Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38591585

RESUMO

The reactive spark plasma sintering (R-SPS) method was compared in this work with the two-step SHS-SPS route, based on the combination of the self-propagating high-temperature synthesis (SHS) with the SPS process, for the fabrication of dense (Hf0.2Mo0.2Ti0.2Ta0.2Nb0.2)B2-SiC and (Hf0.2Mo0.2Ti0.2Ta0.2Zr0.2)B2-SiC ceramics. A multiphase and inhomogeneous product, containing various borides, was obtained at 2000 °C/20 min by R-SPS from transition metals, B4C, and Si. In contrast, if the same precursors were first reacted by SHS and then processed by SPS under the optimized condition of 1800 °C/20 min, the desired ceramics were successfully attained. The resulting sintered samples possessed relative densities above 97% and displayed uniform microstructures with residual oxide content <2.4 wt.%. The presence of SiC made the sintering temperature milder, i.e., 150 °C below that needed by the corresponding additive-free system. The fracture toughness was also markedly improved, particularly when considering the Nb-containing system processed at 1800 °C/20 min, whereas the fracture toughness progressively decreased (from 7.35 to 5.36 MPa m1/2) as the SPS conditions became more severe. SiC addition was found to inhibit the volatilization of metal oxides like MoO3 formed during oxidation experiments, thus avoiding mass loss in the ceramics. The benefits above also likely took advantage of the fact that the two composite constituents were synthesized in parallel, according to the SHS-SPS approach, rather than being produced separately and combined subsequently, so that strong interfaces between them were formed.

2.
Nano Lett ; 23(20): 9319-9325, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37787654

RESUMO

High electrical conductivity and super high hardness are two sought-after material properties, but both are contradictory because the effective suppression of dislocation movement generally increases the scattering of conducting electrons. Here we synthesized a high-entropy dodecaboride composite (HEDC) with a large number of atomic-scale interlocking layers. It shows a Vickers hardness of 51.2 ± 3.6 GPa under an applied load of 0.49 N and an electrical resistivity of 44.5 µΩ·cm at room temperature. Such HEDC achieves superhardness by inheriting the high intrinsic hardness of its constituent phases and restricting the dislocation motion to further enhance the extrinsic hardness through forming numerous atom-scale interlocks between different slip systems. Moreover, the HEDC maintains the excellent electrical conductivity of the constituent borides, and the competition between two correlating structures produces the special kind of coherent boundary that minimizes the scattering of conducting electrons and does not largely deteriorate the electrical conductivity.

3.
Materials (Basel) ; 16(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37895726

RESUMO

This manuscript shows the study of the structure, mechanical, and chemical properties of high-entropy borides MeB2 (Me = Ti, Ta, Nb, Hf, Zr). High-entropy borides were synthesized by mechanical alloying and spark plasma sintering. A chemically homogeneous powder with a low iron content (0.12%) was obtained in a planetary mill by rotating the planetary disk/pots at 200-400 rpm and a processing time of 7.5 h. The structure, mechanical, and chemical properties of the resulting high-entropy borides have been studied. A single-phase hexagonal structure is formed during spark plasma sintering of mechanically alloyed powders at 2000 °C. The microhardness of the samples ranged from 1763 to 1959 HV. Gas-dynamic tests of the synthesized materials showed that an increase in the content of Zr and Hf in the composition increases the thermal-oxidative resistance of the material.

4.
Materials (Basel) ; 16(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36614497

RESUMO

The high-entropy boride (Hf0.2Mo0.2Nb0.2Ta0.2Zr0.2)B2 material was synthesized under high-pressures and high-temperatures in a large-volume Paris-Edinburgh (PE) press from a ball-milled powder mix of HfO2, MoO3, Nb2O5, Ta2O5, ZrO2, carbon black, and boron carbide. The transformation process was monitored in situ by energy-dispersive x-ray diffraction with conversion starting at 1100 °C and completed by 2000 °C with the formation of a single hexagonal AlB2-type phase. The synthesized sample was recovered, powdered, and mixed with platinum pressure marker and studied under high pressure by angle-dispersive x-ray diffraction in a diamond anvil cell. The hexagonal AlB2-type phase of (Hf0.2Mo0.2Nb0.2Ta0.2Zr0.2)B2 was found to be stable up to the highest pressure of 220 GPa reached in this study (volume compression V/V0 = 0.70). The third order Birch-Murnaghan equation of state fit to the high-pressure data up to 220 GPa results in an ambient pressure unit cell volume V0=28.16±0.04 Å3, bulk modulusKo = 407 ± 6 GPa, pressure derivative of bulk-modulus K0' = 2.73 ± 0.045 GPa. Our study indicates that this high-entropy boride (Hf0.2Mo0.2Nb0.2Ta0.2Zr0.2)B2 material is stable to ultrahigh pressures and temperatures and exhibit high bulk modulus similar to other incompressible transition metal borides like ReB2 and Os2B3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA