Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12745, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830968

RESUMO

This paper investigates the performance of concrete incorporating high-volume fly ash (HVFA) and steel slag aggregates against the detrimental effects of combined cycles of environmental thermal fatigue and exposure to leaked aircraft fluids. A total of 128 cubes and 90 prisms were cast for five mixes and exposed to 60, 120, 180, 240 and 300 combined cycles. The results demonstrate the positive effect of utilization of HVFA which reduces the total amount of portlandite available in the system. The SS aggregates demonstrate a strong interlocking with the surrounding matrix and supply the necessary portlandite for continued pozzolanic reaction. However, their reaction with aircraft fluids causes significant degradation to flexural strength initially, which is redeemed by pozzolanic reaction at a later stage. Hybrid basalt and polypropylene fibres were successful in enhancing the flexural strength and reducing the cracking. The mercury intrusion porosimetry revealed a reduction in pore volume because of HVFA. Scanning electron microscopy and differential scanning calorimetry were also employed to uncover the underlying mechanisms of damage and assess the performance of the cementitious composite.

2.
Materials (Basel) ; 15(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35683197

RESUMO

In this paper, the influence of Nano-silica (NS) and Polyvinyl alcohol (PVA) fibers on the corrosion behavior of steel rebar embedded in high-volume fly ash cement mortars under accelerated chloride attack was studied by using an impressed voltage technique. The PVA fibers used were 1.0 vol.%, and two mass fractions of cement (50 and 60 wt.%) were replaced by fly ash. Four NS mass fractions (0, 0.5, 1.0, and 1.5 wt.%) were utilized in this paper. In addition, the mono and hybrid effects of NS and PVA on the mechanical properties and water absorption of mortar were also studied. The results showed that the incorporation of PVA and nano-SiO2 can improve the flexural and compressive strengths of high-volume fly ash mortar. Generally, the flexural and compressive strengths increased with the increase of nano-SiO2 content. Moreover, the incorporation NS can also reduce the capillary water-absorption rate of cement mortar. The impressed voltage corrosion test indicated that the composite incorporation of nano-SiO2 and PVA can significantly delay the deterioration process of steel bars in mortar, effectively reducing the steel rebar's corrosion level and increasing the exposure time of the surface crack. With hybrid-incorporation 1.0 vol.% PVA and 1.0 wt.% nano-SiO2, the steel rebar had the lowest corrosion degree, which exhibited a mass loss of 49% and increased the broken time by 71% as compared to the control mortar.

3.
Nanomaterials (Basel) ; 12(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35159668

RESUMO

Sulfate resistance of high-volume fly ash/cement mortars hybrid containing 0~1.5 wt.% of nano-silica (Nano-SiO2, NS) and 0~1.0 vol.% of polyvinyl alcohol (PVA) fibers was investigated in this study. Fly ash was replaced with Portland cement at levels of 60% by weight. The resistance to sulfate attack was investigated by exposing the mortars to 10 wt.% sodium sulfate (Na2SO4) solutions for 72 days, after which change in mass, compressive, and flexural strengths were determined. For comparison, the compressive and flexural strengths of cement mortar after 100 days of curing in water were also investigated. Microstructural deteriorations caused by sulfate attack were analyzed by using scanning electron microscope (SEM). The test results showed that the combination of NS and PVA fibers was effective in enhancing the mechanical properties and the resistance to sulfate attack. After 28 days curing, the hybrid addition of 1.5 wt.% NS and 1.0 vol.% PVA fibers increased the flexural strength by 90% over the control one without NS and PVA fiber. Moreover, regardless of PVA fibers content, due to the crystal nucleus and pore-filling effects, the adding of 0.5 wt.% NS increased the compressive strength by 67.1~118.2%. Chemical reaction took place between fly ash and Na2SO4 as no un-hydration particles could be observed in the samples immersed in Na2SO4 solutions for 72 days, while a lot of un-hydration fly ash particles could be found in the SEM image of mortar after 100 days curing in water. The chemical reaction production could increase the adhesive property and fill the pores of cement mortar. As a result, the compressive and flexural strengths of cement mortars after immersed in Na2SO4 solution for 72 days, were much higher than that after 28 days curing. Moreover, the compressive strength of mortars incorporating 1.0~1.5 wt.% NS was even higher than that after 100 days curing in water, indicating the combination of Nano-SiO2/PVA fiber is effective in enhancing the resistance to sulfate attack.

4.
Materials (Basel) ; 14(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34771813

RESUMO

Fly ash (FA) has been widely used in cement-based materials, but limited work has been conducted to establish the relationship between the compressive strength and hydration process of high-volume FA (HVFA)-cement-based material. In this study, the compressive strength and chemically bound water contents of FA-cement-based materials with different water-to-binder ratios (0.4, 0.5, and 0.6) and FA contents (0%, 30%, 40%, 50%, 60%, and 70%) were tested. Replacing more cement with FA reduced the compressive strength and of HVFA-cement-based materials. The compressive strength and chemically bound water content reduced by about 60-70% when 70% cement was replaced by FA. Water-to-binder ratio showed more significant influence on the chemically bonded water at later ages than that at early ages. Based on test results, the prediction equation of chemically bound water content was established, and its accuracy was verified. The error was less than 10%. The relationship between the compressive strength and chemically bound water content was also fitted. The compressive strength and chemically bound water content showed linear relationships for different water-to-binder ratios, hence the compressive strength of HVFA-cement mortar could be predicted with the chemically bound water content and water-to-binder ratios. The results of this study could be used for the prediction of the compressive strength development of HVFA-cement mortars, and is helpful to develop the mix design method of HVFA-cement-based materials.

5.
Materials (Basel) ; 14(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208431

RESUMO

Waste tire and fly ash (FA) are two waste materials whose disposal and rapid rate of accumulation are among the pressing sources of concern and threat to the environment. Although much research exists on the use of these materials in cementitious composites, very little literature is available on the effectiveness of combining them in high volumes for concrete production. This work aimed to utilize crumb rubber (CR) from waste tires as a partial replacement of fine aggregate at 15%, 22.25%, and 30% by volume, and high-volume fly ash (HVFA) replacement of cement at 50%, 60%, and 70% (by weight of cementitious materials) to produce high-volume fly ash-crumb rubber concrete (HVFA-CRC). Using the central composite design (CCD) option of the response surface methodology (RSM), 13 mixes were produced with different combinations and levels of the CR and FA (the input factors) on which the responses of interest (compressive, flexural, and tensile strengths) were experimentally investigated. Furthermore, the composite influence of CR and HVFA on the workability of the concrete was assessed using the slump test. The results showed a decline in the mechanical properties with increasing replacement levels of the CR and HVFA. However, up to 22.25% and 60% of CR and HVFA replacements, respectively, produced a structural HVFA-CRC with a compressive strength of more than 20 MPa at 28 days. Response predictive models were developed and validated using ANOVA at a 95% confidence level. The models had high R2 values ranging from 95.26 to 97.74%. Multi-objective optimization was performed and validated with less than 5% error between the predicted and experimental responses.

6.
Materials (Basel) ; 14(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203973

RESUMO

The study aims to investigate the fire performance of reinforced concrete (RC) slab fabricated from high volume fly ash inclusion with nano-silica (HVFANS) under ISO 834 load curve. The HVFANS concrete slab with dimensions of 1850 mm × 1700 mm × 200 mm was tested via an electrical furnace under an exposing temperature of 1100 °C for 120 min. The slab behaviour was evaluated in terms of residual compressive strength, temperature distribution along its thickness, spalling, and cracks. The results revealed that the slab was capable of maintaining 62.19% of its original compressive strength at room temperature after exposure to the above temperature. Moreover, the distribution of temperature revealed that the temperature of concrete cover and bottom reinforcement was less than 300 °C with a maximum spalling depth of 11 mm within the temperature range of 680 to 840 °C. Furthermore, the thermal conductivity index (K) of the HVFANS concrete was determined, and results indicated that thermal conductivity equalled 0.35 W/mK which is considered low, as compared with other concretes tested in current and previous studies.

7.
Environ Sci Pollut Res Int ; 27(18): 23369-23373, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32382915

RESUMO

This study investigated the compressive strengths and leaching of heavy metals in high-volume fly ash cement (HVFAC) pastes with and without nano-SiO2 (NS). Further, scanning electron microscopy, X-ray diffraction, and mercury intrusion porosimetry were used to characterize the microstructure of the specimens. The results showed that the addition of NS increased the compressive strength of HVFAC specimens. NS accelerated the hydration of both cement and fly ash to form more hydration products, and it reacted with portlandite to simultaneously generate more C-S-H gel. Thus, the total pore volume, especially the capillary pores, in the NS-mixed HVFAC specimens was reduced, and their microstructure became denser because of the filling of more hydration products in the pores. This resulted in the reduction of the leaching of heavy metals (Cr, Pb, Cd, As, Zn, and Cu) in the NS-mixed HVFAC specimens compared with the HVFAC specimen containing no NS. According to the Chinese national standard (GB 3838-2002), the water quality of leachates from the HVFAC specimens mixed with both 3% and 5% NS reached grade I, thus causing nearly no harm to the water and soil environment.


Assuntos
Cinza de Carvão , Metais Pesados , Carbono , Incineração , Dióxido de Silício
8.
Materials (Basel) ; 12(23)2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31816833

RESUMO

Ultra-High Performance Fibre-Reinforced Cementitious Composites (UHP-FRCC) show excellent mechanical performances in terms of strength, ductility, and durability. Therefore, these cementitious materials have been successfully used for repairing, strengthening, and seismic retrofitting of old structures. However, UHP-FRCCs are not always environmental friendly products, especially in terms of the initial cost, due to the large quantity of cement that is contained in the mixture. Different rates of fly ash substitute herein part of the cement, and the new UHP-FRCCs are used to retrofit concrete columns to overcome this problem. To simulate the mechanical response of these columns, cylindrical specimens, which are made of normal concrete and reinforced with different UHP-FRCC jackets, are tested in uniaxial compression. Relationships between the size of the jacket, the percentage of cement replaced by fly ash, and the strength of the columns are measured and analyzed by means of the eco-mechanical approach. As a result, a replacement of approximately 50% of cement with fly ash, and a suitable thickness of the UHP-FRCC jacket, might ensure the lowest environmental impact without compromising the mechanical performances.

9.
Materials (Basel) ; 12(20)2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31614981

RESUMO

To address sustainability issues by facilitating the use of high-volume fly ash (HVFA) concrete in industry, this paper investigates the early age hydration properties of HVFA binders in concrete and the correlation between hydration properties and compressive strengths of the cement pastes. A new method of calculating the chemically bound water of HVFA binders was used and validated. Fly ash (FA) types used in this study were sourced from Indonesia and Australia for comparison. The water to binder (w/b) ratio was 0.4 and FA replacement levels were 40%, 50% and 60% by weight. Isothermal calorimetry tests were conducted to study the heat of hydration which was further converted to the adiabatic temperature rise. Thermo-gravimetric analysis (TGA) was employed to explore the chemically bound water (WB) of the binders. The results showed that Australian FA pastes had higher heat of hydration, adiabatic temperature rise, WB and compressive strength compared to Indonesian FA pastes. The new method of calculating chemically bound water can be successfully applied to HVFA binders. Linear correlation could be found between the WB and compressive strength.

10.
R Soc Open Sci ; 6(1): 181665, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30800397

RESUMO

Today, a rather poor carbonation resistance is being reported for high-volume fly ash (HVFA) binder systems. This conclusion is usually drawn from accelerated carbonation experiments conducted at CO2 levels that highly exceed the natural atmospheric CO2 concentration of 0.03-0.04%. However, such accelerated test conditions may change the chemistry of the carbonation reaction (and the resulting amount of CH and C-S-H carbonation), the nature of the mineralogical phases formed (stable calcite versus metastable vaterite, aragonite) and the resulting porosity and pore size distribution of the microstructure after carbonation. In this paper, these phenomena were studied on HVFA and fly ash + silica fume (FA + SF) pastes after exposure to 0.03-0.04%, 1% and 10% CO2 using thermogravimetric analysis, quantitative X-ray diffraction and mercury intrusion porosimetry. It was found that none of these techniques unambiguously revealed the reason for significantly underestimating carbonation rates at 1% CO2 from colorimetric carbonation test results obtained after exposure to 10% CO2 that were implemented in a conversion formula that solely accounts for the differences in CO2 concentration. Possibly, excess water production due to carbonation at too high CO2 levels with a pore blocking effect and a diminished solubility for CO2 plays an important role in this.

11.
Waste Manag Res ; 36(6): 520-526, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29692220

RESUMO

Safe disposal of fly ash generated by coal-based thermal power plants continues to pose significant challenges around the world and in India in particular. Green structural concrete with 80% cement replaced by local Chinese fly ash has been recently developed to achieve a target characteristic compressive strength of 45 MPa. Such green concrete mixes are not only cheaper in cost, but also embody lower energy and carbon footprint, compared with conventional mixes. This study aims to adopt such materials using no less than 80% fly ash as binder in routine concrete works in countries like India with the commonly used lower target characteristic compressive strength of 30 MPa. It is achieved by the simple and practical method of adjusting the water/binder ratio and/or superplasticiser dosage. The proposed green concrete shows encouraging mechanical properties at 7 days and 28 days, as well as much lower material cost and environmental impact compared with commercial Grade 30 concrete. This technology can play an important role in meeting the huge infrastructure demands in India in a sustainable manner.


Assuntos
Cinza de Carvão , Materiais de Construção , Carbono , Carvão Mineral , Força Compressiva , Índia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA