Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.262
Filtrar
1.
Plant Biol (Stuttg) ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967240

RESUMO

Neotropical seasonal dry forest (NSDF) is one of the most threatened ecosystems according to global climate change predictions. Nonetheless, few studies have evaluated the global climate change impacts on diversity patterns of NSDF plants. The lack of whole biome-scale approaches restricts our understanding of global climate change consequences in the high beta-diverse NSDF. We analysed the impact of global climate change on species distribution ranges, species richness, and assemblage composition (beta diversity) for 1,178 NSDF species. We used five representative plant families (in terms of abundance, dominance, and endemism) within the NSDF: Cactaceae, Capparaceae, Fabaceae, Malvaceae, and Zygophyllaceae. We reconstructed potential species distributions in the present and future (2040-2080), considering an intermediate Shared Socioeconomic Pathway and two dispersal ability assumptions on the taxa. Using a resource use scores index, we related climate-induced range contractions with species' water stress tolerance. Even under a favourable dispersal scenario, species distribution and richness showed future significant declines across those sites where mean temperature and precipitation seasonality are expected to increase. Further, changes in species range distribution in the future correlated positively with potential use of resources in Fabaceae. Results suggest that biotic heterogenization will likely be the short-term outcome at biome scale under dispersal limitations. Nonetheless, by 2080, the prevailing effect under both dispersal assumptions will be homogenization, even within floristic nuclei. This information is critical for further defining new areas worth protecting and future planning of mitigation actions for both species and the whole biome.

2.
Sci Rep ; 14(1): 15430, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965332

RESUMO

Salt deposits are indicative of relatively extreme climate events. However, due to insufficient independent temperature proxies, paleotemperature records obtained from salt deposition are still lack. The Paleocene evaporite sequence deposited in the Hongze Depression of Subei Basin of eastern China provides an important terrestrial sediment record during this period. In this study we present total of 488 homogenization temperature (Th) data of halite fluid inclusions from drilling core with different stratigraphic depth after detailed petrological observation. The obtained Th ranged from 17.7 °C to 52.3 °C, with the mean Th value of 34.1 °C that in good agreement with the previous studies of climatic proxies. Our study shows that primary fluid inclusions of halite can serve as a robust tool to construct the ancient earth surface temperature.

3.
Environ Sci Ecotechnol ; 21: 100434, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38989258

RESUMO

Lake ecosystems confront escalating challenges to their stability and resilience, most intuitively leading to biodiversity loss, necessitating effective preservation strategies to safeguard aquatic environments. However, the complexity of ecological processes governing lake biodiversity under multi-stressor interactions remains an ongoing concern, primarily due to insufficient long-term bioindicator data, particularly concerning macroinvertebrate biodiversity. Here we utilize a unique, continuous, and in situ biomonitoring dataset spanning from 2011 to 2019 to investigate the spatio-temporal variation of macroinvertebrate communities. We assess the impact of four crucial environmental parameters on Lake Dongting and Lake Taihu, i.e., water quality, hydrology, climate change, and land use. These two systems are representative of lakes with Yangtze-connected and disconnected subtropical floodplains in China. We find an alarming trend of declining taxonomic and functional diversities among macroinvertebrate communities despite improvements in water quality. Primary contributing factors to this decline include persistent anthropogenic pressures, particularly alterations in human land use around the lakes, including intensified nutrient loads and reduced habitat heterogeneity. Notably, river-lake connectivity is pivotal in shaping differential responses to multiple stressors. Our results highlight a strong correlation between biodiversity alterations and land use within a 2-5 km radius and 0.05-2.5 km from the shorelines of Lakes Dongting and Taihu, respectively. These findings highlight the importance of implementing land buffer zones with specific spatial scales to enhance taxonomic and functional diversity, securing essential ecosystem services and enhancing the resilience of crucial lake ecosystems.

4.
Bioresour Technol ; : 131099, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986878

RESUMO

This study evaluated pulsed electric fields (PEF) and ultrasonication (US) combined with incubation to enhance cell disruption and protein extraction from Auxenochlorella protothecoides, comparing them to conventional high-pressure homogenization (HPH). A 5 h incubation enhanced protein yield by 79.4 % for PEF- and 27.2 % for US-treated samples. Extending the incubation to 24 h resulted in a total yield increase of 122 % for PEF (0.25 ±â€¯0.03 kgEP kgTP-1) and 51.9 % for US. Autofermentation in untreated cells after 24 h resulted in protein release with lower yields than all other treated and incubated samples. While HPH had the highest protein yield (0.58 ±â€¯0.04 kgEP kgTP-1), PEF-incubation after 5 h (56.6 ±â€¯5.3 MJ kgEP-1) and 24 h (49.5 ±â€¯3.7 MJ kgEP-1) were 1.5 and 1.7-times more energy-efficient than HPH (82.9 ±â€¯7.8 MJ kgEP-1). PEF combined incubation is an energy-efficient and targeted protein extraction method in heterotrophic A. protothecoides biorefinery.

5.
Glob Chang Biol ; 30(7): e17411, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39001641

RESUMO

Humans have substantially transformed the global land surface, resulting in the decline in variation in biotic communities across scales, a phenomenon known as "biological homogenization." However, different biota are affected by biological homogenization to varying degrees, but this variation and the underlying mechanisms remain little studied, particularly in soil systems. To address this topic, we used metabarcoding to investigate the biogeography of soil protists and their prey/hosts (prokaryotes, fungi, and meso- and macrofauna) in three human land-use ecosystem types (farmlands, residential areas, and parks) and natural forest ecosystems across subtropical and temperate regions in China. Our results showed that the degree of community homogenization largely differed between taxa and functional groups of soil protists, and was strongly and positively linked to their colonization ability of human land-use systems. Removal analysis showed that the introduction of widespread, generalist taxa (OTUs, operational taxonomic units) rather than the loss of narrow-ranged, specialist OTUs was the major cause of biological homogenization. This increase in generalist OTUs seemingly alleviated the negative impact of land use on specialist taxa, but carried the risk of losing functional diversity. Finally, homogenization of prey/host biota and environmental conditions were also important drivers of biological homogenization in human land-use systems, with their importance being more pronounced in phagotrophic than parasitic and phototrophic protists. Overall, our study showed that the variation in biological homogenization strongly depends on the colonization ability of taxa in human land-use systems, but is also affected by the homogenization of resources and environmental conditions. Importantly, biological homogenization is not the major cause of the decline in the diversity of soil protists, and conservation and study efforts should target at taxa highly sensitive to local extinction, such as parasites.


Assuntos
Biodiversidade , Solo , China , Solo/química , Ecossistema , Microbiologia do Solo , Atividades Humanas , Humanos , Fungos , Florestas
6.
Sci Total Environ ; : 174495, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971238

RESUMO

To unveil possible changes in diatom communities in Cypriot streams over the last ten years or so, we selected samples from the years 2020, 2021, and 2022 for the "recent" dataset (N = 119) and samples from the years 2010 and 2011 for the "historical" dataset (N = 108). Biotic homogenization has become a truly global phenomenon. Here we show that, over the last ten years, in response to increased water temperature, conductivity, and discharge variability due to climate-change, Cypriot stream diatom communities include a higher number of trivial (= widespread, tolerant, and opportunistic), aerial, and thermophilic species, have reduced ß-diversity and increased nestedness. Moreover, IndVal analysis shows that indicator species from the historical dataset were characteristic, often relatively rare species, while the indicators of the recent dataset were a group of typical trivial, eutraphentic, and thermophilic species. As is almost always the case, the diatom communities we studied were subjected to multiple stressors, often affecting them in opposite ways. Besides the increase in trivial species, the reduction in ß-diversity, and the rise in nestedness mentioned above, the diatom assemblages we studied also showed an increase in α-diversity that could be due to a moderate reduction in nutrients in several sites. High-ecological-integrity ecosystems, such as springs, waterfalls, and dripping rock-walls, in particular springs that were shown to be excellent hydrologic refugia in climates heavily affected by climate change, and the stream sites close to them should be carefully protected, as they can be refugia for sensitive and characteristic species that can recolonize the adjacent streams after adverse climatic events.

7.
Philos Trans A Math Phys Eng Sci ; 382(2277): 20230304, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39005022

RESUMO

The dynamical problem of linear thermoelasticity for a body with incorporated thin rectilinear inclusions is studied. It is assumed that the inclusions (i.e. filaments and threads) are parallel to each other and the problem contains a small parameter [Formula: see text], which characterizes the distance between two neighbouring inclusions. Using the two-scale convergence approach, we find the limiting problem as [Formula: see text]. As a result, we get a well-posed homogenized model of an anisotropic inhomogeneous body with effective characteristics inheriting thermomechanical properties of inclusions.This article is part of the theme issue 'Non-smooth variational problems with applications in mechanics'.

8.
J Sci Food Agric ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989589

RESUMO

BACKGROUND: To extract anthocyanins with high efficiency, a hypothesis for high-speed shear homogenization extraction (HSHE) method was established through a combination of solvent and ultrasonic-assisted extractions. The efficacy of this hypothesis was demonstrated by performing qualitative and quantitative analyses of 16 anthocyanins extracted from five northern vegetables, and five berry fruits using ultra-high-performance Q-Exactive Orbitrap tandem mass spectrometry. Single-factor experiments were conducted by varying ethanol concentration, temperature, pH and extraction cycles to determine the optimal conditions for this method. RESULTS: Optimal extraction conditions (ethanol 70-80%, 40-50 °C, pH 3-4, performed twice) were determined using an HSHE (5 min, 10 000 rpm, 25 °C) assisted shaker (60 min) and ultrasonication (40 kHz, 160 W cm-2, 30 min, 25 °C) procedure. Compared to the traditional non-HSHE method, the total anthocyanin content obtained through HSHE extraction showed a significant increase, ranging from 1.0 to 3.9 times higher, with purple cabbage exhibiting the most pronounced enhancement in content. More types of anthocyanins were detected in blueberry (9), black bean (7) and raspberry (5), of which malvidin was the major anthocyanin (0.426 g kg-1) in blueberry, having an amount five times than previously obtained. CONCLUSION: The established HSHE method has been proven to be a superior technique for anthocyanin extraction, with higher extraction efficiency and concentrations. This technique also provides a new avenue for extracting bioactive compounds from diverse food sources, with potential applications in improving the functional properties of food products. © 2024 Society of Chemical Industry.

9.
J Dairy Sci ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825143

RESUMO

The present work aims to evaluate the dissociation of casein micelles in diluted skim milk (SM) systems after undergoing solvent- or emulsifying salt-based dissociation coupled with ultra-high-pressure homogenization (UHPH). Specifically, Part I evaluated dilute SM solutions combined with varying ethanol concentrations (0- 60%) at varying temperatures (5 - 65°C) in combination with UHPH (100-300 MPa), and Part II evaluated dilute SM solutions combined with varying concentrations (0-100 mM) of either sodium hexametaphosphate (SHMP) or sodium citrate (SC) in combination with UHPH (100-300 MPa). In Part I, high concentrations of ethanol (40-60% vol/vol) at elevated temperatures (45-65°C) achieved extensive dissociation of casein micelles, especially in combination with UHPH at ≥200 MPa, as shown by an ca. 6-fold reduction in sample absorbance and an ca. 3-fold reduction in casein particle size compared with the control (ca. dilute SM, 65°C) under optimum conditions (dilute SM, 60% ethanol, 65°C, ≥ 200 MPa). In Part II, the level of casein micelle dissociation using emulsifying salts (ES) was dependent on the ES type and concentration. Considerable casein micelle dissociation in dilute SM systems was achieved with SHMP concentrations ≥1 mM and SC concentrations ≥10 mM, resulting in decreased sample absorbance (>6-fold decrease in absorbance), bimodal casein size distributions, and increased hydrophobicity (ca. 2-fold increase in intrinsic fluorescence) compared with the control (dilute SM). This dissociation was further enhanced with UHPH (≥200 MPa). These results indicate that both solvent- and ES-based casein dissociation techniques can be optimized when used in combination with UHPH. Together, these processing techniques can be used to extensively dissociate casein micelles with the potential to use these altered systems for value-added applications such as functional ingredients or encapsulation agents.

10.
Materials (Basel) ; 17(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38930242

RESUMO

Permeability is a fundamental property of porous media. It quantifies the ease with which a fluid can flow under the effect of a pressure gradient in a network of connected pores. Porous materials can be natural, such as soil and rocks, or synthetic, such as a densified network of fibres or open-cell foams. The measurement of permeability is difficult and time-consuming in heterogeneous and anisotropic porous media; thus, a numerical approach based on the calculation of the tensor components on a 3D image of the material can be very advantageous. For this type of microstructure, it is important to perform calculations on large samples using boundary conditions that do not suppress the transverse flows that occur when flow is forced out of the principal directions. Since these are not necessarily known in complex media, the permeability determination method must not introduce bias by generating non-physical flows. A new finite element-based method proposed in this study allows us to solve very high-dimensional flow problems while limiting the biases associated with boundary conditions and the small size of the numerical samples addressed. This method includes a new boundary condition, full permeability tensor identification based on the multiscale homogenization approach, and an optimized solver to handle flow problems with a large number of degrees of freedom. The method is first validated against academic test cases and against the results of a recent permeability benchmark exercise. The results underline the suitability of the proposed approach for heterogeneous and anisotropic microstructures.

11.
Materials (Basel) ; 17(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38930362

RESUMO

In recent years, the variability in the composition of cement raw materials has increasingly impacted the quality of cement products. However, there has been relatively little research on the homogenization effects of equipment in the cement production process. Existing studies mainly focus on the primary functions of equipment, such as the grinding efficiency of ball mills, the thermal decomposition in cyclone preheaters, and the thermal decomposition in rotary kilns. This study selected four typical pieces of equipment with significant homogenization functions for an in-depth investigation: ball mills, pneumatic homogenizing silos, cyclone preheaters, and rotary kilns. To assess the homogenization efficacy of each apparatus, scaled-down models of these devices were constructed and subjected to simulated experiments. To improve experimental efficiency and realistically simulate actual production conditions in a laboratory setting, this study used the uniformity of the electrical capacitance of mixed powders instead of compositional uniformity to analyze homogenization effects. The test material in the experiment consisted of a mixture of raw meal from a cement factory with a high dielectric constant and Fe3O4 powder. The parallel plate capacitance method was employed to ascertain the capacitance value of the mixed powder prior to and subsequent to treatment by each equipment model. The fluctuation of the input and output curves was analyzed, and the standard deviation (S), coefficient of variation (R), and homogenization multiplier (H) were calculated in order to evaluate the homogenization effect of each equipment model on the raw meal. The findings of the study indicated that the pneumatic homogenizer exhibited an exemplary homogenization effect, followed by the ball mill. For the ball mill, a higher proportion of small balls in the gradation can significantly enhance the homogenization effect without considering the grinding efficiency. The five-stage cyclone preheater also has a better homogenization effect, while the rotary kiln has a less significant homogenization effect on raw meal. Finally, the raw meal processed by each equipment model was used for clinker calcination and the preparation of cement mortar samples. After curing for three days, the compressive and flexural strengths of the samples were tested, thereby indirectly verifying the homogenization effect of each equipment model on the raw meal. This study helps to understand the homogenization process of raw materials by equipment in cement production and provides certain reference and data support for equipment selection, operation optimization, and quality control in the cement production process.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38918978

RESUMO

INTRODUCTION: The objective of the reported work was to develop Montelukast sodium (MS) solid lipid nanoparticles (MS-SLNs) to ameliorate its oral bio-absorption. Herein, the highpressure homogenization (HPH) principle was utilized for the fabrication of MS-SLNs. METHOD: The study encompasses a 23 full factorial statistical design approach where mean particle size (Y1) and percent entrapment efficiency (Y2) were screened as dependent variables while, the concentration of lipid (X1), surfactant (X2), and co-surfactant (X3) were screened as independent variables. The investigation of MS-SLNs by DSC and XRD studies unveiled the molecular dispersion of MS into the SLNs while TEM study showed the smooth surface of developed MSSLNs. The optimized MS-SLNs exhibited mean particle size (MPS) = 115.5 ± 1.27 nm, polydispersity index (PDI) = 0.256 ± 0.04, zeta potential (ζ) = -21.9 ± 0.32 mV and entrapment efficiency (EE) = 90.97 ± 1.12 %. The In vivo pharmacokinetic study performed in Albino Wistar rats revealed 2.87-fold increments in oral bioavailability. RESULTS: The accelerated stability studies of optimized formulation showed good physical and chemical stability. The shelf life estimated for the developed MS-SLN was found to be 22.38 months. CONCLUSION: At the outset, the developed MS-SLNs formulation showed a significant increment in oral bioavailability and also exhibited excellent stability in exaggerated storage conditions.

13.
Sci Total Environ ; 944: 173885, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38871310

RESUMO

Accelerating global urbanization is leading to drastic losses and restructuring of biodiversity. Although it is crucial to understand urban impacts on biodiversity to develop mitigation strategies, there is a dearth of knowledge on the functional structure of fish assemblages spanning the entire city-scale spectrum of urbanization intensity. Here, using environmental DNA sampled from 109 water sites in Beijing, we investigated the taxonomic and functional diversity patterns of fish assemblages across the city and uncovered community-, trait-, and species-level responses to various environmental stressors. By ranking sampling sites into three disturbance levels according to water physiochemical and landcover conditions, we found that both native and non-native fish taxonomic and functional α-diversity decreased significantly with elevating disturbance, as strong disturbance led to the disappearance of many species. However, the quantitative taxonomic and functional ß-diversity components of native and non-native fish showed distinct patterns; assemblage turnover dominated native fish ß-diversity and decreased with increasing disturbance, whereas species/trait richness differences dominated non-native fish ß-diversity and increased with disturbance intensity particularly in lotic waters. RLQ and fourth-corner analyses revealed that fish size, fecundity, diet, and reproductive behaviors were significantly correlated with water quality, with pollution-tolerant, larger-sized native and omnivorous non-native fishes being urban winners, which indicates strong trait-dependent environmental filtering. Potential ecological indicator species were identified based on the sensitivity of fish responses to pollution loads; these were mostly small native species, and many have bivalve-dependent reproduction. Our results demonstrate that, along with native fish assemblage simplification and homogenization, urban stressors exert profound impacts on community trait composition, highlighting the need to consider both biodiversity loss and functional reorganization in combating disturbance of aquatic ecosystems under global urbanization. Furthermore, correlations between cropland cover and water nutrient level suggested that the management of agricultural runoff might be critically important for safeguarding urban water quality.


Assuntos
Biodiversidade , Monitoramento Ambiental , Peixes , Urbanização , Animais , Peixes/fisiologia , Pequim , Qualidade da Água
14.
Food Chem ; 455: 139863, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38823140

RESUMO

This study explored the impact of homogenization (at pressures of 16, 30, and 45 MPa) on both raw and high hydrostatic pressure (HHP)-treated human milk (HM). It focused on protein compositions and binding forces of soluble and insoluble fractions for both milk fat globule membrane (MFGM) and skim milk. Mild homogenization of HHP-treated milk increased lactoferrin (LF) levels in the insoluble fractions of both MFGM and skim milk, due to insoluble aggregation through hydrophobic interactions. Intense homogenization of HHP-treated milk decreased the LF level in the MFGM fractions due to the LF desorption from the MFGM, which increased LF level in the insoluble skim milk fraction. Homogenized-HHP treated milk showed noticeably higher casein (CN) level at the MFGM compared to homogenized-raw milk, attributed to HHP effect on CN micelles. Overall, the combined use of HHP and shear-homogenization should be avoided as it increased the biological proteins in insoluble fractions.


Assuntos
Glicolipídeos , Glicoproteínas , Pressão Hidrostática , Gotículas Lipídicas , Leite Humano , Pasteurização , Agregados Proteicos , Glicoproteínas/química , Gotículas Lipídicas/química , Humanos , Glicolipídeos/química , Leite Humano/química , Lactoferrina/química , Leite/química , Manipulação de Alimentos , Proteínas do Leite/química
15.
Materials (Basel) ; 17(11)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38893947

RESUMO

Cellular materials are fundamental elements in civil engineering, known for their porous nature and lightweight composition. However, the complexity of its microstructure and the mechanisms that control its behavior presents ongoing challenges. This comprehensive review aims to confront these uncertainties head-on, delving into the multifaceted field of cellular materials. It highlights the key role played by numerical and mathematical analysis in revealing the mysterious elasticity of these structures. Furthermore, the review covers a range of topics, from the simulation of manufacturing processes to the complex relationships between microstructure and mechanical properties. This review provides a panoramic view of the field by traversing various numerical and mathematical analysis methods. Furthermore, it reveals cutting-edge theoretical frameworks that promise to redefine our understanding of cellular solids. By providing these contemporary insights, this study not only points the way for future research but also illuminates pathways to practical applications in civil and materials engineering.

16.
Materials (Basel) ; 17(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38730779

RESUMO

Over the last few decades, there has been a growing discourse surrounding environmental and health issues stemming from drinking water and the discharge of effluents into the environment. The rapid advancement of various sewage treatment methodologies has prompted a thorough exploration of promising materials to capitalize on their benefits. Metal-organic frameworks (MOFs), as porous materials, have garnered considerable attention from researchers in recent years. These materials boast exceptional properties: unparalleled porosity, expansive specific surface areas, unique electronic characteristics including semi-conductivity, and a versatile affinity for organic molecules. These attributes have fueled a spike in research activity. This paper reviews the current MOF-based wastewater removal technologies, including separation, catalysis, and related pollutant monitoring methods, and briefly introduces the basic mechanism of some methods. The scale production problems faced by MOF in water treatment applications are evaluated, and two pioneering methods for MOF mass production are highlighted. In closing, we propose targeted recommendations and future perspectives to navigate the challenges of MOF implementation in water purification, enhancing the efficiency of material synthesis for environmental stewardship.

17.
Molecules ; 29(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731414

RESUMO

Consumers are concerned about employing green processing technologies and natural ingredients in different manufacturing sectors to achieve a "clean label" standard for products and minimize the hazardous impact of chemical ingredients on human health and the environment. In this study, we investigated the effects of gelatinized starch dispersions (GSDs) prepared from six plant sources (indica and japonica rice, wheat, corn, potatoes, and sweet potatoes) on the formulation and stability of oil-in-water (O/W) emulsions. The effect of gelatinization temperature and time conditions of 85-90 °C for 20 min on the interfacial tension of the two phases was observed. Emulsification was performed using a primary homogenization condition of 10,000 rpm for 5 min, followed by high-pressure homogenization at 100 MPa for five cycles. The effects of higher oil weight fractions (15-25% w/w) and storage stability at different temperatures for four weeks were also evaluated. The interfacial tension of all starch GSDs with soybean oil decreased compared with the interfacial tension between soybean oil and water as a control. The largest interfacial tension reduction was observed for the GSD from indica rice. Microstructural analysis indicated that the GSDs stabilized the O/W emulsion by coating oil droplets. Emulsions formulated using a GSD from indica rice were stable during four weeks of storage with a volume mean diameter (d4,3) of ~1 µm, minimal viscosity change, and a negative ζ-potential.


Assuntos
Emulsões , Óleo de Soja , Amido , Água , Emulsões/química , Amido/química , Água/química , Óleo de Soja/química , Oryza/química , Gelatina/química , Temperatura , Tensão Superficial , Tamanho da Partícula
18.
Foods ; 13(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38731786

RESUMO

This study primarily aimed to enhance the extraction of cutin from industrial tomato peel residues. Initially, the conventional extraction process was optimized using response surface methodology (RSM). Subsequently, high-pressure homogenization (HPH) was introduced to improve extraction efficiency and sustainability. The optimization process focused on determining the optimal conditions for conventional extraction via chemical hydrolysis, including temperature (100-130 °C), time (15-120 min), and NaOH concentration (1-3%). The optimized conditions, determined as 130 °C, 120 min, and 3% NaOH solution, yielded a maximum cutin extraction of 32.5%. Furthermore, the results indicated that applying HPH pre-treatment to tomato peels before alkaline hydrolysis significantly increased the cutin extraction yield, reaching 46.1%. This represents an approximately 42% increase compared to the conventional process. Importantly, HPH pre-treatment enabled cutin extraction under milder conditions using a 2% NaOH solution, reducing NaOH usage by 33%, while still achieving a substantial cutin yield of 45.6%. FT-IR analysis confirmed that cutin obtained via both conventional and HPH-assisted extraction exhibited similar chemical structures, indicating that the main chemical groups and structure of cutin remained unaltered by HPH treatment. Furthermore, cutin extracts from both conventional and HPH-assisted extraction demonstrated thermal stability up to approximately 200 °C, with less than 5% weight loss according to TGA analysis. These findings underscore the potential of HPH technology to significantly enhance cutin extraction yield from tomato peel residues while utilizing milder chemical hydrolysis conditions, thereby promoting a more sustainable and efficient cutin extraction process.

19.
Bio Protoc ; 14(10): e4988, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38798978

RESUMO

The eye is a complex organ composed of multiple tissues in anterior and posterior eye segments. Malfunctions of any of these tissues can lead to ocular diseases and loss of vision. A detailed understanding of the ocular anatomy and physiology in animal models and humans contributes to the development of ocular drugs by enabling studies on drug delivery and clearance routes, pharmacokinetics, and toxicity. This protocol provides step-by-step instructions for the extraction and homogenization of ocular tissues for enzymatic and proteomics analyses. Key features • Suitable protocol for the extraction and isolation of ocular tissue from humans and laboratory animals (rabbit, pig, rat, mouse) while minimizing cross-contamination. • Hard or soft tissue homogenates can be prepared efficiently using a Bead Ruptor homogenizer. • Allows to determine the protein contents in prepared homogenates.

20.
Sci Total Environ ; 933: 173052, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38735337

RESUMO

We utilized an extensive, multisource, cross-border dataset of daily meteorological observations from over 1500 stations in the Pyrenees, spanning from the mid-20th century to 2020, to examine the spatial and temporal climate patterns. Our focus was on 17 indices related to extreme precipitation and temperature events across the mountain range. The original data underwent rigorous quality control and homogenization processes, employing a comprehensive workflow that included spatial modeling based on environmental predictors. This process yielded two main outcomes: 1) a high-resolution gridded dataset (1 km2) of daily precipitation, maximum and minimum temperature from 1981 to 2020, allowing for a detailed analysis of spatial variations; and 2) an evaluation of long-term annual and seasonal trends from 1959 to 2020, using selection of high-quality data series that were homogenized to preserve their temporal structure and coherence. The findings revealed a clear elevation-related pattern in temperature indices (with the exception of tropical nights, which were predominantly observed on the Mediterranean side) and a distinct north-south latitudinal disparity in precipitation, turning longitudinal when focusing on extreme precipitation events. Overall, there was a notable and significant warming trend of 0.2 to 0.4 °C per decade, and a non-significant change of precipitation, with the exception of the southern and Mediterranean regions, where there was a notable decrease, approximately -3 % per decade, observed on an annual basis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA