Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 6(4): 1801170, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30828521

RESUMO

The breakthrough of organometal halide perovskite solar cells (PSCs) based on mesostructured composites is regarded as a viable member of next generation photovoltaics. In high efficiency PSCs, it is crucial to finely optimize the charge dynamics and optical properties matching between the perovskites and electron transporting materials to relax the trade-off between the optical and electrical requirements. Here, a simple antipolar route with H2O as the additive is proposed to prepare hierarchical electron transporting layers to boost the efficiency of dopant-free PSCs. The photovoltaic performance of the PSCs is enhanced owing to increased light-scattering, improved Ostwald ripening, and photo-generated electron extraction. Optimization of the H2O addition enables a valid power conversion efficiency of 19.9% (reverse scan: 20.02%) to be achieved. The device can retain more than 90% of its initial performance after storage in air more than 30 days. These results are inspiring in that they present that a mesoporous transporting layer could be easily re-constructed to hierarchical architecture by the antipolar method to further improve the performance of PSCs.

2.
Chemosphere ; 193: 737-744, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29175401

RESUMO

Herein, a mesoporous nanoplate multi-directional assembled Bi2WO6 architecture was successfully prepared and applied for the photocatalytic removal of NOx pollutants at low concentrations under visible light and simulated solar light irradiation. Bi2WO6-180-C synthesized at a hydrothermal temperature of 180 °C with calcination exhibited an excellent conversion efficiency in the photocatalytic oxidation of gaseous NO. The crystallinity, morphology, specific surface area, pore environment, light absorption, and separation of photogenerated electrons and holes were investigated by various techniques; the excellent photocatalytic performance of Bi2WO6-180-C was attributed to its special hierarchical mesoporous structure with an appropriate pore size and interconnected porous network, which imparted good gas permeability and fast mass transfer of reaction intermediates and final products of NO oxidation. Furthermore, hierarchical mesoporous Bi2WO6 showed excellent photocatalytic durability and reusability.


Assuntos
Bismuto/química , Catálise , Óxido Nítrico/química , Óxido Nítrico/efeitos da radiação , Gases , Luz , Oxidantes Fotoquímicos , Oxirredução , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA