Phage intervention treatment resulted in 0.4 to 0.7 log10 CFU/cm² (p < 0.01) E. coli O157, O121, and O103 reduction. Conversely, E. coli O111 and O45 did not show any significant reduction after application of bacteriophage intervention (p > 0.05). Multiplicity of infection (MOI) evaluation indicated E. coli O157 and O121 isolates required the fewest numbers of phages per host cell to produce host lysis. STEC-attacking phages may be applied to assist in preventing STEC transmission to beef products.
RESUMO
Enzymatic dehairing as a part of the efforts for greener leather processing has reached progressive advancement with the tradition-bound tanning industry being now more receptive to cleaner processing methods due to increasing pressure from environmental groups. The dehairing mechanism is vaguely understood at present from the point of view of the enzyme specificity, which is needed for consistent and satisfactory hair removal without deleterious effect on the leather quality. Gaining insight into the dehairing specificity would help in designing efficient dehairing process. This paper attempts to review the literature pertaining to all the relevant and critical issues in detail to clearly delineate the right kind of substrate specificity required to attack only the potential targets for hair removal, and for making fine quality leather without adverse effect on other desired leather making components of the skin matrix. The gap in understanding of these critical issues is discussed with recommendation for further scientific studies in the area.
Assuntos
Enzimas/química , Remoção de Cabelo , Peptídeo Hidrolases/química , Terapia Enzimática , Humanos , Peptídeo Hidrolases/uso terapêutico , Especificidade por SubstratoRESUMO
Cattle hides are an important source of enterohaemorrhagic Escherichia coli (EHEC) carcass contamination at slaughter. Seven EHEC serogroups are adulterants in raw, non-intact beef: EHEC O26, O45, O103, O111, O121, O145 and O157. The objective of this study was to estimate the probability for hide contamination with EHEC among US market beef cows at slaughter and to test the effects of season and geographic region on prevalence of hide contamination. Hides (n = 800) of market cows were swabbed at slaughter immediately after exsanguination, prior to hide removal. Cows were sampled from two geographically distinct beef packing plants during four seasons of 2015. Cattle source was categorized by northern or southern region. Samples were tested for EHEC by a molecular screening assay. The effects of region, season and their interaction on the probability of hide contamination by each EHEC serogroup were tested in separate multilevel multivariable logistic regression models, accounting for the random effect of clustering by plant. Statistical significance was set α = .05. Of 800 total samples, at least one EHEC was detected on 630 (79%) hides. Enterohaemorrhagic E. coli O26 was detected on 129 (16%) of all hides sampled, EHEC O45 on 437 (55%), EHEC O103 on 289 (36%), EHEC O111 on 189 (24%), EHEC O121 on 140 (18%), EHEC O145 on 171 (21%) and EHEC O157 on 89 (11%). Detection of EHEC O26 and EHEC O121 was associated with season. Season and region were associated with detecting EHEC O45 and EHEC O157. Season-by-region interactions were associated with the outcome of detecting EHEC O103, EHEC O111 and EHEC O145. Season, region of origin and the interaction of these factors affect hide contamination of market beef cattle at slaughter by EHEC, and each serogroup responds to these factors uniquely.
Assuntos
Bovinos/microbiologia , Escherichia coli Êntero-Hemorrágica/isolamento & purificação , Pele/microbiologia , Animais , Estudos Transversais , Feminino , Análise Multivariada , Fatores de Risco , Estações do Ano , Estados UnidosRESUMO
The prevalence of potentially positive Shiga toxin-producing Escherichia coli (STEC) bovine hides and carcasses in three abattoirs in Costa Rica was estimated. Two export facilities (A and B) and one non-export establishment (C) were visited during the dry and rainy seasons of 2013. Swabs of hides pre-eviscerated and treated (180-220 peroxyacetic acid spray) carcasses were tested for the potential presence of STEC serogroups O26, O45, O103, O111, O121, and O145. The prevalence on hides during the rainy season was 86.7, 96.7 and 96.7% for facilities A, B, and C, respectively. During the dry season, the prevalence on hides was significantly lower in plants A and B (40% and 26.7%, respectively), but was marginally associated with the season in plant C (76.7%, P=0.0523). The prevalence of non-O157 STEC markers on treated carcasses was low (0 to 3.3%), suggesting that all plants were effective in minimizing the target non-O157 STEC in beef destined for export and for domestic consumption.
Assuntos
Bovinos/microbiologia , Escherichia coli/isolamento & purificação , Estações do Ano , Toxinas Shiga/metabolismo , Pele/microbiologia , Matadouros , Animais , Costa Rica , Escherichia coli/classificação , Escherichia coli/metabolismoRESUMO
Cattle carcasses from two abattoirs were examined at selected stages of slaughter (skinning, evisceration, trimming, washing, blast chilling) for aerobic colony counts (ACC) and Enterobacteriaceae. At each stage and abattoir, 50 carcasses were sampled by swabbing at the neck, brisket, flank and rump. After skinning, average ACC on carcasses was 1.5logCFUcm(-2) and Enterobacteriaceae frequencies at sites were ≤6%. From skinned to washed carcasses, certain abattoir- and site-specific changes occurred. Blasting clearly reduced ACC and Enterobacteriaceae results on carcasses from abattoir B, but reductions were limited or lacking in abattoir A. In addition, 100 hides and corresponding chilled carcasses were examined. On hides, average ACC was 5.6logCFUcm(-2) and Enterobacteriaceae frequencies at sites ranged from 74 to 96%. Average carcass-hide ratios of the two abattoirs were comparable for ACC (0.0182-0.0202%) but differed for Enterobacteriaceae counts (abattoir A: 0.4627%; abattoir B: 0.0941%). Such ratios allow comparing process performance between abattoirs in the daily practice.
Assuntos
Matadouros , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Carne/microbiologia , Animais , Bovinos , Contagem de Colônia Microbiana , Enterobacteriaceae/isolamento & purificação , Manipulação de Alimentos/métodosRESUMO
This study determined Salmonella prevalence at different stages during the slaughtering in three beef slaughter plants (A, B and C) located in the western region of Venezuela (Zulia and Lara states). Each facility was visited three times at monthly intervals, from the months October through December of 2006. Samples were collected from hides (n=80), fecal grabs (n=80) and carcasses (n=80) at the phases of pre-evisceration, after-evisceration and pre-cooler at three sampling sites on the animals (rump, flank and brisket). Salmonella prevalence was higher on hides (36.3%) than on feces (13.8%) (P<0.05). Differences among slaughter plants for overall Salmonella prevalence were observed (P=0.001; A: 3.5%, B: 11.1%, C: 4.4%). From the isolated strains, Salmonella enterica subspecies enterica ser. Saintpaul, Salmonella ser. Javiana and Salmonella ser. Weltevreden were identified. Cattle feces and hides might be considered as important sources of Salmonella for carcass contamination at different slaughter stages. The presence of potentially pathogenic Salmonella serotypes at the slaughtering stages is an evidence of the circulation of this pathogen in the food environment; its presence could increase consumers' risks of infection if proper food handling and preparation techniques are not followed. These data should serve as a baseline for future comparisons in Salmonella prevalence on beef carcasses to be used by the government and industry in order to establish preventive measures and to better address the risks of Salmonella contamination.