Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 817
Filtrar
1.
Biomed Pharmacother ; 177: 117069, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38968802

RESUMO

The high mortality rate due to chemoresistance in patients with high-grade ovarian cancer (HGSOC) emphasizes the urgent need to determine optimal treatment strategies for advanced and recurrent cases. Our study investigates the interplay between estrogens and chemoresistance in HGSOC and shows clear differences between platinum-sensitive and -resistant tumors. Through comprehensive transcriptome analyzes, we uncover differences in the expression of genes of estrogen biosynthesis, metabolism, transport and action underlying platinum resistance in different tissues of HGSOC subtypes and in six HGSOC cell lines. Furthermore, we identify genes involved in estrogen biosynthesis and metabolism as prognostic biomarkers for HGSOC. Additionally, our study elucidates different patterns of estrogen formation/metabolism and their effects on cell proliferation between six HGSOC cell lines with different platinum sensitivity. These results emphasize the dynamic interplay between estrogens and HGSOC chemoresistance. In particular, targeting the activity of steroid sulfatase (STS) proves to be a promising therapeutic approach with potential efficacy in limiting estrogen-driven cell proliferation. Our study reveals potential prognostic markers as well as identifies novel therapeutic targets that show promise for overcoming resistance and improving treatment outcomes in HGSOC.

2.
J Pathol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956451

RESUMO

Ovarian high-grade serous carcinoma (HGSC) originates in the fallopian tube, with secretory cells carrying a TP53 mutation, known as p53 signatures, identified as potential precursors. p53 signatures evolve into serous tubal intraepithelial carcinoma (STIC) lesions, which in turn progress into invasive HGSC, which readily spreads to the ovary and disseminates around the peritoneal cavity. We recently investigated the genomic landscape of early- and late-stage HGSC and found higher ploidy in late-stage (median 3.1) than early-stage (median 2.0) samples. Here, to explore whether the high ploidy and possible whole-genome duplication (WGD) observed in late-stage disease were determined early in the evolution of HGSC, we analysed archival formalin-fixed paraffin-embedded (FFPE) samples from five HGSC patients. p53 signatures and STIC lesions were laser-capture microdissected and sequenced using shallow whole-genome sequencing (sWGS), while invasive ovarian/fallopian tube and metastatic carcinoma samples underwent macrodissection and were profiled using both sWGS and targeted next-generation sequencing. Results showed highly similar patterns of global copy number change between STIC lesions and invasive carcinoma samples within each patient. Ploidy changes were evident in STIC lesions, but not p53 signatures, and there was a strong correlation between ploidy in STIC lesions and invasive ovarian/fallopian tube and metastatic samples in each patient. The reconstruction of sample phylogeny for each patient from relative copy number indicated that high ploidy, when present, occurred early in the evolution of HGSC, which was further validated by copy number signatures in ovarian and metastatic tumours. These findings suggest that aberrant ploidy, suggestive of WGD, arises early in HGSC and is detected in STIC lesions, implying that the trajectory of HGSC may be determined at the earliest stages of tumour development. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.

3.
Cancer Cell Int ; 24(1): 231, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956560

RESUMO

Secretory cells in the fallopian tube fimbria epithelium (FTE) are regarded as the main cells of origin of ovarian high-grade serous carcinoma (HGSC). Ovulation is the main cause of FTE oncogenesis, which proceeds through a sequence of TP53 mutations, chromosomal instability due to Rb/cyclin E aberration, in situ carcinoma (STIC), and metastasis to the ovary and peritoneum (metastatic HGSC). Previously, we have identified multiple oncogenic activities of the ovulatory follicular fluid (FF), which exerts the full spectrum of transforming activity on FTE cells at different stages of transformation. After ovulation, the FF is transfused into the peritoneal fluid (PF), in which the FTE constantly bathes. We wondered whether PF exerts the same spectrum of oncogenic activities as done by FF and whether these activities are derived from FF. By using a panel of FTE cell lines with p53 mutation (FT282-V), p53/CCNE1 aberrations (FT282-CCNE1), and p53/Rb aberrations plus spontaneous transformation, and peritoneal metastasis (FEXT2), we analyzed the changes of different transformation phenotypes after treating with FF and PF collected before or after ovulation. Similar to effects exhibited by FF, we found that, to a lesser extent, PF promoted anchorage-independent growth (AIG), migration, anoikis resistance, and peritoneal attachment in transforming FTE cells. The more transformed cells were typically more affected. Among the transforming activities exhibited by PF treatment, AIG, Matrigel invasion, and peritoneal attachment growth were higher with luteal-phase PF treatment than with the proliferative-phase PF treatment, suggesting an ovulation source. In contrast, changes in anoikis resistance and migration activities were similar in response to treatment with PF collected before and after ovulation, suggesting an ovulation-independent source. The overall transforming activity of luteal-phase PF was verified in an i.p. co-injection xenograft mouse model. Co-injection of Luc-FEXT2 cells with either FF or luteal-phase PF supported early peritoneal implantation, whereas co-injection with follicular-phase PF did not. This study, for the first time, demonstrates that PF from ovulating women can promote different oncogenic phenotypes in FTE cells at different stages of malignant transformation. Most of these activities, other than anoikis resistance and cell migration, are sourced from ovulation.

4.
Eur J Radiol ; 178: 111622, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39018648

RESUMO

PURPOSE: To investigate the value of microstructural characteristics derived from time-dependent diffusion MRI in distinguishing high-grade serous ovarian cancer (HGSOC) from serous borderline ovarian tumor (SBOT) and the associations of immunohistochemical markers with microstructural features. METHODS: Totally 34 HGSOC and 12 SBOT cases who received preoperative pelvic MRI were retrospectively included in this study. Two radiologists delineated the tumors to obtain the regions of interest (ROIs). Time-dependent diffusion MRI signals were fitted by the IMPULSED (imaging microstructural parameters using limited spectrally edited diffusion) model, to extract microstructural parameters, including fraction of the intracellular component (fin), cell diameter (d), cellularity and extracellular diffusivity (Dex). Apparent diffusion coefficient (ADC) values were obtained from standard diffusion-weighted imaging (DWI). The parameters of HGSOCs and SBOTs were compared, and the diagnostic performance was evaluated. The associations of microstructural indexes with immunopathological parameters were assessed, including Ki-67, P53, Pax-8, ER and PR. RESULTS: In this study, fin, cellularity, Dex and ADC had good diagnostic performance levels in differentiating HGSOC from SBOT, with AUCs of 0.936, 0.909, 0.902 and 0.914, respectively. There were no significant differences in diagnostic performance among these parameters. Spearman analysis revealed in the HGSOC group, cellularity had a significant positive correlation with P53 expression (P = 0.028, r = 0.389) and Dex had a significant positive correlation with Pax-8 expression (P = 0.018, r = 0.415). ICC showed excellent agreement for all parameters. CONCLUSION: Time-dependent diffusion MRI had value in evaluating the microstructures of HGSOC and SBOT and could discriminate between these tumors.

5.
Sci Rep ; 14(1): 16140, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997411

RESUMO

High-grade serous ovarian cancer (HGSOC) is an aggressive disease known to develop resistance to chemotherapy. We investigated the prognostic significance of tumor cell states and potential mechanisms underlying chemotherapy resistance in HGSOC. Transcriptome deconvolution was performed to address cellular heterogeneity. Kaplan-Meier survival curves were plotted to illustrate the outcomes of patients with varying cellular abundances. The association between gene expression and chemotherapy response was tested. After adjusting for surgery status and grading, several cell states exhibited a significant correlation with patient survival. Cell states can organize into carcinoma ecotypes (CE). CE9 and CE10 were proinflammatory, characterized by higher immunoreactivity, and were associated with favorable survival outcomes. Ratios of cell states and ecotypes had better prognostic abilities than a single cell state or ecotype. A total of 1265 differentially expressed genes were identified between samples with high and low levels of C9 or CE10. These genes were partitioned into three co-expressed modules, which were associated with tumor cells and immune cells. Pogz was identified to be linked with immune cell genes and the chemotherapy response of paclitaxel. Collectively, the survival of HGSOC patients is correlated with specific cell states and ecotypes.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/tratamento farmacológico , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/mortalidade , Cistadenocarcinoma Seroso/patologia , Cistadenocarcinoma Seroso/imunologia , Prognóstico , Regulação Neoplásica da Expressão Gênica , Pessoa de Meia-Idade , Gradação de Tumores , Transcriptoma , Estimativa de Kaplan-Meier , Idoso , Resistencia a Medicamentos Antineoplásicos/genética
6.
Crit Rev Oncol Hematol ; : 104456, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39033867

RESUMO

High grade serous carcinoma (HGSC) is the most common and the deadliest histologic subtype of epithelial ovarian cancer. HGSC is a therapeutic challenge, as it recurs in 80% of patients diagnosed, often as chemoresistant disease. The mechanism of this chemoresistance is not fully elucidated, but it is partly attributed to the ability of HGSC to maintain a stem-like phenotype that enables development of resistance to current therapies. Polycomb Repressor Complexes 1 and 2 (PRC1/2) have been implicated in the maintenance of the stem cell compartment through silencing tumor suppressor genes and regulating stem cells. These complexes are comprised of multiple polycomb group (PcG) proteins that play a role in normal development, and when deregulated contribute to the development of cancer [2]. Proteins included in PRC1 include B lymphoma mouse Moloney leukemia virus insertion region (BMI1), RING1, and chromobox (CBX) proteins. We aimed to review each of the protein components of PRC1 and their mechanistic relationships to promoting chemoresistant recurrences and propagation of ovarian cancer. Where possible, we reviewed therapeutic investigations of these proteins. We utilized a scoping literature review through Covidence to identify 42 articles meeting criteria for inclusion. The authors identified four relevant articles and the Yale MeSH Analysis Grid Generator was used to establish additional keywords and heading terms. A medical librarian used these terms and articles to draft an initial search strategy within each of the following databases: MEDLINE, Embase, Cochrane Library, and Web of Science Core Collection, yielding 439 articles based on title and abstract. Abstracts were independently reviewed by the authors, identifying 77 articles for full text review, of which 35 were ultimately excluded, leaving 42 articles for full review. Our review identified the currently known mechanisms of the subunits of PRC1 that contribute to HGSC development, recurrence, and chemoresistance. By compiling a comprehensive review of available scientific knowledge, we support and direct further investigation into PRC1 that can affect meaningful advances in the treatment of HGSC.

7.
Biochem Biophys Rep ; 39: 101755, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38974022

RESUMO

Ovarian cancer (OC) patients develop ascites, an accumulation of ascitic fluid in the peritoneal cavity anda sign of tumour dissemination within the peritoneal cavity. This body fluid is under-researched, mainly regarding the ascites formed during tumour progression that have no diagnostic value and, therefore, are discarded. We performed a discovery proteomics study to identify new biomarkers in the ascites supernatant of OC patients. In this preliminary study, we analyzed a small amount of OC ascites to highlight the importance of not discarding such biological material during treatment, which could be valuable for OC management. Our findings reveal that OC malignant ascitic fluid (MAF) displays a proliferative environment that promotes the growth of OC cells that shift the metabolic pathway using alternative sources of nutrients, such as the cholesterol pathway. Also, OC ascites drained from patients during treatment showed an immunosuppressive environment, with up-regulation of proteins from the signaling pathways of IL-4 and IL-13 and down-regulation from the MHC-II. This preliminary study pinpointed a new protein (Transmembrane Protein 132A) in the OC context that deserves to be better explored in a more extensive cohort of patients' samples. The proteomic profile of MAF from OC patients provides a unique insight into the metabolic kinetics of cancer cells during disease progression, and this information can be used to develop more effective treatment strategies.

8.
World J Clin Cases ; 12(18): 3539-3547, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38983400

RESUMO

BACKGROUND: Few studies have reported an association between an increased risk of acquiring cancers and survival in patients with 4q deletion syndrome. This study presents a rare association between chromosome 4q abnormalities and fallopian tube high-grade serous carcinoma (HGSC) in a young woman. CASE SUMMARY: A 35-year-old woman presented with acute dull abdominal pain and a known chromosomal abnormality involving 4q13.3 duplication and 4q23q24 deletion. Upon arrival at the emergency room, her abdomen appeared ovoid and distended with palpable shifting dullness. Ascites were identified through abdominal ultrasound, and computed tomography revealed an omentum cake and an enlarged bilateral adnexa. Blood tests showed elevated CA-125 levels. Paracentesis was conducted, and immunohistochemistry indicated that the cancer cells favored an ovarian origin, making us suspect ovarian cancer. The patient underwent debulking surgery, which led to a diagnosis of stage IIIC HGSC of the fallopian tube. Subsequently, the patient received adjuvant chemotherapy with carboplatin and paclitaxel, resulting in stable current condition. CONCLUSION: This study demonstrates a rare correlation between a chromosome 4q abnormality and HGSC. UBE2D3 may affect crucial cancer-related pathways, including P53, BRCA, cyclin D, and tyrosine kinase receptors, thereby possibly contributing to cancer development. In addition, ADH1 and DDIT4 may be potential influencers of both carcinogenic and therapeutic responses.

9.
J Ovarian Res ; 17(1): 145, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997720

RESUMO

OBJECTIVE: This study evaluates the potential superiority of combining paclitaxel-based hyperthermic intraperitoneal chemotherapy (HIPEC) with sequential intravenous neoadjuvant chemotherapy over intravenous neoadjuvant chemotherapy alone in Chinese patients with Federation of Gynecology and Obstetrics (FIGO) stage IIIC, IVA and IVB high-grade serous ovarian/fallopian tube carcinoma (HGSOC). This interim analysis focuses on the safety and immediate efficacy of both regimens to determine the feasibility of the planned trial (C-HOC Trial). METHODS: In a single-center, open-label, randomized control trial, FIGO stage IIIC, IVA, and IVB HGSOC patients (FAGOTTI score ≥ 8 during laparoscopic exploration) unsuitable for optimal cytoreduction in primary debulking surgery (PDS) were randomized 2:1 during laparoscopic exploration. The Experiment Group (HIPEC Group) received one cycle of intraperitoneal neoadjuvant laparoscopic hyperthermic intraperitoneal chemotherapy (paclitaxel) followed by three cycles of intravenous chemotherapy (paclitaxel plus carboplatin), while the Control Group received only three cycles of intravenous chemotherapy. Both groups subsequently underwent interval debulking surgery (IDS). The adverse effects of chemotherapy, postoperative complications, and pathological chemotherapy response scores (CRS) after IDS were compared. RESULTS: Among 65 enrolled patients, 39 HIPEC Group and 21 Control Group patients underwent IDS. Grade 3-4 chemotherapy-related adverse effects were primarily hematological with no significant differences between the two groups. The HIPEC Group exhibited a higher proportion of CRS 3 (20.5% vs. 4.8%; P = 0.000). R0 resection rates in IDS were 69.2% (HIPEC Group) and 66.7% (Control Group). R2 resection occurred in 2.6% (HIPEC Group) and 14.3% (Control Group) cases. No reoperations or postoperative deaths were reported, and complications were managed conservatively. CONCLUSIONS: Combining HIPEC with IV NACT in treating ovarian cancer demonstrated safety and feasibility, with no increased chemotherapy-related adverse effects or postoperative complications. HIPEC improved tumor response to neoadjuvant chemotherapy, potentially enhancing progression-free survival (PFS). However, the final overall survival results are pending, determining if HIPEC combined with IV NACT is superior to IV NACT alone.


Assuntos
Quimioterapia Intraperitoneal Hipertérmica , Neoplasias Ovarianas , Paclitaxel , Humanos , Feminino , Paclitaxel/administração & dosagem , Paclitaxel/uso terapêutico , Quimioterapia Intraperitoneal Hipertérmica/métodos , Pessoa de Meia-Idade , Neoplasias Ovarianas/terapia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Adulto , Idoso , Resultado do Tratamento , Terapia Neoadjuvante/métodos , Estadiamento de Neoplasias , Gradação de Tumores , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Cistadenocarcinoma Seroso/terapia , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/patologia , Terapia Combinada
10.
Elife ; 122024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023520

RESUMO

Dormancy in cancer is a clinical state in which residual disease remains undetectable for a prolonged duration. At a cellular level, rare cancer cells cease proliferation and survive chemotherapy and disseminate disease. We created a suspension culture model of high-grade serous ovarian cancer (HGSOC) dormancy and devised a novel CRISPR screening approach to identify survival genes in this context. In combination with RNA-seq, we discovered the Netrin signaling pathway as critical to dormant HGSOC cell survival. We demonstrate that Netrin-1, -3, and its receptors are essential for low level ERK activation to promote survival, and that Netrin activation of ERK is unable to induce proliferation. Deletion of all UNC5 family receptors blocks Netrin signaling in HGSOC cells and compromises viability during the dormancy step of dissemination in xenograft assays. Furthermore, we demonstrate that Netrin-1 and -3 overexpression in HGSOC correlates with poor outcome. Specifically, our experiments reveal that Netrin overexpression elevates cell survival in dormant culture conditions and contributes to greater spread of disease in a xenograft model of abdominal dissemination. This study highlights Netrin signaling as a key mediator HGSOC cancer cell dormancy and metastasis.


High-grade serous ovarian cancer (or HGSOC for short) is the fifth leading cause of cancer-related deaths in women. It is generally diagnosed at an advanced stage of disease when the cancer has already spread to other parts of the body. Surgical removal of tumors and subsequent treatment with chemotherapy often reduces the signs and symptoms of the disease for a time but some cancer cells tend to survive so that patients eventually relapse. The HGSOC cells typically spread from the ovaries by moving through the liquid surrounding organs in the abdomen. The cells clump together and enter an inactive state known as dormancy that allows them to survive chemotherapy and low-nutrient conditions. Understanding how to develop new drug therapies that target dormant cancer cells is thought to be an important step in prolonging the life of HGSOC patients. Cancer cells are hardwired to multiply and grow, so Perampalam et al. reasoned that becoming dormant poses challenges for HGSOC cells, which may create unique vulnerabilities not shared by proliferating cancer cells. To find out more, the researchers used HGSOC cells that had been isolated from patients and grown in the laboratory. The team used a gene editing technique to screen HGSOC cells for genes required by the cells to survive when they are dormant. The experiments found that genes involved in a cell signaling pathway, known as Netrin signaling, were critical for the cells to survive. Previous studies have shown that Netrin signaling helps the nervous system form in embryos and inhibits a program of controlled cell death in some cancers. Perampalam et al. discovered that Netrins were present in the environment immediately surrounding dormant HGSOC cells. Human HGSOC patients with higher levels of Netrin gene expression had poorer prognoses than patients with lower levels of Netrin gene expression. Further experiments demonstrated that Netrins help dormant HGSOC cells to spread around the body. These findings suggest that Netrin signalling may provide useful targets for future drug therapies against dormant cells in some ovarian cancers. This could include repurposing drugs already in development or creating new inhibitors of this pathway.


Assuntos
Carcinoma Epitelial do Ovário , Sobrevivência Celular , Netrinas , Neoplasias Ovarianas , Transdução de Sinais , Humanos , Feminino , Animais , Linhagem Celular Tumoral , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Netrinas/metabolismo , Netrinas/genética , Camundongos , Netrina-1/metabolismo , Netrina-1/genética , Proliferação de Células , Receptores de Netrina/metabolismo , Receptores de Netrina/genética
11.
J Ovarian Res ; 17(1): 149, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020428

RESUMO

BACKGROUND: The five-year prognosis for patients with late-stage high-grade serous carcinoma (HGSC) remains dismal, underscoring the critical need for identifying early-stage biomarkers. This study explores the potential of extracellular vesicles (EVs) circulating in blood, which are believed to harbor proteomic cargo reflective of the HGSC microenvironment, as a source for biomarker discovery. RESULTS: We conducted a comprehensive proteomic profiling of EVs isolated from blood plasma, ascites, and cell lines of patients, employing both data-dependent (DDA) and data-independent acquisition (DIA) methods to construct a spectral library tailored for targeted proteomics. Our investigation aimed at uncovering novel biomarkers for the early detection of HGSC by comparing the proteomic signatures of EVs from women with HGSC to those with benign gynecological conditions. The initial cohort, comprising 19 donors, utilized DDA proteomics for spectral library development. The subsequent cohort, involving 30 HGSC patients and 30 control subjects, employed DIA proteomics for a similar purpose. Support vector machine (SVM) classification was applied in both cohorts to identify combinatorial biomarkers with high specificity and sensitivity (ROC-AUC > 0.90). Notably, MUC1 emerged as a significant biomarker in both cohorts when used in combination with additional biomarkers. Validation through an ELISA assay on a subset of benign (n = 18), Stage I (n = 9), and stage II (n = 9) plasma samples corroborated the diagnostic utility of MUC1 in the early-stage detection of HGSC. CONCLUSIONS: This study highlights the value of EV-based proteomic analysis in the discovery of combinatorial biomarkers for early ovarian cancer detection.


Assuntos
Biomarcadores Tumorais , Detecção Precoce de Câncer , Vesículas Extracelulares , Mucina-1 , Neoplasias Ovarianas , Proteômica , Humanos , Feminino , Vesículas Extracelulares/metabolismo , Proteômica/métodos , Neoplasias Ovarianas/sangue , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Biomarcadores Tumorais/sangue , Detecção Precoce de Câncer/métodos , Pessoa de Meia-Idade , Mucina-1/sangue , Cistadenocarcinoma Seroso/sangue , Cistadenocarcinoma Seroso/diagnóstico , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Idoso , Gradação de Tumores , Adulto
12.
Am J Pathol ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39032605

RESUMO

Four subtypes of ovarian high-grade serous carcinoma (HGSC) have previously been identified, each with different prognoses and drug sensitivities. However, the accuracy of the classification depended on the assessor's experience. This study aimed to develop a universal algorithm for HGSC-subtype classification using deep learning techniques. An artificial intelligence (AI)-based classification algorithm, which replicates the consensus diagnosis of pathologists, was formulated to analyze the morphological patterns and tumor-infiltrating lymphocyte counts for each tile extracted from whole slide images of ovarian HGSC available in The Cancer Genome Atlas (TCGA) dataset. The accuracy of the algorithm was determined using the validation set from the Japanese Gynecologic Oncology Group 3022A1 (JGOG3022A1) and Kindai and Kyoto University (Kindai/Kyoto) cohorts. The algorithm classified the four HGSC-subtypes with mean accuracies of 0.933, 0.910, and 0.862 for the TCGA, JGOG3022A1, and Kindai/Kyoto cohorts, respectively. To compare Mesenchymal Transition (MT) with non-MT groups, overall survival analysis was performed in the TCGA dataset. The AI-based prediction of HGSC-subtype classification in TCGA cases showed that the MT group had a worse prognosis than the non-MT group (p = 0.017). Furthermore, Cox proportional hazard regression analysis identified AI-based MT subtype classification prediction as a contributing factor along with residual disease after surgery, stage, and age. In conclusion, a robust AI-based HGSC-subtype classification algorithm was established using virtual slides of ovarian HGSC.

13.
Cureus ; 16(6): e62895, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39040787

RESUMO

Serous tubal intraepithelial carcinoma, serous tubal intraepithelial lesions (STILs), and the p53 signature are considered to be related to precursor lesions of high-grade serous carcinomas (HGSCs). However, the clinical significance and prognostic implications of these lesion types are currently unknown. We diagnosed three patients with STILs according to the morphological evaluation criteria and combined this with p53 and Ki-67 immunostaining. One patient had an HGSC of the ovary that was incidentally discovered at the time of ovarian cyst resection, and the HGSC in the other two patients was characterized after they underwent risk-reducing salpingo-oophorectomy. Herein, we present a report of three patients with STILs diagnosed based on clinical data and pathological findings, along with a review of the literature.

14.
Med Oncol ; 41(8): 207, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043895

RESUMO

High-grade serous ovarian cancer (HGSC) is an aggressive disease with poor prognosis. The oncoprotein ZNF703 is implicated in driving HGSC pathogenesis, but factors regulating its abundance remain unclear. In this study, we aim to investigate the potential connection between ZNF703 dysregulation and ubiquitin-mediated protein degradation in HGSC. Bioinformatics prediction was performed using BioGRID database. HGSC representative cell lines were utilized for in vitro and in vivo studies. Results showed that ZNF703 protein was stabilized upon proteasome inhibition, suggesting a regulation via ubiquitination. The ubiquitin E3 ligase PARK2 was found to interact with ZNF703 in a dose-dependent manner, promoting its polyubiquitination and subsequent proteasomal degradation. Re-expression of PARK2 in HGSC cells led to reduced ZNF703 levels together with decreased Cyclin D1/E1 abundance and G1 cell cycle arrest. ZNF703 overexpression alone increased S phase cells, Cyclin D1/E1 levels, and xenograft tumor growth, while co-expression with PARK2 mitigated these oncogenic effects. Collectively, our findings identify ZNF703 as a bona fide substrate of PARK2, reveal a tumor suppressive function for PARK2 in attenuating ZNF703-mediated G1/S transition and HGSC growth through instigating its degradation. This study elucidates a pivotal PARK2-ZNF703 axis with therapeutic implications for targeted intervention in HGSC.


Assuntos
Proliferação de Células , Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Complexo de Endopeptidases do Proteassoma , Ubiquitina-Proteína Ligases , Humanos , Feminino , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Cistadenocarcinoma Seroso/patologia , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/genética , Linhagem Celular Tumoral , Animais , Camundongos , Ubiquitinação , Ciclina D1/metabolismo , Ciclina D1/genética , Proteínas Oncogênicas/metabolismo , Proteínas Oncogênicas/genética , Camundongos Nus , Proteólise , Ciclina E/metabolismo , Ciclina E/genética , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto , Regulação Neoplásica da Expressão Gênica , Proteínas de Transporte
15.
Vaccines (Basel) ; 12(6)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38932405

RESUMO

High-grade serous ovarian cancers (HGSOCs) likely consist of poorly differentiated stem-like cells (PDSLCs) and differentiated tumor cells. Conventional therapeutics are incapable of completely eradicating PDSLCs, contributing to disease progression and tumor relapse. Primary NK cells are known to effectively lyse PDSLCs, but they exhibit low or minimal cytotoxic potential against well-differentiated tumors. We have introduced and discussed the characteristics of super-charged NK (sNK) cells in this review. sNK cells, in comparison to primary NK cells, exhibit a significantly higher capability for the direct killing of both PDSLCs and well-differentiated tumors. In addition, sNK cells secrete significantly higher levels of cytokines, especially those known to induce the differentiation of tumors. In addition, we propose that a combination of sNK and chemotherapy could be one of the most effective strategies to eliminate the heterogeneous population of ovarian tumors; sNK cells can lyse both PDSLCs and well-differentiated tumors, induce the differentiation of PDSLCs, and could be used in combination with chemotherapy to target both well-differentiated and NK-induced differentiated tumors.

16.
J Proteomics ; 304: 105234, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38925351

RESUMO

High-grade serous ovarian cancer (HGSOC) is one of the most common histologic types of ovarian cancer. The purpose of this study was to identify potential prognostic biomarkers in urine specimens from patients with HGSOC. First, 56 urine samples with information on relapse-free survival (RFS) months were collected and classified into good prognosis (RFS ≥ 12 months) and poor prognosis (RFS < 12 months) groups. Next, data-independent acquisition (DIA)-based mass spectrometry (MS) analysis was combined with MSFragger-DIA workflow to identify potential prognostic biomarkers in a discovery set (n = 31). With the aid of parallel reaction monitoring (PRM) analysis, four candidate biomarkers (ANXA1, G6PI, SPB3, and SPRR3) were finally validated in both the discovery set and an independent validation set (n = 25). Subsequent RFS and Cox regression analyses confirmed the utility of these candidate biomarkers as independent prognostic factors affecting RFS in patients with HGSOC. Regression models were constructed to predict the 12-month RFS rate, with area under the receiver operating characteristic curve (AUC) values ranging from 0.847 to 0.905. Overall, candidate prognostic biomarkers were identified in urine specimens from patients with HGSOC and prediction models for the 12-month RFS rate constructed. SIGNIFICANCE: OC is one of the leading causes of death due to gynecological malignancies. HGSOC constitutes one of the most common histologic types of OC with aggressive characteristics, accounting for the majority of advanced cases. In cases where patients with advanced HGSOC potentially face high risk of unfavorable prognosis or disease advancement within a 12-month period, intensive medical monitoring is necessary. In the era of precision cancer medicine, accurate prediction of prognosis or 12-month RFS rate is critical for distinguishing patient groups requiring heightened surveillance. Patients could significantly benefit from timely modifications to treatment regimens based on the outcomes of clinical monitoring. Urine is an ideal resource for disease surveillance purposes due to its easy accessibility. Furthermore, molecules excreted in urine are less complex and more stable than those in other liquid samples. In the current study, we identified candidate prognostic biomarkers in urine specimens from patients with HGSOC and constructed prediction models for the 12-month RFS rate.


Assuntos
Biomarcadores Tumorais , Neoplasias Ovarianas , Proteômica , Humanos , Feminino , Neoplasias Ovarianas/urina , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/diagnóstico , Biomarcadores Tumorais/urina , Proteômica/métodos , Pessoa de Meia-Idade , Prognóstico , Cistadenocarcinoma Seroso/urina , Cistadenocarcinoma Seroso/patologia , Idoso , Proteínas de Neoplasias/urina , Intervalo Livre de Doença , Adulto
17.
Front Pharmacol ; 15: 1375421, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38831884

RESUMO

High grade serous ovarian cancer (HGSOC) is a lethal gynecologic malignancy in which chemoresistant recurrence rates remain high. Furthermore, HGSOC patients have demonstrated overall low response rates to clinically available immunotherapies. Amphiregulin (AREG), a low affinity epidermal growth factor receptor ligand is known to be significantly upregulated in HGSOC patient tumors following neoadjuvant chemotherapy exposure. While much is known about AREG's role in oncogenesis and classical immunity, it is function in tumor immunology has been comparatively understudied. Therefore, the objective of this present study was to elucidate how increased AREG exposure impacts the ovarian tumor immune microenvironment (OTIME). Using NanoString IO 360 and protein analysis, it was revealed that treatment with recombinant AREG led to prominent upregulation of genes associated with ovarian pathogenesis and immune evasion (CXCL8, CXCL1, CXCL2) along with increased STAT3 activation in HGSOC cells. In vitro co-culture assays consisting of HGSOC cells and peripheral blood mononuclear cells (PBMCs) stimulated with recombinant AREG (rAREG) led to significantly enhanced tumor cell viability. Moreover, PBMCs stimulated with rAREG exhibited significantly lower levels of IFNy and IL-2. In vivo rAREG treatment promoted significant reductions in circulating levels of IL-2 and IL-5. Intratumoral analysis of rAREG treated mice revealed a significant reduction in CD8+ T cells coupled with an upregulation of PD-L1. Finally, combinatorial treatment with an AREG neutralizing antibody and carboplatin led to a synergistic reduction of cell viability in HGSOC cell lines OVCAR8 and PEA2. Overall, this study demonstrates AREG's ability to modulate cytotoxic responses within the OTIME and highlights its role as a novel HGSOC immune target.

18.
Cureus ; 16(5): e60992, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38910622

RESUMO

A focal serous tubal intraepithelial lesion (STIL) is a rare lesion found on fallopian tubes that are characterized by atypical epithelial cells exhibiting morphological abnormalities with the accumulation of mutant p53 proteins. The p53 gene is a tumor suppressor gene, and when mutated gives rise to mutant p53 proteins that promote cancer cell growth and survival. We present a case of a 47-year-old gravida 2, para 2002 (G2P2) female who presented to the outpatient clinic with bilateral lower quadrant abdominal pain and back pain of four years' duration. The patient's history included endometriosis with lysis of adhesions and gynecological laparoscopy, leiomyomata, infertility, ovarian cyst, dysmenorrhea, two full term births, and Essure implants used for contraception; her family history included maternal grandfather with breast cancer. Multiple fibroids and endometriosis were confirmed on pelvic ultrasound (US) and magnetic resonance imaging (MRI). Due to worsening pain, the patient chose to have an elective hysterectomy and Essure implant removal with bilateral salpingectomy. The postoperative pathology report revealed a right fallopian tube with a STIL. Multiple genetic mutations are known to contribute to the development of STILs including p53 and the breast cancer gene (BRCA). There are two BRCA genes, BRCA1 and BRCA2, that have many functions including producing proteins that repair damaged DNA. When mutated, this allows cells to divide and change rapidly, leading to certain types of cancer. Given the patient's family history of breast cancer, the patient was tested for BRCA1 and BRCA2 for which the results were negative. However, even without having a BRCA mutation that is known to increase the risk of ovarian, fallopian tube, and peritoneal cancers, STILs continue to pose an increased risk of high-grade serous ovarian carcinoma (HGSOC). This case demonstrates the reasoning behind prophylactic salpingectomies alongside hysterectomies and the significance of the postoperative pathology report from gynecological procedures.

19.
Clin Exp Metastasis ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909139

RESUMO

High-grade serous ovarian cancer (HGSOC) and ovarian clear cell carcinoma (CC), are biologically aggressive tumors endowed with the ability to rapidly metastasize to the abdominal cavity and distant organs. About 10% of HGSOC and 30% of CC demonstrate HER2 IHC 3 + receptor over-expression. We evaluated the efficacy of trastuzumab deruxtecan (T-DXd; DS-8201a), a novel HER2-targeting antibody-drug conjugate (ADC) to an ADC isotype control (CTL ADC) against multiple HGSOC and CC tumor models. Eleven ovarian cancer cell lines including a matched primary and metastatic cell line established from the same patient, were evaluated for HER2 expression by immunohistochemistry and flow cytometry, and gene amplification by fluorescence in situ hybridization assays. In vitro experiments demonstrated T-DXd to be significantly more effective against HER2 3 + HGSOC and CC cell lines when compared to CTL ADC (p < 0.0001). T-DXd induced efficient bystander killing of HER2 non-expressing tumor cells when admixed with HER2 3 + cells. In vivo activity of T-DXd was studied in HER2 IHC 3 + HGSOC and CC mouse xenograft models. We found T-DXd to be significantly more effective than CTL ADC against HER2 3 + HGSOC (KR(CH)31) and CC (OVA10) xenografts with a significant difference in tumor growth starting at day 8 (p = 0.0003 for KR(CH)31, p < 0.0001 for OVA10). T-DXd also conferred a survival advantage in both xenograft models. T-DXd may represent an effective ADC against primary and metastatic HER2-overexpressing HGSOC and CC.

20.
Photochem Photobiol ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849970

RESUMO

Resistance to platinum-based chemotherapies remains a significant challenge in advanced-stage high-grade serous ovarian carcinoma, and patients with malignant ascites face the poorest outcomes. It is, therefore, important to understand the effects of ascites, including the associated fluid shear stress (FSS), on phenotypic changes and therapy response, specifically FSS-induced chemotherapy resistance and the underlying mechanisms in ovarian cancer. This study investigated the effects of FSS on response to cisplatin, a platinum-based chemotherapy, and doxorubicin, an anthracycline, both of which are commonly used to manage advanced-stage ovarian cancer. Consistent with prior research, OVCAR-3 and Caov-3 cells cultivated under FSS demonstrated significant resistance to cisplatin. Examination of the role of mitochondria revealed an increase in mitochondrial DNA copy number and intracellular ATP content in cultures grown under FSS, suggesting that changes in mitochondria number and metabolic activity may contribute to platinum resistance. Interestingly, no resistance to doxorubicin was observed under FSS, the first such observation of a lack of resistance under these conditions. Finally, this study demonstrated the potential of photodynamic priming using benzoporphyrin derivative, a clinically approved photosensitizer that localizes in part to mitochondria and endoplasmic reticula, to enhance the efficacy of cisplatin, but not doxorubicin, thereby overcoming FSS-induced platinum resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA