Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
Int J Mol Sci ; 25(18)2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39337347

RESUMO

Histamine (HA), a biogenic monoamine, exerts its pleiotropic effects through four H1R-H4R histamine receptors, which are also expressed in brain tissue. Together with the projections of HA-producing neurons located within the tuberomammillary nucleus (TMN), which innervate most areas of the brain, they constitute the histaminergic system. Thus, while remaining a mediator of the inflammatory reaction and immune system function, HA also acts as a neurotransmitter and a modulator of other neurotransmitter systems in the central nervous system (CNS). Although the detailed causes are still not fully understood, neuroinflammation seems to play a crucial role in the etiopathogenesis of both neurodevelopmental and neurodegenerative (neuropsychiatric) diseases, such as autism spectrum disorders (ASDs), attention-deficit/hyperactivity disorder (ADHD), Alzheimer's disease (AD) and Parkinson's disease (PD). Given the increasing prevalence/diagnosis of these disorders and their socioeconomic impact, the need to develop effective forms of therapy has focused researchers' attention on the brain's histaminergic activity and other related signaling pathways. This review presents the current state of knowledge concerning the involvement of HA and the histaminergic system within the CNS in the development of neurodevelopmental and neurodegenerative disorders. To this end, the roles of HA in neurotransmission, neuroinflammation, and neurodevelopment are also discussed.


Assuntos
Sistema Nervoso Central , Histamina , Doenças Neurodegenerativas , Transtornos do Neurodesenvolvimento , Receptores Histamínicos , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Histamina/metabolismo , Animais , Transtornos do Neurodesenvolvimento/metabolismo , Sistema Nervoso Central/metabolismo , Receptores Histamínicos/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/crescimento & desenvolvimento , Transtorno do Espectro Autista/metabolismo
2.
ACS Chem Neurosci ; 15(18): 3363-3383, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39208251

RESUMO

At present, one of the most promising strategies to tackle the complex challenges posed by Alzheimer's disease (AD) involves the development of novel multitarget-directed ligands (MTDLs). To this end, we designed and synthesized nine new MTDLs using a straightforward and cost-efficient one-pot Biginelli three-component reaction. Among these newly developed compounds, one particular small molecule, named 3e has emerged as a promising MTDL. This compound effectively targets critical biological factors associated with AD, including the simultaneous inhibition of cholinesterases (ChEs), selective antagonism of H3 receptors, and blocking voltage-gated calcium channels. Additionally, compound 3e exhibited remarkable neuroprotective activity against H2O2 and Aß1-40, and effectively restored cognitive function in AD mice treated with scopolamine in the novel object recognition task, confirming that this compound could provide a novel and innovative therapeutic approach for the effective treatment of AD.


Assuntos
Doença de Alzheimer , Bloqueadores dos Canais de Cálcio , Inibidores da Colinesterase , Antagonistas dos Receptores Histamínicos H3 , Animais , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Bloqueadores dos Canais de Cálcio/farmacologia , Camundongos , Doença de Alzheimer/tratamento farmacológico , Antagonistas dos Receptores Histamínicos H3/farmacologia , Antagonistas dos Receptores Histamínicos H3/química , Humanos , Fármacos Neuroprotetores/farmacologia , Masculino , Descoberta de Drogas/métodos
3.
Eur J Pharmacol ; 981: 176866, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39089461

RESUMO

RATIONALE: The rewarding effect of Methamphetamine (METH) is commonly believed to play an important role in METH use disorder. The altered expression of dopamine D1 receptor (D1R) has been suggested to be essential to the rewarding effect of METH. Notably, D1R could interact with histamine H3 receptors (H3R) by forming a H3R-D1R heteromer (H3R-D1R). OBJECTIVES: This study was designed to specifically investigate the involvement of H3R-D1R in the rewarding effect of METH. METHODS: C57BL/6 mice were treated with intraperitoneal injections of a selective H3R antagonist (Thioperamide, THIO; 20 mg/kg), an H1R antagonist (Pyrilamine, PYRI; 10 mg/kg), or microinjections of cytomegalovirus (CMV)-transmembrane domain 5 (TM5) into the nucleus accumbens (NAc). The animal model of Conditioned Place Preference (CPP) was applied to determine the impact of H3R-D1R on the rewarding effect of METH. RESULTS: METH resulted in a significant preference for the drug-associated chamber, in conjunction with increased H3R and decreased D1R expression in both NAc and the ventral tegmental area (VTA). THIO significantly attenuated the rewarding effect of METH, accompanied by decreased H3R and increased D1R expression. In contrast, pyrilamine failed to produce the similar effects. Moreover, the inhibitory effect of THIO on METH-induced CPP was reversed by SKF38393, a D1R agonist. Furthermore, SCH23390, a D1R antagonist, counteracted the ameliorative effect of SKF38393 on THIO. Co-immunoprecipitation (CO-IP) experiments further demonstrated the specific interaction between H3R and D1R in METH CPP mice. The rewarding effect of METH was also significantly blocked by the interruption of CMV-transmembrane domain 5 (TM5), but not CMV-transmembrane domain 7 (TM7) in NAc. CONCLUSION: These results suggest that modulating the activity of H3R-D1R complex holds promise for regulating METH use disorder and serves as a potential drug target for its treatment.


Assuntos
Metanfetamina , Camundongos Endogâmicos C57BL , Receptores de Dopamina D1 , Receptores Histamínicos H3 , Animais , Metanfetamina/farmacologia , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/antagonistas & inibidores , Masculino , Camundongos , Receptores Histamínicos H3/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Recompensa , Multimerização Proteica/efeitos dos fármacos , Condicionamento Psicológico/efeitos dos fármacos
4.
Bioorg Chem ; 151: 107704, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39126870

RESUMO

A series of scutellarein 7-l-amino acid carbamate-4'-cycloalkylamine propyl ether conjugates were designed and synthesized for the first time as multifunctional agents for Alzheimer's disease (AD) therapy. The designed compounds exhibited more balanced and effective multi-target potency. Among them, compound 11l, l-Valine carbamate derivative of scutellarein cycloheptylamine ether, exhibited the most potent inhibition of electric eel AChE enzymes and human AChE enzymes, with an IC50 values of 7.04 µM and 9.73 µM, respectively. Moreover, 11l exhibited more potent H3R antagonistic activities than clobenpropit, with an IC50 value of 1.09 nM. Compound 11l not only displayed excellent inhibition of self- and Cu2+-induced Aß1-42 aggregation (95.48 % and 88.63 % inhibition, respectively) but also induced the disassembly of self- and Cu2+-induced Aß fibrils (80.16 % and 89.30 % disaggregation, respectively). Moreover, 11l significantly reduced tau protein hyperphosphorylation induced by Aß25-35. It exhibited effective antioxidant activity and neuroprotective potency, and inhibited RSL3-induced PC12 cell ferroptosis. Assays of hCMEC/D3 and hPepT1-MDCK cell line permeability indicated that 11l would have optimal blood-brain barrier permeability and intestinal absorption characteristics. In addition, in vivo studies revealed that compound 11l significantly attenuated learning and memory impairment in an AD mouse model. Finally, a pharmacokinetic characterization of 11l indicated favorable druggability and pharmacokinetic properties. Taken together, our results suggest that 11l is a potential candidate for AD treatment and merits further investigation.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Apigenina , Inibidores da Colinesterase , Antagonistas dos Receptores Histamínicos H3 , Receptores Histamínicos H3 , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/síntese química , Humanos , Animais , Relação Estrutura-Atividade , Acetilcolinesterase/metabolismo , Camundongos , Antagonistas dos Receptores Histamínicos H3/farmacologia , Antagonistas dos Receptores Histamínicos H3/química , Antagonistas dos Receptores Histamínicos H3/síntese química , Ligantes , Apigenina/farmacologia , Apigenina/química , Apigenina/síntese química , Receptores Histamínicos H3/metabolismo , Estrutura Molecular , Relação Dose-Resposta a Droga , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/síntese química , Electrophorus , Ratos , Fragmentos de Peptídeos/metabolismo , Masculino , Células PC12
5.
Int J Mol Sci ; 25(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39125607

RESUMO

The future of therapy for neurodegenerative diseases (NDs) relies on new strategies targeting multiple pharmacological pathways. Our research led to obtaining the compound AR71 [(E)-3-(3,4,5-trimethoxyphenyl)-1-(4-(3-(piperidin-1-yl)propoxy)phenyl)prop-2-en-1-one], which has high affinity for human H3R (Ki = 24 nM) and selectivity towards histamine H1 and H4 receptors (Ki > 2500 nM), and showed anti-inflammatory activity in a model of lipopolysaccharide-induced inflammation in BV-2 cells. The presented tests confirmed its antagonist/inverse agonist activity profile and good metabolic stability while docking studies showed the binding mode to histamine H1, H3, and H4 receptors. In in vitro tests, cytotoxicity was evaluated at three cell lines (neuroblastoma, astrocytes, and human peripheral blood mononuclear cells), and a neuroprotective effect was observed in rotenone-induced toxicity. In vivo experiments in a mouse neuropathic pain model demonstrated the highest analgesic effects of AR71 at the dose of 20 mg/kg body weight. Additionally, AR71 showed antiproliferative activity in higher concentrations. These findings suggest the need for further evaluation of AR71's therapeutic potential in treating ND and CNS cancer using animal experimental models.


Assuntos
Analgésicos , Anti-Inflamatórios , Receptores Histamínicos H3 , Animais , Humanos , Camundongos , Receptores Histamínicos H3/metabolismo , Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Ligantes , Simulação de Acoplamento Molecular , Masculino , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Neuralgia/induzido quimicamente , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Lipopolissacarídeos , Linhagem Celular Tumoral
6.
Curr Top Med Chem ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39185652

RESUMO

Neuroinflammation is a process involved in a variety of central nervous system (CNS) diseases and is being increasingly recognized as a key mediator of cognitive impairments. Neuroinflammatory responses including glial activation, increased production of proinflammatory cytokines, and aberrant neuronal signaling, contribute to cognitive dysfunctions. Histamine is a key peripheral inflammatory mediator, but plays an important role in neuroinflammatory processes as well. The unique localization of histamine H3 receptor (H3R) in the CNS along with the modulation of the release of other neurotransmitters via its action on heteroreceptors on non-histaminergic neurons have led to the development of several H3R ligands for various brain diseases. H3R antagonists/ inverse agonists have revealed potential to treat diverse neuroinflammatory CNS disorders, including neurodegenerative diseases, attention-deficit hyperactivity syndrome and schizophrenia. In this mini review, we provide a brief overview on the crucial involvement of the histaminergic transmission in the neuroinflammatory processes underlying these cognitive disorders, with a special focus on H3R involvement. The anti-neuroinflammatory potential of single-targeted and multi-targeted H3R antagonists/inverse agonists for the treatment of these conditions is discussed here.

7.
Biomolecules ; 14(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39062475

RESUMO

Alternative splicing significantly enhances the diversity of the G protein-coupled receptor (GPCR) family, including the histamine H3 receptor (H3R). This post-transcriptional modification generates multiple H3R isoforms with potentially distinct pharmacological and physiological profiles. H3R is primarily involved in the presynaptic inhibition of neurotransmitter release in the central nervous system. Despite the approval of pitolisant for narcolepsy (Wakix®) and daytime sleepiness in adults with obstructive sleep apnea (Ozawade®) and ongoing clinical trials for other H3R antagonists/inverse agonists, the functional significance of the numerous H3R isoforms remains largely enigmatic. Recent publicly available RNA sequencing data have confirmed the expression of multiple H3R isoforms in the brain, with some isoforms exhibiting unique tissue-specific distribution patterns hinting at isoform-specific functions and interactions within neural circuits. In this review, we discuss the complexity of H3R isoforms with a focus on their potential roles in central nervous system (CNS) function. Comparative analysis across species highlights evolutionary conservation and divergence in H3R splicing, suggesting species-specific regulatory mechanisms. Understanding the functionality of H3R isoforms is crucial for the development of targeted therapeutics. This knowledge will inform the design of more precise pharmacological interventions, potentially enhancing therapeutic efficacy and reducing adverse effects in the treatment of neurological and psychiatric disorders.


Assuntos
Processamento Alternativo , Isoformas de Proteínas , Receptores Histamínicos H3 , Humanos , Processamento Alternativo/genética , Receptores Histamínicos H3/metabolismo , Receptores Histamínicos H3/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Animais
9.
Alcohol ; 118: 45-55, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38705312

RESUMO

Prenatal alcohol exposure can have persistent effects on learning, memory, and synaptic plasticity. Previous work from our group demonstrated deficits in long-term potentiation (LTP) of excitatory synapses on dentate gyrus granule cells in adult offspring of rat dams that consumed moderate levels of alcohol during pregnancy. At present, there are no pharmacotherapeutic agents approved for these deficits. Prior work established that systemic administration of the histaminergic H3R inverse agonist ABT-239 reversed deficits in LTP observed following moderate PAE. The present study examines the effect of a second H3R inverse agonist, SAR-152954, on LTP deficits following moderate PAE. We demonstrate that systemic administration of 1 mg/kg of SAR-152954 reverses deficits in potentiation of field excitatory post-synaptic potentials (fEPSPs) in adult male rats exposed to moderate PAE. Time-frequency analyses of evoked responses revealed PAE-related reductions in power during the fEPSP, and increased power during later components of evoked responses which are associated with feedback circuitry that are typically not assessed with traditional amplitude-based measures. Both effects were reversed by SAR-152954. These findings provide further evidence that H3R inverse agonism is a potential therapeutic strategy to address deficits in synaptic plasticity associated with PAE.


Assuntos
Potenciação de Longa Duração , Efeitos Tardios da Exposição Pré-Natal , Receptores Histamínicos H3 , Animais , Potenciação de Longa Duração/efeitos dos fármacos , Feminino , Masculino , Ratos , Gravidez , Receptores Histamínicos H3/metabolismo , Receptores Histamínicos H3/efeitos dos fármacos , Agonistas dos Receptores Histamínicos/farmacologia , Ratos Sprague-Dawley , Etanol/farmacologia , Agonismo Inverso de Drogas , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos
10.
Biomed Pharmacother ; 174: 116527, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579399

RESUMO

The aims of this work were to evaluate the expression of histamine H3 receptor (H3R) in triple negative breast cancer (TNBC) samples and to investigate the antitumoral efficacy and safety of the LINS01 series of H3R antagonists, through in silico, in vitro, and in vivo approaches. Antitumor activity of LINS01009, LINS01010, LINS01022, LINS01023 was assayed in vitro in 4T1 and MDA-MB-231 TNBC cells (0.01-100 µM), and in vivo in 4T1 tumors orthotopically established in BALB/c mice (1 or 20 mg/kg). Additionally, H3R expression was assessed in 50 human TNBC samples. We have described a higher H3R mRNA expression in basal-like/TNBC tumors vs. matched normal tissue using TCGA Pan-Cancer Atlas data, and a higher H3R expression in human tumor samples vs. peritumoral tissue evidenced by immunohistochemistry associated with poorer survival. Furthermore, while all the essayed compounds showed antitumoral properties, LINS01022 and LINS01023 exhibited the most potent antiproliferative effects by: i) inducing cell apoptosis and suppressing cell migration in 4T1 and MDA-MB-231 TNBC cells, and ii) inhibiting cell growth in paclitaxel-resistant 4T1 cells (potentiating the paclitaxel antiproliferative effect). Moreover, 20 mg/kg LINS01022 reduced tumor size in 4T1 tumor-bearing mice, exhibiting a safe toxicological profile and potential for druggability estimated by ADME calculations. We conclude that the H3R is involved in the regulation of TNBC progression, offering promising therapeutic potential for the novel LINS01 series of H3R antagonists.


Assuntos
Antineoplásicos , Antagonistas dos Receptores Histamínicos H3 , Neoplasias de Mama Triplo Negativas , Animais , Feminino , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Antagonistas dos Receptores Histamínicos H3/farmacologia , Antagonistas dos Receptores Histamínicos H3/uso terapêutico , Camundongos Endogâmicos BALB C , Receptores Histamínicos H3/metabolismo , Receptores Histamínicos H3/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
ACS Chem Neurosci ; 15(6): 1206-1218, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38440987

RESUMO

This study examines the properties of a novel series of 4-oxypiperidines designed and synthesized as histamine H3R antagonists/inverse agonists based on the structural modification of two lead compounds, viz., ADS003 and ADS009. The products are intended to maintain a high affinity for H3R while simultaneously inhibiting AChE or/and BuChE enzymes. Selected compounds were subjected to hH3R radioligand displacement and gpH3R functional assays. Some of the compounds showed nanomolar affinity. The most promising compound in the naphthalene series was ADS031, which contained a benzyl moiety at position 1 of the piperidine ring and displayed 12.5 nM affinity at the hH3R and the highest inhibitory activity against AChE (IC50 = 1.537 µM). Eight compounds showed over 60% eqBuChE inhibition and hence were qualified for the determination of the IC50 value at eqBuChE; their values ranged from 0.559 to 2.655 µM. Therapy based on a multitarget-directed ligand combining H3R antagonism with additional AChE/BuChE inhibitory properties might improve cognitive functions in multifactorial Alzheimer's disease.


Assuntos
Colinesterases , Receptores Histamínicos H3 , Estrutura Molecular , Ligantes , Histamina , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Éteres , Agonismo Inverso de Drogas , Receptores Histamínicos H3/química , Receptores Histamínicos , Relação Estrutura-Atividade
12.
Eur J Pharmacol ; 968: 176450, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38387718

RESUMO

The histamine H3 receptor (H3R) regulates as a presynaptic G protein-coupled receptor the release of histamine and other neurotransmitters in the brain, and is consequently a potential therapeutic target for neuronal disorders. The human H3R encodes for seven splice variants that vary in the length of intracellular loop 3 and/or the C-terminal tail but are all able to induce heterotrimeric Gi protein signaling. The last two decades H3R drug discovery and lead optimization has been exclusively focused on the 445 amino acids-long reference isoform H3R-445. In this study, we pharmacologically characterized for the first time all seven H3R isoforms by determining their binding affinities for reference histamine H3 receptor agonists and inverse agonists. The H3R-453, H3R-415, and H3R-413 isoforms display similar binding affinities for all ligands as the H3R-445. However, increased agonist binding affinities were observed for the three shorter isoforms H3R-329, H3R-365, and H3R-373, whereas inverse agonists such as the approved anti-narcolepsy drug pitolisant (Wakix®) displayed significantly decreased binding affinities for the latter two isoforms. This opposite change in binding affinity of agonist versus inverse agonists on H3R-365 and H3R-373 is associated with their higher constitutive activity in a cAMP biosensor assay as compared to the other five isoforms. The observed differences in pharmacology between longer and shorter H3R isoforms should be considered in future drug discovery programs.


Assuntos
Histamina , Receptores Histamínicos H3 , Humanos , Histamina/farmacologia , Receptores Histamínicos H3/metabolismo , Agonismo Inverso de Drogas , Receptores Histamínicos , Isoformas de Proteínas , Agonistas dos Receptores Histamínicos/farmacologia
13.
Stem Cells Dev ; 33(3-4): 67-78, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38032751

RESUMO

The histamine H3 receptor, prominently expressed in neurons with a minor presence in glial cells, acts as both an autoreceptor and an alloreceptor, controlling the release of histamine and other neurotransmitters. The receptor impacts various essential physiological processes. Our team's initial investigations had demonstrated that the histamine H3 receptor antagonists could facilitate nerve regeneration by promoting the histamine H1 receptors on primary neural stem cells (NSCs) in the traumatic brain injury mouse, which suggested the potential of histamine H3 receptor as a promising target for treating neurological disorders and promoting nerve regeneration. Pitolisant (PITO) is the only histamine H3 receptor antagonist approved by the Food and Drug Administration (FDA) for treating narcolepsy. However, there is no report on Pitolisant in neural development or regeneration, and it is urgent to be further studied in strong biological activity models in vitro. The embryonic stem (ES) cells were differentiated into neural cells in vitro, which replicated the neurodevelopmental processes that occur in vivo. It also provided an alternative model for studying neurodevelopmental processes and testing drugs for neurological conditions. Therefore, we aimed to elucidate the regulatory role of Pitolisant in the early differentiation of ES cells into neural cells. Our results demonstrated that Pitolisant could promote the differentiation of ES cells toward NSCs and stimulated the formation of growth cones. Furthermore, Pitolisant was capable of inducing the polarization of NSCs through the cAMP-LKB1-SAD/MARK2 pathway, but had no significant effect on later neuronal maturation. Pitolisant altered mitochondrial morphology and upregulated the levels of mitochondrion-related proteins TOM20, Drp1, and p-Drp1, and reversed the inhibitory effect of Mdivi-1 on mitochondrial fission during the early neural differentiation of ES cells. In addition, Pitolisant induced the increase in cytosolic Ca2+. Our study provided an experimental foundation for the potential application of histamine H3 receptor-targeted modulators in the field of neuroregeneration.


Assuntos
Histamina , Piperidinas , Receptores Histamínicos H3 , Camundongos , Animais , Histamina/farmacologia , Células-Tronco Embrionárias Murinas/metabolismo , Agonistas dos Receptores Histamínicos/farmacologia , Agonistas dos Receptores Histamínicos/uso terapêutico , Receptores Histamínicos H3/metabolismo
14.
Biochem Pharmacol ; 228: 115988, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38159685

RESUMO

The histamine H3 receptor (H3R) is a neurotransmitter receptor that is primarily found in the brain, where it controls the release and synthesis of histamine, as well as the release of other neurotransmitters (e.g. dopamine, serotonin). Notably, 20 H3R isoforms are differentially expressed in the human brain as a consequence of alternative gene splicing. The hH3R-445, -415, -365 and -329 isoforms contain the prototypical GPCR (7TM) structure, yet exhibit deletions in the third intracellular loop, a structural domain that is pivotal for G protein-coupling, signaling and regulation. To date, the physiological relevance underlying the individual and combinatorial function of hH3R isoforms remains poorly understood. Nevertheless, given their significant implication in physiological processes (e.g. cognition, homeostasis) and neurological disorders (e.g. Alzheimer's and Parkinson's disease, schizophrenia), widespread targeting of hH3R isoforms by drugs may lead to on-target side effects in brain regions that are unaffected by disease. To this end, isoform- and/or pathway-selective targeting of hH3R isoforms by biased agonists could be of therapeutic relevance for the development of region- and disease-specific drugs. Hence, we have evaluated ligand biased signaling at the hH3R-445, -415, -365 and -329 isoforms across various Gαi/o-mediated (i.e. [35S]GTPγS accumulation, cAMP inhibition, pERK1/2 activation, pAKT T308/S473 activation) and non Gαi/o-mediated (i.e. ß-arrestin2 recruitment) endpoints that are relevant to neurological diseases. Our findings indicate that H3R agonists display significantly altered patterns in their degree of ligand bias, in a pathway- and isoform-dependent manner, underlining the significance to investigate GPCRs with multiple isoforms to improve development of selective drugs. SUBJECT CATEGORY: Neuropharmacology.


Assuntos
Isoformas de Proteínas , Receptores Histamínicos H3 , Humanos , Receptores Histamínicos H3/metabolismo , Ligantes , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/agonistas , Células HEK293 , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , beta-Arrestina 2/metabolismo , beta-Arrestina 2/genética , Agonistas dos Receptores Histamínicos/farmacologia
15.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37895952

RESUMO

Itch and pain are closely related but distinct sensations that share largely overlapping mediators and receptors. We hypothesized that the novel, multi-target compound E153 has the potential to attenuate pain and pruritus of different origins. After the evaluation of sigma receptor affinity and pharmacokinetic studies, we tested the compound using different procedures and models of pain and pruritus. Additionally, we used pharmacological tools, such as PRE-084, RAMH, JNJ 5207852, and S1RA, to precisely determine the role of histamine H3 and sigma 1 receptors in the analgesic and antipruritic effects of the compound. In vitro studies revealed that the test compound had potent affinity for sigma 1 and sigma 2 receptors, moderate affinity for opioid kappa receptors, and no affinity for delta or µ receptors. Pharmacokinetic studies showed that after intraperitoneal administration, the compound was present at high concentrations in both the peripheral tissues and the central nervous system. The blood-brain barrier-penetrating properties indicate its ability to act centrally at the levels of the brain and spinal cord. Furthermore, the test compound attenuated different types of pain, including acute, inflammatory, and neuropathic. It also showed a broad spectrum of antipruritic activity, attenuating histamine-dependent and histamine-independent itching. Finally, we proved that antagonism of both sigma 1 and histamine H3 receptors is involved in the analgesic activity of the compound, while the antipruritic effect to a greater extent depends on sigma 1 antagonism.

16.
Cell Rep ; 42(9): 113073, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37676764

RESUMO

Overly strong fear memories can cause pathological conditions. Histamine H3 receptor (H3R) has been viewed as an optimal drug target for CNS disorders, but its role in fear memory remains elusive. We find that a selective deficit of H3R in cholinergic neurons, but not in glutamatergic neurons, enhances freezing level during contextual fear memory retrieval without affecting cued memory. Consistently, genetically knocking down H3R or chemogenetically activating cholinergic neurons in the ventral basal forebrain (vBF) mimics this enhanced fear memory, whereas the freezing augmentation is rescued by re-expressing H3R or chemogenetic inhibition of vBF cholinergic neurons. Spatiotemporal regulation of H3R by a light-sensitive rhodopsin-H3R fusion protein suggests that postsynaptic H3Rs in vBF cholinergic neurons, but not presynaptic H3Rs of cholinergic projections in the dorsal hippocampus, are responsible for modulating contextual fear memory. Therefore, precise modulation of H3R in a cell-type- and subcellular-location-specific manner should be explored for pathological fear memory.


Assuntos
Prosencéfalo Basal , Histamina , Neurônios Colinérgicos/fisiologia , Memória/fisiologia , Medo/fisiologia
17.
Front Neurosci ; 17: 1192096, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37449267

RESUMO

We have reported that prenatal alcohol exposure (PAE) elevates histamine H3 receptor (H3R) agonist-mediated inhibition of glutamatergic neurotransmission in the dentate gyrus. Here, we hypothesized that PAE alters the expression of two prominent H3R isoforms namely, the rH3A and rH3C isoforms, which have differing intrinsic activities for H3R agonists, in a manner that may contribute to heightened H3R function in PAE rats. In contrast to our predictions, we found different effects of sex and PAE in various brain regions with significant interactions between sex and PAE in dentate gyrus and entorhinal cortex for both isoforms. Subsequently, to confirm the PAE-and sex-induced differences on H3R isoform mRNA expression, we developed a polyclonal antibody selective for the rH3A inform. Western blots of rH3A mRNA-transfected HEK-293 cells identified a ~ 48 kDa band of binding consistent with the molecular weight of rH3A, thus confirming antibody sensitivity for rH3A protein. In parallel, we also established a pan-H3R knockout mice line to confirm antibody specificity in rodent brain membranes. Both qRT-PCR and H3R agonist-stimulated [35S]-GTPγS binding confirmed the absence of mH3A mRNA and H3 receptor-effector coupling in H3R knockout (KO) mice. Subsequent western blotting studies in both rat and mouse brain membranes were unable to detect rH3A antibody binding at ~48 kDa. Rather, the H3RA antibody bound to a ~ 55 kDa band in both rat and mouse membranes, including H3R KO mice, suggesting H3RA binding was not specific for H3Rs in rodent membranes. Subsequent LC/MS analysis of the ~55 kDa band in frontal cortical membranes identified the highly abundant beta subunit of ATPase in both WT and KO mice. Finally, LC/MS analysis of the ~48 kDa band from rH3A mRNA-transfected HEK-293 cell membranes was able to detect rH3A protein, but its presence was below the limits of quantitative reliability. We conclude that PAE alters rH3A and rH3C mRNA expression in some of the same brain regions where we have previously reported PAE-induced alterations in H3R-effector coupling. However, interpreting the functional consequences of altered H3R isoform expression was limited given the technical challenges of measuring the relatively low abundance of rH3A protein in native membrane preparations.

18.
Pharmaceuticals (Basel) ; 16(5)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37242458

RESUMO

This study examines the properties of novel guanidines, designed and synthesized as histamine H3R antagonists/inverse agonists with additional pharmacological targets. We evaluated their potential against two targets viz., inhibition of MDA-MB-231, and MCF-7 breast cancer cells viability and inhibition of AChE/BuChE. ADS10310 showed micromolar cytotoxicity against breast cancer cells, combined with nanomolar affinity at hH3R, and may represent a promising target for the development of an alternative method of cancer therapy. Some of the newly synthesized compounds showed moderate inhibition of BuChE in the single-digit micromolar concentration ranges. H3R antagonist with additional AChE/BuChE inhibitory effect might improve cognitive functions in Alzheimer's disease. For ADS10310, several in vitro ADME-Tox parameters were evaluated and indicated that it is a metabolically stable compound with weak hepatotoxic activity and can be accepted for further studies.

19.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37108661

RESUMO

Many studies have shown the high efficacy of histamine H3 receptor ligands in preventing weight gain. In addition to evaluating the efficacy of future drug candidates, it is very important to assess their safety profile, which is established through numerous tests and preclinical studies. The purpose of the present study was to evaluate the safety of histamine H3/sigma-2 receptor ligands by assessing their effects on locomotor activity and motor coordination, as well as on the cardiac function, blood pressure, and plasma activity of certain cellular enzymes. The ligands tested at a dose of 10 mg/kg b.w. did not cause changes in locomotor activity (except for KSK-74) and did not affect motor coordination. Significant reductions in blood pressure were observed after the administration of compounds KSK-63, KSK-73, and KSK-74, which seems logically related to the increased effect of histamine. Although the results of in vitro studies suggest that the tested ligands can block the human ether-a-go-go-related gene (hERG) potassium channels, they did not affect cardiac parameters in vivo. It should be noted that repeated administration of the tested compounds prevented an increase in the activity of alanine aminotransferase (AlaT) and gamma-glutamyl transpeptidases (gGT) observed in the control animals fed a palatable diet. The obtained results show that the ligands selected for this research are not only effective in preventing weight gain but also demonstrate safety in relation to the evaluated parameters, allowing the compounds to proceed to the next stages of research.


Assuntos
Antagonistas dos Receptores Histamínicos H3 , Receptores Histamínicos H3 , Humanos , Animais , Histamina , Antagonistas dos Receptores Histamínicos H3/farmacologia , Obesidade/tratamento farmacológico , Aumento de Peso , Ligantes , Antagonistas dos Receptores Histamínicos
20.
Molecules ; 28(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36903593

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder, for which there is no effective cure. Current drugs only slow down the course of the disease, and, therefore, there is an urgent need to find effective therapies that not only treat, but also prevent it. Acetylcholinesterase inhibitors (AChEIs), among others, have been used for years to treat AD. Histamine H3 receptors (H3Rs) antagonists/inverse agonists are indicated for CNS diseases. Combining AChEIs with H3R antagonism in one structure could bring a beneficial therapeutic effect. The aim of this study was to find new multitargetting ligands. Thus, continuing our previous research, acetyl- and propionyl-phenoxy-pentyl(-hexyl) derivatives were designed. These compounds were tested for their affinity to human H3Rs, as well as their ability to inhibit cholinesterases (acetyl- and butyrylcholinesterases) and, additionally, human monoamine oxidase B (MAO B). Furthermore, for the selected active compounds, their toxicity towards HepG2 or SH-SY5Y cells was evaluated. The results showed that compounds 16 (1-(4-((5-(azepan-1-yl)pentyl)oxy)phenyl)propan-1-one) and 17 (1-(4-((6-(azepan-1-yl)hexyl)oxy)phenyl)propan-1-one) are the most promising, with a high affinity for human H3Rs (Ki: 30 nM and 42 nM, respectively), a good ability to inhibit cholinesterases (16: AChE IC50 = 3.60 µM, BuChE IC50 = 0.55 µM; 17: AChE IC50 = 1.06 µM, BuChE IC50 = 2.86 µM), and lack of cell toxicity up to 50 µM.


Assuntos
Doença de Alzheimer , Neuroblastoma , Receptores Histamínicos H3 , Humanos , Histamina , Acetilcolinesterase/metabolismo , Relação Estrutura-Atividade , Agonismo Inverso de Drogas , Receptores Histamínicos H3/química , Inibidores da Colinesterase/química , Receptores Histamínicos , Monoaminoxidase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Inibidores da Monoaminoxidase/farmacologia , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA