Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Sci Total Environ ; 951: 175413, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39137846

RESUMO

Plastics are now the dominant fraction of anthropogenic marine debris and as a result of their long residence times, it is important to determine the threats that plastics present to marine ecosystems including their ability to sorb a diversity of environmental pollutants such as trace metals. To address this knowledge gap, this study examined the sorption of cadmium (Cd), copper (Cu), mercury (Hg), lead (Pb), and zinc (Zn) by macro- and microplastics of polyethylene terephthalate (PETE) and high-density polyethylene (HDPE) within marine intertidal sediments in a human-impacted area of Burrard Inlet (British Columbia, Canada). Trace metal sorption by macro- and microplastics was dependent on 1) polymer characteristics, notably the aging of the plastic over the duration of the field experiment as shown by the formation of new peaks via FTIR spectra; and 2) amounts of sediment organic matter, where the sorption of trace metals by the plastic particles decreased with increasing organic matter content (from 2.8 % to 15.8 %). Plastic particles play a minor role in trace metals sorption in the presence of organic matter at high concentrations as a result of competitive adsorption. Overall, the interaction of trace metals with sediment plastics was highly dynamic and to understand the key processes controlling this dynamic requires further study. This work contributed to our understanding on metal-plastic interactions in coastal intertidal sediments from urban environments and serve to support plastic pollution risk management and bioremediation studies.

2.
Polymers (Basel) ; 16(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38932052

RESUMO

In this study, titanium nitride (TiN) was selected as an additive to a high-density polyethylene (HDPE) matrix material, and four different nanocomposites were created with TiN loadings of 2.0-8.0 wt. % and a 2 wt. % increase step between them. The mixtures were made, followed by the fabrication of the respective filaments (through a thermomechanical extrusion process) and 3D-printed specimens (using the material extrusion (MEX) technique). The manufactured specimens were subjected to mechanical, thermal, rheological, structural, and morphological testing. Their results were compared with those obtained after conducting the same assessments on unfilled HDPE samples, which were used as the control samples. The mechanical response of the samples improved when correlated with that of the unfilled HDPE. The tensile strength improved by 24.3%, and the flexural strength improved by 26.5% (composite with 6.0 wt. % TiN content). The dimensional deviation and porosity of the samples were assessed with micro-computed tomography and indicated great results for porosity improvement, achieved with 6.0 wt. % TiN content in the composite. TiN has proven to be an effective filler for HDPE polymers, enabling the manufacture of parts with improved mechanical properties and quality.

3.
Regul Toxicol Pharmacol ; 147: 105560, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182014

RESUMO

High density polyethylene (HDPE) containers are fluorinated to impart barrier properties that prevent permeation of liquid products filled in the container. The process of fluorination may result in the unintentional formation of certain per- and polyfluoroalkyl substances (PFAS), specifically perfluoroalkyl carboxylic acids (PFCAs), as impurities. This study measured the amounts of PFCAs that may be present in the fluorinated HDPE containers, which could migrate into products stored in these containers. Migration studies were also conducted using water and mineral spirits to estimate the amount of PFCAs that might be found in the products stored in these containers. The migration results were used to conservatively model potential PFCA exposures from use of six product types: indoor-sprayed products, floor products, hand-applied products, manually-sprayed pesticides, hose-end sprayed products, and agricultural (industrial) pesticides. The potential that such uses could result in a non-cancer hazard was assessed by comparing the modeled exposures to both applicable human non-cancer toxicity values and environmental screening levels. Environmental releases were also compared to aquatic and terrestrial predicted no-effect concentrations (PNECs). The results of these analyses indicated no unreasonable non-cancer risk to humans, aquatic species, and terrestrial species from PFCAs in products stored in fluorinated HDPE containers.


Assuntos
Fluorocarbonos , Praguicidas , Poluentes Químicos da Água , Humanos , Polietileno/toxicidade , Fluorocarbonos/toxicidade , Fluorocarbonos/análise , Ácidos Carboxílicos/toxicidade , Ácidos Carboxílicos/análise , Água , Praguicidas/análise , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
4.
Polymers (Basel) ; 15(20)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37896422

RESUMO

When properly compatibilized, the blending of polyethylene (PE) and polyamide (PA) leads to materials that combine low prices, suitable processability, impact resistance, and attractive mechanical properties. Moreover, the possibility of using these polymers without prior separation may be a suitable opportunity for their recycling. In this work, the use of an epoxidized waste vegetable oil (EWVO) was investigated as a green compatibilizer precursor (CP) for the reactive blending of a high-density PE (HDPE) with a polyamide-6 (PA6). EWVO was synthesized from waste vegetable cooking oil (WVO) using ion-exchange resin (Amberlite) as a heterogeneous catalyst. HDPE/PA6 blends were produced with different weight ratios (25/75, 75/25, 85/15) and amounts of EWVO (1, 2, 5 phr). Samples with WVO or a commercial fossil-based CP were also prepared for comparison. All the blends were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), rheology, and mechanical tests. In the case of HDPE/PA6 75/25 and 85/15 blends, the addition of EWVO at 2 phr showed a satisfactory compatibilizing effect, thus yielding a material with improved mechanical properties with respect to the blend without compatibilizer. On the contrary, the HDPE/PA6 25/75 ratio yielded a material with a high degree of crosslinking that could not be further processed or characterized. In conclusion, the results showed that EWVO had a suitable compatibilizing effect in HDPE/PA6 blends with high HDPE content, while it resulted in unsuitable for blends with high content of PA6.

5.
Polymers (Basel) ; 15(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37765596

RESUMO

The morphology of virgin reactor powder (RP) of high-density polyethylene (HDPE) with MW = 160,000 g/mol was investigated using DSC, SEM, SAXS, and WAXS methods. The morphological SEM analysis showed that the main morphological units of RP are macro- and micro-shish-kebab structures with significantly different geometric dimensions, as well as individual lamellae of folded chain crystals. A quantitative analysis of an asymmetric SAXS reflection made it possible to reveal the presence of several periodic morphoses in the RP with long periods ranging from 20 nm to 60 nm, and to correlate them with the observed powder morphology. According to the DSC crystallinity data, the thickness of the lamellae in each long period was estimated. Their surface energy was calculated in the framework of the Gibbs-Thompson theory. The presence of regular and irregular folds on the surface of different shish-kebab lamellae was discussed. The percentage of identified morphoses in the RP was calculated. It has been suggested that the specific structure of HDPE RP is due to the peculiarity of polymer crystallization during suspension synthesis in a quasi-stationary regime, in which local overheating and inhomogeneous distribution of shear stresses in a chemical reactor are possible.

6.
J Hazard Mater ; 459: 132042, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37480612

RESUMO

Microplastics (MPs) in the environment are the sink and vector of organic contaminants, including per- and polyfluoroalkyl substances (PFASs). Although PFASs are low- and non-volatile compounds, they have the potential to partition and diffuse from MP into the gas phase in the environmental functions. Herein, the MP-air partition coefficient (KPA) of seven PFASs was measured using a solid-fugacity meter. The PFAS KPA values in two MPs (high-density polyethylene (HDPE) and thermoplastic polyurethane (TPU)) were determined under different times, temperatures, and relative humidities (RH), and a model was developed to predict the PFAS KPA values based on the measured data. The results showed that the KPA of PFASs increased with the prolonged partition time until 90 mins, and higher temperature and RH facilitated the distribution of PFASs in MPs into the air phase, leading to smaller KPA values. Moreover, the derived equation for predicting PFAS log KPA values was robust with 0.79 of an adjusted square of correlation coefficient (R2adjusted = 0.79) and 0.35 of root mean squared error (RMSE = 0.35). These findings provided the first knowledge for understanding the partition behavior and fate of PFASs in the MP-air microenvironment.

7.
J Hazard Mater ; 446: 130652, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36603420

RESUMO

Per- and polyfluoroalkyl substances (PFASs) present adverse effects for human health, which result in strong needs for reliable tools monitoring personal exposure to PFASs. This study manufactured two wristbands of high density polyethylene (HDPE) and thermoplastic polyurethane (TPU), and used the wristbands to monitor PFASs personal exposure. The analytical method was developed to measure 32 PFASs in the paired HDPE and TPU wristbands worn by 60 postgraduates. Twenty-nine of 32 PFASs were detected and hexafluoropropylene oxide dimer acid (HFPO-DA) was predominant individual PFASs with median concentrations of 337 and 554 pg/g for HDPE and TPU wristbands respectively. The gender and grade of students had moderate effects on PFASs distribution in the wristbands. Higher PFASs levels were determined in the two wristbands worn by the male students compared to the females, and the greatest PFASs concentration was observed in the wristbands worn by the first-year postgraduates, follow by second- and third-year postgraduates. Additionally, significant correlations between paired HDPE and TPU wristbands were observed for perfluorobutanoic acid (PFBA), perfluorohexane sulfonic acid (PFHxS), perfluoroheptane sulfonic acid (PFHpS), perfluorooctane sulfonic acid (PFOS), and HFPO-DA. These results suggest that HDPE and TPU wristbands can be used as effective tools for monitoring personal PFAS exposure.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Feminino , Humanos , Masculino , Polietileno , Poliuretanos , Fluorocarbonos/análise , Estudantes , Monitoramento Ambiental
8.
Sensors (Basel) ; 22(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36559955

RESUMO

In this paper, we propose a novel technique for the inspection of high-density polyethylene (HDPE) pipes using ultrasonic sensors, signal processing, and deep neural networks (DNNs). Specifically, we propose a technique that detects whether there is a diversion on a pipe or not. The proposed model transmits ultrasound signals through a pipe using a custom-designed array of piezoelectric transmitters and receivers. We propose to use the Zadoff-Chu sequence to modulate the input signals, then utilize its correlation properties to estimate the pipe channel response. The processed signal is then fed to a DNN that extracts the features and decides whether there is a diversion or not. The proposed technique demonstrates an average classification accuracy of 90.3% (when one sensor is used) and 99.6% (when two sensors are used) on 34 inch pipes. The technique can be readily generalized for pipes of different diameters and materials.


Assuntos
Produtos Biológicos , Aprendizado Profundo , Polietileno , Cultura , Redes Neurais de Computação
9.
Materials (Basel) ; 15(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36556544

RESUMO

This paper presents the effect of the addition of fillers such as aluminum hydroxide or montmorillonite on the structure and properties of polymers such as high-density polyethylene (HDPE) and polybutylene terephthalate (PBT). Both types of specimens were obtained by injection molding. X-ray diffraction examinations were performed on the materials obtained to determine the effect of the addition of the fillers used on the degree of crystallinity of the composites. The density and hardness of the composites were evaluated, and the static tensile test and the analysis of the structure parameters using atomic force microscopy (AFM) were also carried out. It was shown that the addition of powder fillers to polymers such as high-density polyethylene and polybutylene terephthalate affects the structure parameters such as surface roughness, mean grain size, anisotropy ratio, fractal dimension, the corner frequency of the composites, and mechanical properties such as Young's pseudo-modulus, average adhesion force, hardness, and tensile strength.

10.
Polymers (Basel) ; 14(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36365622

RESUMO

Friction stir welding (FSW) of polymeric materials has recently attracted significant attention. Herein, we present the effect of the tool pin profile on the FSW of high-density polyethylene (HDPE) joints through joint experimental analysis and thermomechanical simulations. For analysis of pin profile effects on the thermomechanical properties of HDPE joints, frustum (FPT), cubic (CPT), and triangular (TPT) pin shapes were selected in this study. This research investigated the heat generation of the parts of the different tools as well as heat flux (internal and surface). The results revealed that the heat generation in pins with more edges (cubic (96 °C) and triangular (94 °C)) was greater than in pins with a smooth shape (frustum (91 °C)). The higher heat generation caused the heat flux on the surface of the HDPE from the cubic pin profile to be greater than for other joints. Due to the properties of HDPE, higher heat generation caused higher material velocity in the stirring zone, where the velocity of the materials in TPT, CPT, and FPT pins were 0.41 m/s, 0.42 m/s, and 0.4 m/s, respectively. The simulation results show sharp-edged pins, such as triangular and cubic, lead to over-stirring action and internal voids formed along the joint line. Furthermore, the simulation results indicated that the size of the stirred zones (SZs) of the FPT, TPT, and CPT samples were 17 mm2, 19 mm2, and 21 mm2, respectively, which is around three times the corresponding values in the HAZ.

11.
EFSA J ; 20(8): e07477, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35978620

RESUMO

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process LOGIFRUIT (EU register number RECYC260). The input consists of pre-washed high-density polyethylene (HDPE) or polypropylene (PP) crates from closed and controlled food distribution loops. The process separates crates by material type. Crates are ground to flakes, possibly extruded to pellets and used by companies approved to be in the loop to manufacture new crates. The Panel considered that the quality management system (QAS) put in place to ensure compliance of the origin of the input with Commission Regulation (EC) No 282/2008 and to provide full traceability is critical. The Panel concluded that, when run under the conditions described, the input of the process LOGIFRUIT exclusively originates from product loops which are in closed and controlled chains. The process is designed to ensure that only crates intended for food contact are used and that contamination other than by food can be ruled out. Therefore, the recycling process LOGIFRUIT to produce HDPE and PP crates to be used in contact with fruits and vegetables, and packed meat and fish, dairy, bakery and pastry products is not of safety concern.

12.
EFSA J ; 20(6): e07384, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35784820

RESUMO

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process Cajas y Palets en una Economia Circular (CAPEC) (EU register number RECYC242). The input consists of crates made of high-density polyethylene (HDPE) or polypropylene (PP) originating from closed and controlled product loops for the packaging of whole fruits and vegetables. Flakes or pellets are produced that will be used by manufacturers of new crates for food contact. The Panel considered that the management system put in place to ensure compliance of the origin of the input with Commission Regulation (EC) No 282/2008 and to provide full traceability from input to final product is the critical process step. It concluded that the input of the process CAPEC originates from product loops which are in closed and controlled chains designed to ensure that only materials and articles that have been intended for food contact are used and that contamination can be ruled out when run under the conditions described by the applicant. The recycling process CAPEC is therefore suitable to produce recycled HDPE and PP crates intended to be used in contact with fruits and vegetables.

13.
EFSA J ; 20(6): e07362, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35706679

RESUMO

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process Kunststof Recycling Nederland (KRN) (EU register number RECYC251). The input consists of box pallets made of high-density polyethylene (HDPE) originating from a closed and controlled product loop for packaging of meat. Flakes are used to produce new box pallets for food contact. The Panel considered that the management system put in place to provide full traceability from the input to the final product and to ensure compliance of the origin of the input with Commission Regulation (EC) No 282/2008 is critical. According to the applicant, the input of the process KRN originates from a product loop which is in closed and controlled chain, designed to ensure that only materials and articles that have been intended for food contact are used and that contamination can be ruled out when run under the conditions described by the applicant. The Panel concluded that the recycling process KRN is suitable to produce recycled HDPE box pallets intended to be used in contact with refrigerated or frozen, packed or unpacked meat.

14.
Materials (Basel) ; 15(9)2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35591606

RESUMO

In this study, we fabricated high-performance polyethylene composites by constructing SiO2@silane coupling agent (γ-methylacryloxypropyl trimethoxysilane) and SiO2@polydopamine (PDA) double-layer structures on a magnesium oxysulfate whisker surface. In addition to realizing strong mechanical properties, the flame-retardant properties of the composites were effectively improved. Further increase in the initial crystallization temperature of the modified composites indicated that the dispersion of whisker in the matrix was improved. The drag effect of the modified whisker on the HDPE molecular chain was characterized by dynamic mechanical thermal analysis (DMTA) and the morphology of the impact-fractured surface was characterized by scanning electron microscopy (SEM); both confirmed the improved compatibility between the whisker and the matrix. The tensile strength of HDPE/MOSw@SiO2@KH570 and HDPE/MOSw@SiO2@PDA composites were 22.6% and 41.5% higher than that of the HDPE/MOSw composites, respectively. The impact strengths of the HDPE/MOSw@SiO2@KH570 and HDPE/MOSw@SiO2@PDA composites were 129% and 102% higher than that of the HDPE/MOSw composites, respectively. A stable carbon-silicate layer constructed by a SiO2@KH570 and SiO2@PDA double-layer structure delayed the combustion process. As a result, the limiting oxygen index (LOI) of HDPE/MOSw@SiO2@KH570 and HDPE/MOSw@SiO2@PDA composites increased from 22.5 to 22.9 and 23.5, respectively.

15.
Polymers (Basel) ; 13(22)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34833321

RESUMO

The surface functionalisation of high-density polyethylene (HDPE) and HDPE/alumina-toughened zirconia (ATZ) surfaces with chitosan via electron-beam (EB) irradiation technique was exploited for preparing materials suitable for biomedical purposes. ATR-FTIR analysis and wettability measurements were employed for monitoring the surface changes after both irradiation and chitosan grafting reaction. Interestingly, the presence of ATZ loadings beyond 2 wt% influenced both the EB irradiation process and the chitosan functionalisation reaction, decreasing the oxidation of the surface and the chitosan grafting. The EB irradiation induced an increase in Young's modulus and a decrease in the elongation at the break of all analysed systems, whereas the tensile strength was not affected in a relevant way. Biological assays indicated that electrostatic interactions between the negative charges of the surface of cell membranes and the -NH3+ sites on chitosan chains promoted cell adhesion, while some oxidised species produced during the irradiation process are thought to cause a detrimental effect on the cell viability.

16.
Materials (Basel) ; 14(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34683777

RESUMO

Temperatures of -25 °C, +5 °C, and +35 °C were selected to study the creep behavior of high-density polyethylene (HDPE). The ultimate tensile strength of HDPE materials was obtained through uniaxial tensile experiments and the time-strain curves were obtained through creep experiments. When the loaded stress levels were lower than 60% of the ultimate strength, the specimens could maintain a longer time in the stable creep stage and were not prone to necking. In contrast, the specimens necked in a short time. Then, the time hardening form model was applied to simulate the time-strain curve and the parameter values were solved. The parameter values changed exponentially with the stresses, thereby expanding and transforming the time hardening model. The expanded model can easily and accurately predict creep behaviors of the initial and stable creep stages as well as the long-term deformations of HDPE materials. This study would provide a theoretical basis and reference value for engineering applications of HDPE.

17.
Polymers (Basel) ; 13(18)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34578056

RESUMO

Plastic waste generation has become an important problem that critically affects marine and oceans environments. Fishing nets gear usually have a relatively short lifespan, and are abandoned, discarded and lost, what makes them one of the largest generators of ocean plastic waste. Recycled polyolefin resins from fishing nets (rFN), especially from polyethylene (PE), have poor properties due to the presence of contaminants and/or excessive degradation after its lifetime. These reasons limit the use of these recycled resins. This work aims to study the incorporation of recycled fishing nets PE-made to different grades of virgin PE, in order to evaluate the potential use of these rFN in the development of new products. The recovered fishing nets have been fully characterized to evaluate its properties after the collection and recycling process. Then, different PE virgin resins have been mechanically blended with the recovered fishing nets at different recycling contents to study its feasibility for fishing nets or packaging applications. Critical mechanical properties for these applications, as the elongation at break, impact strength or environmental stress cracking resistance have been deeply evaluated. Results show important limitations for the manufacture of fibers from recycled PE fishing nets due to the presence of inorganic particles from the marine environment, which restricts the use of rFN for its original application. However, it is proved that a proper selection of PE raw resins, to be used in the blending process, allows other possible applications, such as non-food contact bottles, which open up new ways for using the fishing nets recyclates, in line with the objectives pursued by the Circular Economy of Plastics.

18.
Polymers (Basel) ; 13(11)2021 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-34204063

RESUMO

Incorporating recycled plastic waste in concrete manufacturing is one of the most ecologically and economically sustainable solutions for the rapid trends of annual plastic disposal and natural resource depletion worldwide. This paper comprehensively reviews the literature on engineering performance of recycled high-density polyethylene (HDPE) incorporated in concrete in the forms of aggregates or fiber or cementitious material. Optimum 28-days' compressive and flexural strength of HDPE fine aggregate concrete is observed at HDPE-10 and splitting tensile strength at HDPE-5 whereas for HDPE coarse aggregate concrete, within the range of 10% to 15% of HDPE incorporation and at HDPE-15, respectively. Similarly, 28-days' flexural and splitting tensile strength of HDPE fiber reinforced concrete is increased to an optimum of 4.9 MPa at HDPE-3 and 4.4 MPa at HDPE-3.5, respectively, and higher than the standard/plain concrete matrix (HDPE-0) in all HDPE inclusion levels. Hydrophobicity, smooth surface texture and non-reactivity of HDPE has resulted in weaker bonds between concrete matrix and HDPE and thereby reducing both mechanical and durability performances of HDPE concrete with the increase of HDPE. Overall, this is the first ever review to present and analyze the current state of the mechanical and durability performance of recycled HDPE as a sustainable construction material, hence, advancing the research into better performance and successful applications of HDPE concrete.

19.
Polymers (Basel) ; 13(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34208856

RESUMO

In this study, a method for manufacturing high-density polyethylene (HDPE)-based carbon fibers using a hybrid cross-linking method was studied. HDPE precursor fibers were first cross-linked with an electron beam (E-beam) at an irradiation dose of 1000-2500 kGy, and then cross-linked in sulfuric acid at 80-110 °C for 60 min. Hybrid crosslinked fibers were carbonized for 5 min at a temperature of 900 °C. As a result, the hybrid crosslinked fibers had a carbonization yield of 40%. In addition, the carbonized fibers after hybrid crosslinking exhibited perfect fiber morphology, and HDPE-based carbon fibers with (002) and (10l) peaks, which are the intrinsic XRD peaks of carbon fibers, were successfully prepared.

20.
Materials (Basel) ; 14(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34300942

RESUMO

In this paper, we investigated theimpact of glassy carbon (GC) reinforcement oncrystal structure and the mechanical performance of high-density polyethylene (HDPE). We made composite samples by mixing HDPE granules with powder in ethanol followed bymelt mixing in a laboratory extruder. Along with the investigated composite, we also prepared samples with carbon nanotubes (CNT), graphene (GNP) and graphite (Gr) to compare GC impact with already used carbon fillers. To evaluate crystal structure and crystallinity, we used X-ray diffraction (XRD) and differential scanning calorimetry (DSC). We supported the XRD results with a residual stress analysis (RSA) according to the EN15305 standard. Analysis showed that reinforcing with GC leads to significant crystallite size reduction and low residual stress values. We evaluated the mechanical properties of composites with hardness and tensile testing. The addition of glassy carbon results inincreased mechanical strength incomposites with CNT and GNP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA