Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 426
Filtrar
1.
Food Chem X ; 23: 101774, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39280230

RESUMO

In recent years, the global mushroom industry has seen remarkable growth due to its nutritional benefits, increasing market value, and rising consumer demand. Mushrooms are valued for their unique flavor, low sugar and salt, and rich Vitamin D content. In India as well as across the globe, mushroom cultivation is becoming increasingly popular among new entrepreneurs, leveraging the diverse agro-climatic conditions and substantial agricultural waste. Various government policies are also fostering research and development in this sector. To extend shelf life and preserve quality, various preservation techniques are employed, including drying, freezing, canning, high-pressure processing and modified atmosphere packaging. Furthermore, cutting-edge technologies such as nuclear magnetic resonance and spectroscopy are improving post-harvest processing, helping to maintain sensory properties and nutritional content. Automation is also transforming mushroom processing by enhancing efficiency and scalability. This review examines the innovative methods and technologies driving advancements in mushroom production and quality worldwide.

2.
Food Chem X ; 24: 101808, 2024 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-39310882

RESUMO

Cucumbers produce by-products such as cucumber pomace during processing and most of them are discarded without being utilized. To effectively utilize the waste, cucumber pomace is used to extract both insoluble and soluble dietary fibers (DFs) using compound enzyme method (ME), High pressure processing assisted ME (HPP-ME), and dynamic high-pressure microfluidization-assisted ME (DHPM-ME). The results showed that DHPM-ME improved the extraction rate of soluble DFs most effectively, increasing it from 1.74 % to 4.08 %. The modified DFs exhibited enhanced hydration properties and functional properties after HPP-ME- and DHPM-ME-mediated auxiliary treatment. Additionally, the modified DFs exhibited improved thermal stability, increased absorption peaks in the infrared spectra, decreased crystallinity, improved glucose and cholesterol adsorption ability, and delayed glucose adsorption. The cucumber pomace-derived modified DFs can be used as a functional food additive in bakery, meat, dairy products, and beverages, and their effective use can further enhance the economic benefits.

3.
Food Sci Anim Resour ; 44(5): 967-987, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39246541

RESUMO

Recently, as the concept of pet food that satisfies both nutritional needs and the five senses has evolved, so too has the demand for effective pet food non-thermal sterilization methods. Prominent non-thermal technologies include high-pressure processing, plasma, and radiation, which are favored for their ability to preserve nutrients, avoid residues, and minimize compositional changes, thereby maintaining quality and sensory properties. However, to assess their effectiveness on pet food, it is essential to optimize operational parameters such as pressure levels, plasma intensity, radiation dosage, and temperature. Further studies are needed to evaluate microbial sterilization efficacy and sensory attributes. This exploration is expected to lay the groundwork for preventing zoonotic diseases and improving the production of high-quality pet food.

4.
Food Chem ; 463(Pt 1): 141078, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39243612

RESUMO

A comprehensive comparison was conducted on the effect of conventional thermal processing (TT), high-pressure processing (HP), pulse electric field (PF), and ohmic heating (OH) on water-soluble vitamins and color retention in strawberry nectar. The ascorbic acid (AA) content increased by 15- and 9-fold after TT and PF treatment, respectively, due to rupturing of cells under heat stress and release of intracellular AA. Dehydroascorbic acid (DHA) content did not change considerably after TT and PF treatment but significantly decreased after HP and OH treatment. TT treatment offered the highest total vitamin C retention. The B vitamins remained largely unchanged after processing, with the highest loss of 34 % for riboflavin in OH-treated samples. All the technologies resulted in similar color retention after processing. The study concludes with a standardized comparison of mainstream preservation technologies using pilot-scale equipment. Such an approach significantly increases the applicability of the results presented in the study.

5.
Food Sci Nutr ; 12(8): 5815-5823, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39139944

RESUMO

Lycopene is usually extracted from the by-product of the tomato industry using organic solvents (OS) in combination with a physical technique. An emerging physical technique is high-pressure processing (HPP). This study aims to find a method by applying a green solvent (edible vegetable oils) in an HPP-assisted solid-liquid extraction. Three dosages of tomato by-product (10%, 20%, and 40%, w/v) were tested using OS, sunflower oil (RSO), and extra-virgin olive oil (EVOO). Lycopene recovery increased with the ratio of by-product to oil, particularly when using EVOO. In another stage of the study, consumers evaluated EVOO that contained two doses of tomato by-product (10% and 20%, w/v). Consumers preferred the EVOO from 10% tomato by-product ratio over that with 20%. Additionally, 83.8% of consumers stated that enriched oil could be deemed beneficial for health. The proposed method considers the fundamental principles of the circular economy and practical industrial scenario to recover lycopene from tomato by-product.

6.
Gels ; 10(8)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39195071

RESUMO

In order to explore the formation mechanism of the emulsion gel induced by high pressure processing (HPP) and its encapsulation and protection of functional ingredients, a curcumin-loaded whey protein isolate (WPI)/κ-carrageenan (κ-CG) composite emulsion gel induced by HPP was prepared. The effect of pressure (400, 500 and 600 MPa), holding time (10, 20 and 30 min) and concentration of κ-CG (0.8%, 1.0% and 1.2%, w/v) on the swelling rate, gel strength, the stability of curcumin in the emulsion gel, water distribution and its mobility, as well as the contents of interface protein were characterized. The results showed that the addition of κ-CG significantly reduced the protein concentration required for the formation of emulsion gel induced by HPP and greatly reduced the swelling rate of the emulsion gel. The gel strength and storage stability of the composite emulsion gels increased with the increase in pressure (400-600 MPa) and holding time (10-30 min). When the pressure increased to 500 MPa, the stability of curcumin in the emulsion gel significantly improved. When the ratio of WPI to κ-CG was 12:1 (the κ-CG concentration was 1.0%), both the photochemical and thermal stability of curcumin were higher than those of the other two ratios. The HPP significantly increased the mobility of monolayer water in the system, while the mobility of multilayer water and immobilized water was significantly reduced. Increasing the holding time and the concentration of κ-CG both can result in an increase in the interfacial protein content in the oil/water system, and the HPP treatment had a significant effect on the composition of the interfacial protein of the emulsion gel.

7.
Food Chem ; 461: 140768, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39181051

RESUMO

The aim of this paper is to provide a thorough review of recent research on the effects of high pressure processing (HPP) and hyperbaric storage (HS) on lipid oxidation amounts in different food products, as well as the mechanisms of lipid oxidation during processing and storage. Globaly, highly perishable foods showed an increase in lipid oxidation when preserved by HPP. On the other hand, HS using lower pressure levels but much longer time under pressure seems to cause a higher level of secondary lipid oxidation products and a lower level of tertiary products, with HS so decreasing oxidation progress during storage. Existing studies have mainly focused on individual oxidation indicators, highlighting the need for a comprehensive analysis of primary, secondary, and tertiary oxidation products in order to fully understand the progression of oxidation. This comprehensive approach ensures a systematic assessment of lipid oxidation, leading to a clear understanding of the oxidation process.


Assuntos
Lipídeos , Oxirredução , Pressão , Lipídeos/química , Manipulação de Alimentos , Conservação de Alimentos/métodos , Conservação de Alimentos/instrumentação
8.
Foods ; 13(16)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39200527

RESUMO

High pressure processing (HPP) is a non-thermal technology with emerging application within the fruit and vegetable sector. The impact of the enumeration agar on the recorded HPP inactivation of L. monocytogenes, Salmonella spp. and E. coli in banana-apple and apple purees was evaluated. Additionally, the HPP inactivation and sublethal injury was quantified in apple puree, considering the impact of acid exposure (24 h before HPP) and sampling time. Inoculated purees were pressurized at 300 MPa for 2 min. Enumeration was performed immediately and 24 h after HPP. HPP inactivation was 0.9-to-4.5-fold higher in apple than banana-apple puree. Compared with nutrient-rich media, selective agar enumeration overestimated the inactivation. HPP inactivation and sublethal injury of L. monocytogenes, Salmonella and E. coli was variable, mainly dependent on the exposure to acid and the sampling time. The 24 h-delayed enumeration slightly increased the inactivation. In apple puree, the CECT5947 strain of E. coli O157:H7 was the most piezo-resistant strain (1.5 log reduction), while L. monocytogenes Scott A was the most piezo-sensitive (6-log reduction when exposed to acid and sampled 24 h after HPP). All the studied factors should be taken into account when designing HPP treatments, performing product-specific validation studies and setting verification procedures.

9.
J Food Sci Technol ; 61(9): 1632-1651, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39049911

RESUMO

High-pressure processing (HPP) is a promising alternative to thermal pasteurization. Recent studies highlighted the effectivity of HPP (400-600 MPa and exposure times of 1-5 min) in reducing pathogenic microflora for up to 5 logs. Analysis of modern scientific sources has shown that pressure affects the main components of milk including fat globules, lactose, casein micelles. The behavior of whey proteins under HPP is very important for milk and dairy products. HPP can cause significant changes in the quaternary (> 150 MPa) and tertiary (> 200 MPa) protein structures. At pressures > 400 MPa, they dissolve in the following order: αs2-casein, αs1-casein, k-casein, and ß-casein. A similar trend is observed in the processing of whey proteins. HPP can affect the rate of milk fat adhering as cream with increased results at 100-250 MPa with time dependency while decreasing up to 70% at 400-600 MPa. Some studies indicated the lactose influencing casein on HP, with 10% lactose addition in case in suspension before exposing it to 400 MPa for 40 min prevents the formation of large casein micelles. Number of researches has shown that moderate pressures (up to 400 MPa) and mild heating can activate or stabilize milk enzymes. Pressures of 350-400 MPa for 100 min can boost the activity of milk enzymes by up to 140%. This comprehensive and critical review will benefit scientific researchers and industrial experts in the field of HPP treatment of milk and its effect on milk components.

10.
Crit Rev Food Sci Nutr ; : 1-24, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38957008

RESUMO

Consumers are increasingly interested in additive-free products with a fresh taste, leading to a growing trend in high pressure processing (HPP) as an alternative to thermal processing. This review explores the impact of HPP on the properties of juices, smoothies, and purees, as well as its practical applications in the food industry. Research findings have explained that HPP is a most promising technology in comparison to thermal processing, in two ways i.e., for ensuring microbial safety and maximum retention of micro and macro nutrients and functional components. HPP preserves natural color and eliminates the need for artificial coloring. The review also emphasizes its potential for enhancing flavor in the beverage industry. The review also discusses how HPP indirectly affects plant enzymes that cause off-flavors and suggests potential hurdle approaches for enzyme inactivation based on research investigations. Scientific studies regarding the improved quality insights on commercially operated high pressure mechanisms concerning nutrient retention have paved the way for upscaling and boosted the market demand for HPP equipment. In future research, the clear focus should be on scientific parameters and sensory attributes related to consumer acceptability and perception for better clarity of the HPP effect on juice and smoothies/purees.

11.
Polymers (Basel) ; 16(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39065308

RESUMO

Natural hydrogels based on renewable and inexpensive sources, such as starch, represent an interesting group of biopolymeric materials with a growing range of applications in the biomedical, cosmeceutical, and food sectors. Starch-based hydrogels have traditionally been produced using different processes based on chemical or physical methods. However, the long processing times, high energy consumption, and safety issues related to the synthesis of these materials, mostly causing severe environmental damage, have been identified as the main limitations for their further exploitation. Therefore, the main scientific challenge for research groups is the development of reliable and sustainable processing methods to reduce the environmental footprint, as well as investigating new low-cost sources of starches and individuating appropriate formulations to produce stable hydrogel-based products. In the last decade, the possibility of physically modifying natural polysaccharides, such as starches, using green or sustainable processing methods has mostly been based on nonthermal technologies including high-pressure processing (HPP). It has been demonstrated that the latter exerts an important role in improving the physicochemical and techno-functional properties of starches. However, as for surveys in the literature, research activities have been devoted to understanding the effects of physical pre-treatments via high-pressure processing (HPP) on starch structural modifications, more so than elucidating its role and capacity for the rapid formation of stable and highly structured starch-based hydrogels with promising functionality and stability, utilizing more sustainable and eco-friendly processing conditions. Therefore, the present review addresses the recent advancements in knowledge on the production of sustainable starch-based hydrogels utilizing HPP as an innovative and clean-label preparation method. Additionally, this manuscript has the ambition to give an updated overview of starch-based hydrogels considering the different types of structures available, and the recent applications are proposed as well to critically analyze the main perspectives and technological challenges for the future exploitation of these novel structures.

12.
Food Chem ; 458: 140265, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38968707

RESUMO

The binding capacity of ß-Lactoglobulin (BLG) is crucial for delivering polyphenols, influenced by structural changes. High pressure processing (HPP) has the potential to modify BLG's structure and aggregation, but its specific impact on BLG-polyphenol interactions is uncertain. This study used circular dichroism spectroscopy and molecular dynamics simulations to reveal HPP-induced structural changes in BLG, supported by particle size analysis indicating aggregation. Seven structurally diverse polyphenols (quercetin-QR, hesperetin-HSP, dihydromyricetin-DHM, gallic acid-GA, (-)-epicatechin-EC, resveratrol-RES, and secoisolariciresinol diglucoside-SDG) were investigated to comprehensively analyze their binding patterns using fluorescence spectroscopy and molecular docking. HPP reduced BLG's ordered structure and increased its aggregation. Binding affinities peaked at 400 MPa for DHM, QR, HSP, GA, and RES, while SDG and EC exhibited maximum affinities at atmospheric pressure and 600 MPa, respectively. Elevated pressures enhanced BLG-polyphenol interactions, particularly at residues 44GLU and 160CYS, with van der Waals forces dominating the binding free energy.


Assuntos
Lactoglobulinas , Simulação de Acoplamento Molecular , Polifenóis , Pressão , Lactoglobulinas/química , Lactoglobulinas/metabolismo , Polifenóis/química , Polifenóis/metabolismo , Ligação Proteica , Simulação de Dinâmica Molecular , Animais , Manipulação de Alimentos , Agregados Proteicos , Bovinos
13.
Food Res Int ; 190: 114546, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945559

RESUMO

The thermal treatment carried out in the processing of apple products is very likely to induce Maillard reaction to produce furfurals, which have raised toxicological concerns. This study aimed to elucidate the formation of furfural compounds in apple products treated with pasteurization and high pressure processing (HPP). The method for simultaneous determination of five furfural compounds including 5-hydroxymethyl-2-furfural (5-HMF), furfural (F), 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF), 2-acetylfuran (FMC), and 5-Methyl-2-furfural (MF) using high performance liquid chromatography equipped with diode array detector (HPLC-DAD) was successfully developed and validated. All five furfurals exhibited an increasing trend after the pasteurization treatment of apple clear juice, cloudy juice, and puree. 5-HMF, F, FMC, and MF were increased significantly during the precooking of apple puree. Whereas there was no significant change in the furfurals formation after apple products treated with high pressure processing (HPP) with 300 MPa and 15 min. Based on the variation of the fructose, glucose and sucrose detected in apple products after thermal treatment, it revealed that the saccharides and thermal treatment have great effect on the furfural compounds formation. The commercial fruit juice samples with different treatments and fruit puree samples treated with pasteurization were also analyzed. Five furfurals were detected more frequently in the fruit juice samples treated with pasteurization or ultra-high temperature instantaneous sterilization (UHT) than those treated with HPP. 5-HMF and FMC were detected in all fruit puree samples treated with pasteurization, followed by F, MF, and HDMF with the detection rate of 79.31 %, 72.41 %, and 51.72 %. The results could provide a reference for risk assessment of furfural compounds and dietary guidance of fruit products for human, especially for infants and young children. Moreover, moderate HPP treatment with 300 MPa and 15 min would be a worthwhile alternative processing technology in the fruit juice and puree production to reduce the formation of furfural compounds.


Assuntos
Manipulação de Alimentos , Sucos de Frutas e Vegetais , Furaldeído , Malus , Pasteurização , Pressão , Malus/química , Furaldeído/análise , Furaldeído/análogos & derivados , Cromatografia Líquida de Alta Pressão , Sucos de Frutas e Vegetais/análise , Manipulação de Alimentos/métodos , Reação de Maillard , Frutas/química , Furanos/análise
14.
Foods ; 13(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38928771

RESUMO

Sea buckthorn juice has high nutritional value and a rich flavor that consumers enjoy. Traditional sea buckthorn thermal processing (TP) technology has problems such as low juice yield, poor quality, and poor flavor. Sea buckthorn berries are processed using a technique combining pulsed electric field (PEF) and high-pressure processing (HPP) to increase juice yield and study its impact on the quality and volatile aroma of sea buckthorn juice. Results have show that, compared with TP, under the condition of PEF-HPP, the juice yield of sea buckthorn significantly increased by 11.37% (p > 0.05); TP and PEF-HPP treatments could effectively kill microorganisms in sea buckthorn juice, but the quality of sea buckthorn juice decreased significantly after TP treatment (p > 0.05), whereas PEF-HPP coupling technology could maximally retain the nutrients of sea buckthorn juice while inhibiting enzymatic browning to improve color, viscosity, and particle size. The flavor of sea buckthorn juice is analyzed using electronic nose (E-nose) and gas chromatography-ion mobility spectrometer (GC-IMS) techniques, and it has been shown that PEF-HPP retains more characteristic volatile organic compounds (VOCs) of sea buckthorn while avoiding the acrid and pungent flavors produced by TP, such as benzaldehyde, (E)-2-heptenal, and pentanoic acid, among others, which improves the sensory quality of sea buckthorn juice. PEF-HPP technology is environmentally friendly and efficient, with significant economic benefits. Research data provide information and a theoretical basis for the sea buckthorn juice processing industry.

15.
Adv Food Nutr Res ; 110: 145-195, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38906586

RESUMO

High pressure processing (HPP) is a non-thermal technology that can ensure microbial safety without compromising food quality. However, the presence of pressure-resistant sub-populations, the revival of sub-lethally injured (SLI) cells, and the resuscitation of viable but non-culturable (VBNC) cells pose challenges for its further development. The combination of HPP with other methods such as moderate temperatures, low pH, and natural antimicrobials (e.g., bacteriocins, lactate, reuterin, endolysin, lactoferrin, lactoperoxidase system, chitosan, essential oils) or other non-thermal processes (e.g., CO2, UV-TiO2 photocatalysis, ultrasound, pulsed electric fields, ultrafiltration) offers feasible alternatives to enhance microbial inactivation, termed as "HPP plus" technologies. These combinations can effectively eliminate pressure-resistant sub-populations, reduce SLI or VBNC cell populations, and inhibit their revival or resuscitation. This review provides an updated overview of microbial inactivation by "HPP plus" technologies and elucidates possible inactivation mechanisms.


Assuntos
Manipulação de Alimentos , Conservação de Alimentos , Pressão , Manipulação de Alimentos/métodos , Conservação de Alimentos/métodos , Microbiologia de Alimentos , Viabilidade Microbiana , Bactérias , Pressão Hidrostática
16.
Food Chem ; 455: 139840, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38838621

RESUMO

Impact of high-pressure processing (HP-P) on microbial inactivation, protein oxidation, collagen fiber, and muscle structure of the edible portion (EP) of blood clams (BC) was investigated. Aerobic plate count, Vibrio parahaemolyticus, V. vulnificus, other Vibrio spp. and Shewanella algae counts were not detectable when HP-P pressure of ≥300 MPa was applied. Carbonyl, disulphide bond content, and surface hydrophobicity upsurged as HP-P with augmenting pressure was employed. Protein with ∼53 kDa appeared when HP-P at 100 and 200 MPa was implemented. Increased pressure enhanced gap formation and abnormal muscle cell structure arrangements. HP-P also affected connective tissue, causing size reduction and disruption of the collagen filament fibers. However, firmness and toughness of BC-EP with HP-P ≤ 300 MPa were comparable to those of the control. HP-P at 300 MPa was therefore appropriate for treatment of BC with maintained textural properties, while less protein oxidation, collagen fiber and muscle structure disruption occurred.


Assuntos
Bivalves , Colágeno , Animais , Bivalves/química , Bivalves/microbiologia , Colágeno/química , Pressão , Shewanella/química , Shewanella/metabolismo , Manipulação de Alimentos , Frutos do Mar/análise , Frutos do Mar/microbiologia , Vibrio/química , Músculos/química
17.
Molecules ; 29(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38792161

RESUMO

Olive oil production is characterized by large amounts of waste, and yet is considerably highly valued. Olive pomace can serve as a cheap source of bioactive compounds (BACs) with important antioxidant activity. Novel technologies like Pulsed Electric Fields (PEF) and High Pressure (HP) and microwave (MW) processing are considered green alternatives for the recovery of BACs. Different microwave (150-600 W), PEF (1-5 kV/cm field strength, 100-1500 pulses/15 µs width), and HP (250-650 MPa) conditions, in various product/solvent ratios, methanol concentrations, extraction temperatures, and processing times were investigated. Results indicated that the optimal MW extraction conditions were 300 W at 50 °C for 5 min using 60% v/v methanol with a product/solvent ratio of 1:10 g/mL. Similarly, the mix of 40% v/v methanol with olive pomace, treated at 650 MPa for the time needed for pressure build-up (1 min) were considered as optimal extraction conditions in the case of HP, while for PEF the optimal conditions were 60% v/v methanol with a product/solvent ratio of 1:10 g/mL, treated at 5000 pulses, followed by 1 h extraction under stirring conditions. Therefore, these alternative extraction technologies could assist the conventional practice in minimizing waste production and simultaneously align with the requirements of the circular bioeconomy concept.


Assuntos
Antioxidantes , Eletricidade , Micro-Ondas , Olea , Pressão , Olea/química , Antioxidantes/química , Antioxidantes/isolamento & purificação , Extratos Vegetais/química , Solventes/química , Azeite de Oliva/química , Metanol/química
18.
Food Chem ; 452: 139611, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749141

RESUMO

High pressure processing is a safe and green novel non-thermal processing technique for modulating food protein aggregation behavior. However, the systematic relationship between high pressure processing conditions and protein deaggregation has not been sufficiently investigated. Major royal jelly proteins, which are naturally highly fibrillar aggregates, and it was found that the pressure level and exposure time could significantly promote protein deaggregation. The 100-200 MPa treatment favoured the deaggregation of proteins with a significant decrease in the sulfhydryl group content. Contrarily, at higher pressure levels (>400 MPa), the exposure time promoted the formation of disordered agglomerates. Notably, the inter-conversion of α-helix and ß-strands in major royal jelly proteins after high pressure processing eliminates the solvent-free cavities inside the aggregates, which exerts a 'collapsing' effect on the fibrillar aggregates. Furthermore, the first machine learning model of the high pressure processing conditions and the protein deaggregation behaviour was developed, which provided digital guidance for protein aggregation regulation.


Assuntos
Ácidos Graxos , Proteínas de Insetos , Pressão , Agregados Proteicos , Proteínas de Insetos/química , Ácidos Graxos/química , Animais , Manipulação de Alimentos , Abelhas/química
19.
Int J Biol Macromol ; 270(Pt 1): 132042, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38710248

RESUMO

Anthocyanins, natural plant pigments responsible for the vibrant hues in fruits, vegetables, and flowers, boast antioxidant properties with potential human health benefits. However, their susceptibility to degradation under conditions such as heat, light, and pH fluctuations necessitates strategies to safeguard their stability. Recent investigations have focused on exploring the interactions between anthocyanins and biomacromolecules, specifically proteins and polysaccharides, with the aim of enhancing their resilience. Notably, proteins like soy protein isolate and whey protein, alongside polysaccharides such as pectin, starch, and chitosan, have exhibited promising affinities with anthocyanins, thereby enhancing their stability and functional attributes. High-pressure processing (HPP), emerging as a non-thermal technology, has garnered attention for its potential to modulate these interactions. The application of high pressure can impact the structural features and stability of anthocyanin-protein/polysaccharide complexes, thereby altering their functionalities. However, caution must be exercised, as excessively high pressures may yield adverse effects. Consequently, while HPP holds promise in upholding anthocyanin stability, further exploration is warranted to elucidate its efficacy across diverse anthocyanin variants, macromolecular partners, pressure regimes, and their effects within real food matrices.


Assuntos
Antocianinas , Polissacarídeos , Pressão , Antocianinas/química , Polissacarídeos/química , Antioxidantes/química , Humanos
20.
J Dairy Sci ; 107(9): 6492-6510, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38762114

RESUMO

The manufacturing method of string cheese is similar to mozzarella, but the hot curd is extruded through narrow tubes or pipes, which align the protein fibers that provide the characteristic ability for consumers to pull strings from this cheese. Firmness is another important performance attribute for consumers who just bite into the string cheese without peeling off strings. There have only been a few studies on string cheese, but it is known that stringiness and firmness decrease during prolonged storage, which is a particular challenge for exporting string cheese. We explored 2 treatments to try to retain the stringiness and firmness of string cheese for longer storage periods. The techniques used were high-pressure processing (HPP; 600 MPa for 3 min) and reduced storage temperature (0°C). In other cheese varieties, these techniques have helped extend the performance shelf life. We tested these techniques using the 2 main types of commercial string cheese: direct acid string cheese (DASC) and cultured string cheese (CSC), which were obtained from 2 different manufacturing facilities. The DASC had higher fat (∼2.2%) and higher pH values (∼0.2 units) compared with the CSC. The CSC had higher protein content (∼3.4%), higher insoluble calcium content (∼8 mg insoluble Ca/g protein) and higher texture profile analysis (TPA) hardness values (∼4 N) compared with the DASC. Due to the compositional differences, the 2 varieties were statistically analyzed separately for all other attributes. In both cheese types, HPP caused an immediate reduction in stringiness, some solubilization of insoluble calcium, and a slight increase in the cheese pH values. High-pressure processing also caused a slight increase in TPA hardness of the CSC samples until 14 d (possibly due to a slight increase in cheese pH). The use of the 0°C storage temperature reduced proteolysis and helped retain firmness during storage. Low-temperature storage could help extend the performance shelf life of string cheese by a couple of months, but HPP was not suitable, as the process caused an immediate reduction in stringiness due to the disruption of the matrix induced by the HPP treatment.


Assuntos
Queijo , Manipulação de Alimentos , Pressão , Queijo/análise , Animais , Temperatura , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA