Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 364: 143255, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39233298

RESUMO

The Ti3C2 quantum dots (QDs)/oxygen-vacancy-rich BiOBr hollow microspheres composite photocatalyst was prepared using solvothermal synthesis and electrostatic self-assembly techniques. Together, Ti3C2QDs and oxygen vacancies (OVs) enhanced photocatalytic activity by broadening light absorption and improving charge transfer and separation processes, resulting in a significant performance boost. Meanwhile, the photocatalytic efficiency of Ti3C2 QDs/BiOBr-OVs is assessed to investigate its capability for oxygen evolution and degradation of tetracycline (TC) and Rhodamine B (RhB) under visible-light conditions. The rate of oxygen production is observed to be 5.1 times higher than that of pure BiOBr-OVs, while the photocatalytic degradation rates for TC and RhB is up to 97.27% and 99.8%, respectively. The synergistic effect between Ti3C2QDs and OVs greatly enhances charge separation, leading to remarkable photocatalytic activity. Furthermore, the hollow microsphere contributes to the enhanced photocatalytic performance by facilitating multiple light scatterings and providing ample surface-active sites. The resultant Ti3C2QDs/BiOBr-OVs composite photocatalyst demonstrates significant potential for environmental applications.


Assuntos
Bismuto , Microesferas , Oxigênio , Pontos Quânticos , Rodaminas , Tetraciclina , Titânio , Pontos Quânticos/química , Titânio/química , Rodaminas/química , Catálise , Oxigênio/química , Bismuto/química , Tetraciclina/química , Luz , Processos Fotoquímicos , Fotólise
2.
Micromachines (Basel) ; 15(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38258228

RESUMO

Hollow microspheres as the filler material of syntactic foams have been adopted in extensive practical applications, where the physical parameters and their homogeneity have been proven to be critical factors during the design process, especially for high-specification scenarios. Based on double-emulsion droplet templates, hollow microspheres derived from microfluidics-enabled soft manufacturing have been validated to possess well-controlled morphology and composition with a much narrower size distribution and fewer defects compared to traditional production methods. However, for more stringent requirements, the innate density difference between the core-shell solution of the double-emulsion droplet template shall result in the wall thickness heterogeneity of the hollow microsphere, which will lead to unfavorable mechanical performance deviations. To clarify the specific mechanical response of microfluidics-derived hollow silica microspheres with varying eccentricities, a hybrid method combining experimental nanoindentation and a finite element method (FEM) simulation was proposed. The difference in eccentricity can determine the specific mechanical response of hollow microspheres during nanoindentation, including crack initiation and the evolution process, detailed fracture modes, load-bearing capacity, and energy dissipation capability, which should shed light on the necessity of optimizing the concentricity of double-emulsion droplets to improve the wall thickness homogeneity of hollow microspheres for better mechanical performance.

3.
ACS Appl Mater Interfaces ; 15(44): 51737-51752, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37874982

RESUMO

This study demonstrates a cost-effective, thin, multifunctional composite coating system with outstanding thermal insulation for thermal management and heat shield applications, such as roofs, as well as outstanding resistance to corrosion. The hydrophobic multifunctional epoxy composite coating systems were designed with surface-modified fillers to impart both reduced heat conduction and high infrared reflectance in a thin coating with a 65-100 µm dry film thickness (DFT). With a judicial combination of hollow microspheres (HMS) activated and modified with silica (sHMS) and stearic acid-modified TiO2 (sMO), the developed composite coating attained the highest thermal insulation property with a temperature drop of 21-31 °C at different distances below the coated panel, which is superior to the values of temperature drop reported earlier. The high solar reflectance of the composite coating in the near-infrared (NIR) region exceeds 72% with a low thermal conductivity of 0.178 W m-1 K-1. After 720 h of exposure in a 3.5 wt % NaCl solution, the composite coating revealed a corrosion protection efficiency of 99%. The work demonstrates that high solar reflectivity and low thermal conductivity must be active simultaneously to achieve superior thermal shielding in a thin coating on a metal. A careful selection of fillers and appropriate surface modifications ensures hydrophobicity and proper distribution of the fillers in the coating for a high barrier effect to prevent environmental deterioration. With these superior performance parameters, the developed composite coatings make an essential contribution to energy sustainability and the protection against environmental degradation.

4.
Nanomaterials (Basel) ; 13(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37177049

RESUMO

Herein, well-defined hollow CuS microspheres assembled from nanosheets were successfully synthesized through a facile solvothermal method. Hollow CuS microspheres have an average diameter of 1.5 µm; moreover, the primary CuS nanosheets have an ultrathin thickness of about 10 nm and are bound by {0001} polar facets. When used as anodes for lithium-ion batteries (LIBs), hollow CuS microspheres exhibit excellent electrochemical properties, including a large discharge capacity (610.1 mAh g-1 at 0.5 C), an excellent rate capability (207.6 and 143.4 mAh g-1 at 1 and 5 C), and a superior cyclic stability (196.3 mAh g-1 at 1 C after 500 cycles). When used as photocatalysts for Rhodamine B (RhB), hollow CuS microspheres can degrade more than 99% of the initial RhB within 21 min. These excellent Li-ion storage properties and photocatalytical performances are attributed to their unique hierarchical hollow structure.

5.
Environ Sci Pollut Res Int ; 30(7): 17994-18013, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36205873

RESUMO

Ozone air pollution poses a serious threat to human health and ecological environment. Manganese oxide (MnOx) is a popular material for ozone decomposition with excellent catalytic performance. However, the catalytic activity may be reduced under high-humidity conditions because of oxygen vacancy of MnOx from the water evaporation. In this paper, a new type of MnOx/poly(acrylic acid-co-divinylbenzene) (PAA) catalyst with MnOx supported on hollow PAA was successfully prepared, which greatly improved the ozone decomposition efficiency under high humidity. It was shown that when the acrylic acid (AA) content was more than 50%, the PAA polymer layer was hydrophilic and the ozone decomposition efficiency would keep high activity for both the low- and high-humidity conditions. The best performance of ozone decomposition was identified for the methanol reduction and AA content of 60%, in which the efficiencies reached 94.5% and 85% at 50% and 90% humidity levels, respectively. It is the synergetic effect of the hydrophilic PAA support and hollow structure that retains and improves the decomposition activity, which can absorb the water vapor molecules and increase the ozone retention time. Therefore, the hollow microsphere catalyst prepared in this paper has great potential in solving the problem of ozone air pollution.


Assuntos
Ozônio , Humanos , Ozônio/química , Umidade , Microesferas , Catálise
6.
J Colloid Interface Sci ; 634: 874-886, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36566633

RESUMO

In this study, monoclinic phase bismuth vanadate (BiOV4) photocatalyst with unique hollow microsphere morphology was successfully prepared by a hydrothermal method in the existence of sodium dodecyl benzene sulfonate (SDBS). The prepared photocatalysts were characterized by X-ray diffraction (XRD), scanning electron (SEM) and X-ray photoelectron spectrometer (XPS) and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). Experimental results show that SDBS definitely changes the microstructure of BiVO4, which is allocated to the template role of SDBS in the preparation process. Moreover, the hydrothermal treatment time is also of crucial importance in affecting the structure and morphology of the photocatalysts, and the optimal hydrothermal treatment time for the formation of hollow microsphere is 24 h. Furthermore, the feasible growth mechanism for hollow microsphere was elaborated. Enriched oxygen vacancies (OVs) are introduced into BiOV4 prepared with SDBS, largely elevating the separation efficiency of photo-generated charges. Under visible light irradiation, the photocatalytic activities of BiOV4 for destruction of rhodamine (RhB) were evaluated. The photocatalytic degradation rate constant of RhB on the 3SBVO is 2.23 times of that on the blank BiOV4 as the mass ratio of SDBS/BiOV4 is 3 %. Photocatalytic degradation mechanism of BiVO4 toward detoxification of organic pollutants was presented.

7.
Materials (Basel) ; 15(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35888287

RESUMO

The vibration-reducing ability of construction materials is generally described by the damping ratio of the materials. Previously, many studies on the damping ratio of concrete have been done, such as the addition of rubber, polymer, fiber, and recycled aggregates in the concrete. However, the application of these materials in construction is limited due to their drawbacks. This paper investigated the effect of the replacement ratio and the size of the hollow glass microspheres (HGM), cenospheres (CS), and graphite flakes (GF) on the damping ratio of mortar. Furthermore, rubber particles (RP), aluminum powder (AP), and natural fiber (NF) were investigated to find if they have a combination effect with HGM. The half-power bandwidth method was conducted to obtain the damping ratio at 28 days of curing, and the compressive and flexural strength tests were also conducted to study the mechanical properties of mortar that contained HGM, CS, and GF. The results show that increases in the size of HGM and the replacement ratio of sand with HGM lead to an increase in the damping ratio. Moreover, RP and NF do not provide a combination effect with HGM on the damping ratio, whereas the application of AP results in a drastic compressive strength decrease even with an increase in damping ratio when incorporated with HGM. Besides, an increase in the replacement percentage of CS also leads to an improvement in the damping ratio, and a smaller size and higher replacement ratio of GFs can improve the damping ratio compared to other additives. As a result, CS and GF are more effective than HGM. 50% replacement ratio of CS slightly reduced the compressive strength by 6.4 MPa while improving the damping ratio by 15%, and 10% replacement ratio of samller GF can enhance the flexural strength by over 4.55% while increasing the damping ratio by 20.83%.

8.
J Colloid Interface Sci ; 622: 591-601, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35533476

RESUMO

Covalent-organic frameworks (COFs) and related composites show an enormous potential in next-generation high energy-density lithium-ion batteries. However, the strategy to design functional covalent organic framework materials with nanoscale structure and controllable morphology faces serious challenges. In this work, a layer-assembled hollow microspherical structure (Sn@COF-hollow) based on the tin-nitrogen (Sn-N) coordination interaction is designed. Such carefully-crafted hollow structure with large exposed surface area and metal center decoration endows the Sn@COF-hollow electrode with more activated lithium-reaction sites, including Sn ions, carbon-nitrogen double bond (CN) groups and carbon-carbon double bond (CC) units from aromatic benzene rings. Besides, the layer-assembled hollow structure of the Sn@COF-hollow electrode can also alleviate the volume expansion of electrode during repeated cycling, and achieve fast electrons/ions transmission and capacitance-dominated lithium-reaction kinetics, further leading to enhanced cycling performance and rate properties. In addition, the effective combination of the inorganic metal and organic framework components in the Sn@COF-hollow electrode can promote its improved conductivity and further enhance lithium-storage properties. Benefited from these merits, the Sn@COF-hollow electrode delivers highly reversible large capacities of 1080 mAh g-1 after 100 cycles at 100 mA g-1 and 685 mAh g-1 after 300 cycles at 1000 mA g-1. This work provides an interesting and effective way to design COF-based anodes of lithium-ion battery with improved electrochemical performances.

9.
Luminescence ; 37(7): 1184-1191, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35567303

RESUMO

In this article, nickel(II) oxide (NiO) hollow microspheres (HMSs) were fabricated and used to catalyze chemiluminescence (CL) reaction. The studied CL reaction is the luminol-oxygen reaction that was used as a sensitive analytical tool for measuring tuberculostatic drug isoniazid (IND) in pharmaceutical formulations and water samples. The CL method was established based on the suppression impact of IND on the CL reaction. The NiO HMSs were produced by a simple hydrothermal method and characterized by several spectroscopic techniques. The result of essential parameters on the analytical performance of the CL method, including concentrations of sodium hydroxide (NaOH), luminol, and NiO HMSs were investigated. At the optimum conditions, the calibration curve for IND was linear in the range of 8.00 × 10-7 to 1.00 × 10-4  mol L-1 (R2  = 0.99). A detection limit (3S) of 2.00 × 10-7  mol L-1 was obtained for this method. The acceptable relative standard deviation (RSD) was obtained for the proposed CL method (2.63%, n = 10) for a 5.00 × 10-6  mol L-1 IND solution. The mechanism of the CL reaction was also discussed.


Assuntos
Luminescência , Luminol , Análise de Injeção de Fluxo/métodos , Isoniazida , Medições Luminescentes/métodos , Luminol/química , Microesferas , Níquel/química
10.
J Colloid Interface Sci ; 620: 144-152, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35421751

RESUMO

We report the fabrication of well-defined phase-pure Mn2V2O7 hollow microspheres (h-MVO), assembled from the porous plate-like building blocks, via a facile solvothermal method followed by annealing, with the assistance of polyvinylpyrrolidone (PVP) as the structure-regulating agent. The microstructure dependent electrochemical properties of h-MVO as anode materials for lithium ion batteries (LIBs) are investigated, and excellent lithium storage performance is obtained with a reversible capacity of 1707 mAh g-1 after 700 cycles at 0.5 A g-1, revealing that the unique hierarchical framework of the h-MVO microspheres with hollow interiors and porous building blocks could not only accelerate the transport of Li+ ions and electrolyte, but also efficiently suppress the electrode pulverization upon cycling. More importantly, we demonstrate that PVP can be an effective agent to tune the microstructures, which would be promising for the development of high-performance energy storage devices.

11.
Mater Today Bio ; 14: 100223, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35243298

RESUMO

Inflammatory arthritis is a major cause of disability in the elderly. This condition causes joint pain, loss of function, and deterioration of quality of life, mainly due to osteoarthritis (OA) and rheumatoid arthritis (RA). Currently, available treatment options for inflammatory arthritis include anti-inflammatory medications administered via oral, topical, or intra-articular routes, surgery, and physical rehabilitation. Novel alternative approaches to managing inflammatory arthritis, so far, remain the grand challenge owing to catastrophic financial burden and insignificant therapeutic benefit. In the view of non-targeted systemic cytotoxicity and limited bioavailability of drug therapies, a major concern is to establish stimuli-responsive drug delivery systems using nanomaterials with on-off switching potential for biomedical applications. This review summarizes the advanced applications of triggerable nanomaterials dependent on various internal stimuli (including reduction-oxidation (redox), pH, and enzymes) and external stimuli (including temperature, ultrasound (US), magnetic, photo, voltage, and mechanical friction). The review also explores the progress and challenges with the use of stimuli-responsive nanomaterials to manage inflammatory arthritis based on pathological changes, including cartilage degeneration, synovitis, and subchondral bone destruction. Exposure to appropriate stimuli induced by such histopathological alterations can trigger the release of therapeutic medications, imperative in the joint-targeted treatment of inflammatory arthritis.

12.
Chemosphere ; 287(Pt 1): 131982, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34461339

RESUMO

Advanced oxidation is a very efficient method in wastewater treatment, but it is a waste of resources to directly oxide the high concentration of valuable organics into carbon dioxide and water. In this paper, the combination of persulfate and wet air oxidation was developed to recover organics from high concentration of wastewater, along with high mineralization of the residual organics. Nitrogen and sulfur co-doped hollow spherical polymers with narrow size distribution was recovered from the simulated benzothialzole (BTH) wastewater in this facile way, along with chemical oxygen demand (COD) removal rate higher than 90%. The formation route of the polymers was intensively studied based on detailed analysis of different kinds of reaction intermediates. The polymers can be further carbonized into co-doped hollow carbon microsphere, which showed better performance in organic contaminants removal than a commercial activated carbon both in adsorption or catalytic persulfate oxidation. This proposed a new strategy to simultaneously combine oxidation and polymerization for resource recovery from wastewater with high concentration of heterocyclic compounds.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Benzotiazóis , Microesferas , Nitrogênio , Oxirredução , Polímeros , Enxofre , Eliminação de Resíduos Líquidos , Águas Residuárias
13.
Chemosphere ; 289: 133205, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34890624

RESUMO

Herein, we obtained porous hollow carboxyl-polysulfone (PH-CPSF) microspheres through non-solvent-induced phase separation (NIPS) method and simple modification, used as highly efficient adsorbents for removing cationic dyes from sewage. The resulting PH-CPSF microspheres possess a hollow core and sponge-like shell structure, with high surface area, durable chemical inertness and structural stability. The as-synthesized PH-CPSF microspheres deliver a desirable adsorption effect after deprotonation treatment, with an adsorption capacity reaching up to 154.5 mg g-1 at 25 °C (pH = 7) of methylene blue (MB). The inter-molecular interactions between MB and the surface of the PH-CPSF, including π-π interaction, hydrogen bonding, strong charge attraction and weak charge attraction endow the adsorption ability of the PH-CPSF. The pseudo-second-order kinetic model pronounces in the adsorption behavior, and the adsorption equilibrium data is fitted to the Langmuir model. Moreover, PH-CPSF microspheres can also be used as adsorption fillers for large-scale water purification, and a removal rate of 94.0% for MB can be achieved under a flow rate of 8000 L m-3 h-1. The reusability of 95.3% removal effect for PH-CPSF microspheres after 20 consecutive cycles can be attained by a simple regeneration treatment. The adsorption efficiency of the PH-CPSF microspheres was evaluated by variety of cationic and anionic dyes, with high adsorption capacity toward cationic dyes (100%) and less than 10% toward anionic dyes. These results manifest that PH-CPSF microspheres are a potential adsorbent with long-term purification capabilities, which are expected to be used in small and large-scale sewage treatment.


Assuntos
Corantes , Poluentes Químicos da Água , Adsorção , Microesferas , Polímeros , Porosidade , Sulfonas
14.
ACS Appl Mater Interfaces ; 13(45): 54324-54338, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34727690

RESUMO

Dyes are considered as recalcitrant compounds and are not easily removed through conventional water treatment processes. The present study demonstrated the fabrication of polyaniline hollow microsphere (PNHM)/MnO2/Fe3O4 composites by in situ deposition of MnO2 and Fe3O4 nanoparticles on the surface of PNHM. The physicochemical characteristics and adsorption behavior of the prepared PNHM/MnO2/Fe3O4 composites towards the removal of toxic methyl green (MG) and Congo red (CR) dyes have been investigated. The characterization study revealed the successful synthesis of the prepared PNHM/MnO2/Fe3O4 adsorbent with a high Brunauer-Emmett-Teller (BET) surface area of 191.79 m2/g. The batch adsorption study showed about 88 and 98% adsorption efficiencies for MG and CR dyes, respectively, at an optimum dose of 1 g/L of PNHM/MnO2/Fe3O4 at pH ∼6.75 at room temperature (303 ± 3 K). The adsorption phenomena of MG and CR dyes were well described by the Elovich and pseudo-second-order kinetics, respectively, and Freundlich isotherm model. The thermodynamics study shows that the adsorption reactions were endothermic and spontaneous in nature. The maximum adsorption capacity (Qmax) for MG and CR dyes was observed as 1142.13 and 599.49 mg/g, respectively. The responsible adsorption mechanisms involved in dye removal were electrostatic interaction, ion exchange, and the formation of the covalent bonds. The coexisting ion study revealed that the presence of phosphate co-ion considerably reduced the CR dye removal efficiency. However, the desorption-regeneration study demonstrated the successful reuse of the spent PNHM/MnO2/Fe3O4 material for the adsorption of MG and CR dyes for several cycles. Given the aforementioned findings, the PNHM/MnO2/Fe3O4 nanocomposites could be considered as a promising adsorbent for the remediation of dye-contaminated water.

15.
ACS Appl Mater Interfaces ; 13(21): 25111-25120, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34003629

RESUMO

Porous hollow microsphere (PHM) materials represent ideal building blocks for realizing diverse functional applications such as catalysis, energy storage, drug delivery, and chemical sensing. This has stimulated intense efforts to construct metal oxide PHMs for achieving highly sensitive and low-power-consumption semiconductor gas sensors. Conventional methods for constructing PHMs rely on delicate reprogramming of templates and may suffer from the structural collapse issue during the removal of templates. Here, we propose a template-free method for the construction of tin oxide (SnO2) PHMs via the competition between the solvent evaporation rate and the phase separation dynamics of colloidal SnO2 quantum wires. The SnO2 PHMs (typically 3 ± 0.5 µm diameter and approximately 200 nm shell thickness) exhibit desirable structural stability with desirable processing compatibility with various substrates. This enables the realization of NO2 gas sensors having a superior response and recovery process at room temperature. The superior NO2-sensing characteristic is attributed to the effective gas adsorption competition on solid surfaces benefiting from efficient diffusion channels, enhancing the interaction of metal oxide solids with gas molecules in terms of the receptor function, transducer function, and utility factor. In addition, the one-step deposition of SnO2 PHMs directly onto device substrates simplifies the fabrication conditions for semiconductor gas sensors. The desirable structural stability of PHMs combined with the functional diversity of metal oxides may open new opportunities for the design of functional materials and devices.

16.
Polymers (Basel) ; 13(5)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803347

RESUMO

In this work, hierarchical MoS2/C quasi-hollow microspheres are prepared by a one-pot hydrothermal process with the addition of glucose. The glucose is not only inclined to form the roundish sphere in the completion of the synthesis of MoS2, but at the same time the microspheres formed by the glucose can act as the nuclei on which the MoS2 grows. Glucose, acting as a nucleating agent, has the advantages of being low-cost and environmentally friendly, which can simplify the fabrication process. The interiors of the MoS2/C samples are multi-hole and quasi-hollow, which is beneficial for the insertion and extraction of lithium ions. For the first time, we demonstrate that hierarchical-structured MoS2/C quasi-hollow microspheres exhibit an excellent cycling stability and rate capability in lithium ion batteries (LIBs) and are significantly superior to the bulk MoS2. The method presented in this article may provide a simple, clean. and economical strategy for the preparation of MoS2/C microspheres as a feasible and promising anode material for LIBs.

17.
J Hazard Mater ; 408: 124458, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33168316

RESUMO

A facile and robust interface reaction method for controllable synthesis of hierarchically structured flower-like MnO2 hollow microspheres was developed at a low cost. With MnCO3 microspheres as homologous templates, KMnO4 was used to conduct redox reactions with the surface layer of the MnCO3 microspheres to form porous flower-like MnO2. Then, the internal template was removed by HCl etching to obtain flower-like MnO2 hollow microspheres. HCl plays the dual role of removing the template and generating oxygen vacancies through acid etching. The as-prepared flower-like MnO2 hollow microspheres exhibited excellent low-temperature catalytic activity for toluene oxidation owing to the desirable features of a high specific surface area, abundant oxygen vacancies, high content of Mn4+, a high number of acidic sites and a strong acidity. This work provides a new strategy for the facile construction of high-performance volatile organic compounds oxidation catalysts with industrial application prospects.

18.
J Colloid Interface Sci ; 575: 96-107, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32361050

RESUMO

The development of efficient electrode materials is essential to promote the performance of energy storage equipment. Nowadays, metal organic frameworks (MOFs) have been widely regarded as active materials for supercapacitors mainly thanks to their adjustable structure and outstanding porosity. Here, highly optimized Nickel and Cobalt MOF-derived N-doped porous carbon (Ni/Co-MOF-NPC) are considered the best choice for electrode materials due to their unique structural properties and excellent electrochemical performance. Pure cobalt oxide rarely reaches a specific capacitance of 104.3 F g-1 when the current density is 1 A g-1, but the optimized Ni/Co-MOF-NPC-2:1 offers an ultra-high specific capacitance of 1214 F g-1, which is much higher than that of pure cobalt oxide in a three-electrode test system. When the current density is 10 A g-1, after 6000 cycles, the capacitance can still maintain 98.8% of the initial capacitance. Asymmetric supercapacitors were assembled using the prepared Ni/Co-MOF-NPC-2:1 as the positive electrode material, corrugated paper activated carbon (CPAC) as the negative electrode material, the prepared Ni/Co-MOF-NPC-2:1//CPAC exhibits an outstanding energy density of 55.4 Wh kg-1 at 758.5 W kg-1, and has a significant cycle stability of 75.2% retention after 20,000 cycles. This excellent MOF synthesis strategy reduced the gap between the experimental synthesis and practical application of MOF in fast energy storage.

19.
J Colloid Interface Sci ; 564: 322-332, 2020 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-31918200

RESUMO

Improving efficient solar light utilization, facilitating charge transportation and reducing electron-hole recombination, are the three major challenges in photocatalysis, and numerous interests have been devoted into overcoming these issues for obtaining high performance photocatalysts. Herein, ZnO hollow microspheres/reduced graphene oxide (ZnO/rGO) composites were constructed as a high performance photocatalyst for splitting water into H2 via a one-step microwave-assisted solvothermal process. The optimized ZnO/rGO nanocomposite (the mass ratio of GO to ZnO is 1%) reached a maximum H2 evolution rate of 648.1 µmol/h/g without using noble metal as cocatalyst, which exhibiting ~2.3-fold enhancement as compared to that of the bare ZnO. This significant improvement was primarily attributed to great light-harvesting capacity and the efficient charge carrier separation and transfer. The detailed characterization of PL and EIS revealed that, in the ZnO/rGO composite, the rGO nanosheets played important roles in promoting the charge carrier separation and transfer, which therefore resulting in an enhanced activity in H2 evolution. Our present observations provide a valuable methodology for exploring novel high performance photocatalyst, especially in graphene-based inorganic hybrid systems.

20.
ACS Appl Mater Interfaces ; 11(17): 15630-15637, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30973004

RESUMO

Advanced electrode materials play a very important role in the development of large-scale production of sodium-ion batteries. Herein, Na0.7MnO2.05 hollow microspheres with diameters of 2 µm and a shell thickness of 200 nm are prepared and then modified by polypyrrole (PPy) coating. As cathodes for sodium-ion batteries, the designed PPy-coated sodium manganate hollow microspheres demonstrate enhanced electrochemical performances, with an initial capacity of 165.1 mAh g-1, capacity retention of 88.6% at 0.1 A g-1 after 100 cycles, and improved rate capability. The excellent electrochemical properties are attributed to the improved electroconductivity and the high stability of hollow spherical structure of sodium manganate oxide particles due to the introduction of conductive polymer coating.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA