Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 602: 325-333, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34139530

RESUMO

Electrocatalytic water splitting used for generating clean and sustainable hydrogen (H2) can be very promising to address current energy shortage and associated environmental issues. However, this methodology is severely impeded by the tardy oxygen evolution reaction (OER). Hence, designing a preferable kinetics and thermodynamics oxidation reaction that supersede OER is very significant for the energy-saving production of H2. Herein, hollow needle-like copper cobalt sulfide was constructed on carbon cloth (CuCo2S4/CC) as a bifunctional electrocatalyst to accelerate H2 generation and simultaneously convert ethanol into value-added acetic acid. Thanks to the synergistic effect and unique structure of Cu and Co, CuCo2S4/CC displays superior catalytic activity and durability in ethanol oxidation reaction (EOR) with a low potential of 1.38 V vs. RHE (@10 mA cm-2). Meanwhile, it exhibits excellent hydrogen evolution reaction (HER) performance. The homemade CuCo2S4/CC//CuCo2S4/CC ethanol-water electrolyser only demands a voltage of 1.59 V to deliver 10 mA cm-2, 150 mV less than that used for ordinary water splitting. This shows that the ethanol-water electrolyser elaborated here holds encouraging potential in the energy-saving production of H2 and oxidation of ethanol into value-added acetic acid. This present work may open the way for the rational design of other electrocatalysts for efficient biomass oxidation reaction and relevant H2 production applications.


Assuntos
Cobre , Etanol , Carbono , Cobalto , Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA