Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 325
Filtrar
1.
J Natl Cancer Cent ; 4(3): 280-287, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39281716

RESUMO

Background: The homologous recombination deficiency (HRD) score serves as a promising biomarker to identify patients who are eligible for treatment with PARP inhibitors (PARPi). Previous studies have suggested a 3-biomarker Genomic Instability Score (GIS) threshold of ≥ 42 as a valid biomarker to predict response to PARPi in patients with ovarian cancer and breast cancer. However, the GIS threshold for prostate cancer (PCa) is still lacking. Here, we conducted an exploratory analysis to investigate an appropriate HRD score threshold and to evaluate its ability to predict response to PARPi in PCa patients. Methods: A total of 181 patients with metastatic castration-resistant PCa were included in this study. Tumor tissue specimens were collected for targeted next-generation sequencing for homologous recombination repair (HRR) genes and copy number variation (CNV) analysis. The HRD score was calculated based on over 50,000 single-nucleotide polymorphisms (SNP) distributed across the human genome, incorporating three SNP-based assays: loss of heterozygosity, telomeric allelic imbalance, and large-scale state transition. The HRD score threshold was set at the last 5th percentile of the HRD scores in our cohort of known HRR-deficient tumors. The relationship between the HRD score and the efficacy in 16 patients of our cohort who received PARPi treatment were retrospectively analyzed. Results: Genomic testing was succeeded in 162 patients. In our cohort, 61 patients (37.7%) had HRR mutations (HRRm). BRCA mutations occurred in 15 patients (9.3%). The median HRD score was 4 (ranged from 0 to 57) in the total cohort, which is much lower than that in breast and ovarian cancers. Patients who harbored HRRm and BRCA or TP53 mutations had higher HRD scores. CNV occured more frequently in patients with HRRm. The last 5th percentile of HRD scores was 43 in the HRR-mutant cohort and consequently HRD high was defined as HRD scores ≥ 43. In the 16 patients who received PARPi in our cohort, 4 patients with a high HRD score achieved an objective response rate (ORR) of 100% while 12 patients with a low HRD score achieved an ORR of 8.3%. Progression-free survival (PFS) in HRD high patients was longer compared to HRD low patients, regardless of HRRm. Conclusions: A HRD score threshold of 43 was established and preliminarily validated to predict the efficacy of PARPi in this study. Future studies are needed to further verify this threshold.

2.
Cancer Sci ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39315592

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) poses significant challenges due to its high mortality, making it a critical area of research. This retrospective observational study aimed to analyze real-world data from comprehensive genome profiling (CGP) of Japanese patients with PDAC, mainly focusing on differences in gene detection rates among panels and the implications for homologous recombination deficiency (HRD) status. This study enrolled 2568 patients with PDAC who had undergone CGP between June 2019 and December 2021 using data from the nationwide Center for Cancer Genomics and Advanced Therapeutics database. Two types of CGP assays (tissue and liquid biopsies) were compared and a higher detection rate of genetic abnormalities in tissue specimens was revealed. HRD-related gene alterations were detected in 23% of patients, with BRCA1/2 mutations accounting for 0.9% and 2.9% of patients, respectively. Treatment outcome analysis indicated that patients with BRCA1/2 mutations had a longer time to treatment discontinuation with FOLFIRINOX than gemcitabine plus nab-paclitaxel as first-line therapy (9.3 vs. 5.6 months, p = 0.028). However, no significant differences were observed in the treatment response among the other HRD-related genes. Logistic regression analysis identified younger age and family history of breast, prostate, and ovarian cancers as predictive factors for HRD-related gene alterations. Despite the lack of progression-free survival data and the inability to discriminate between germline and somatic mutations, this study provides valuable insights into the clinical implications of CGP in Japanese patients with PDAC. Further research is warranted to optimize panel selection and elucidate the efficacy of platinum-based therapies depending on the HRD status.

3.
Front Oncol ; 14: 1405361, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39220639

RESUMO

Ovarian carcinoma (OC) still represents an insidious and fatal malignancy, and few significant results have been obtained in the last two decades to improve patient survival. Novel targeted therapies such as poly (ADP-ribose) polymerase inhibitors (PARPi) have been successfully introduced in the clinical management of OC, but not all patients will benefit, and drug resistance almost inevitably occurs. The identification of patients who are likely to respond to PARPi-based therapies relies on homologous recombination deficiency (HRD) tests, as this condition is associated with response to these treatments. This review summarizes the genomic and functional HRD assays currently used in clinical practice and those under evaluation, the clinical implications of HRD testing in OC, and their current pitfalls and limitations. Special emphasis will be placed on the functional HRD assays under development and the use of machine learning and artificial intelligence technologies as novel strategies to overcome the current limitations of HRD tests for a better-personalized treatment to improve patient outcomes.

4.
Prostate ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39252459

RESUMO

BACKGROUND: The PARP inhibitor (PARPi) olaparib is approved for homologous recombination repair (HRR) gene-altered metastatic castration-resistant prostate cancer (mCRPC). However, there is significant heterogeneity in response to PARPi in patients with mCRPC. Better clinical biomarkers are needed to identify patients likely to benefit from PARPi. METHODS: Patients with prostate adenocarcinoma and panel sequencing at Dana-Farber Cancer Institute were identified. Mutational signature analysis was performed using SigMA to characterize tumors as HRR deficient (HRD). The validity of SigMA to identify patients likely to benefit from olaparib was compared to the current FDA label (presence of a deleterious alteration in one of 14 HRR genes). RESULTS: 546 patients were identified, of which 34% were HRD. Among patients with HRR gene alterations, only patients with BRCA2 two-copy loss (2CL) were more likely to be HRD compared to patients without HRR gene alterations (74% vs 31%; P = 9.1 × 10-7). 28 patients with mCRPC received olaparib, of which 13 were HRD and 9 had BRCA2 2CL. SigMA improved upon the current FDA label for predicting PSA50 (sensitivity: 100% vs 90%; specificity: 83% vs 44%; PPV: 77% vs 47%; NPV: 100% vs 89%) and rPFS > 6 months (sensitivity: both 92%; specificity: 93% vs 53%; PPV: 92% vs 63%; NPV: 93% vs 89%). On multivariate analysis, incorporating prognostic clinical factors and HR gene alterations, SigMA-predicted HRD independently associated with improved PSA-PFS (HR = 0.086, p = 0.00082) and rPFS (HR = 0.078, p = 0.0070). CONCLUSIONS: SigMA-predicted HRD may better identify patients likely to benefit from olaparib as compared to the current FDA label. Larger studies are needed for further validation.

5.
Front Oncol ; 14: 1427154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39239274

RESUMO

Objective: Tubo-ovarian carcinosarcomas are rare, extremely aggressive malignant tumors that contain both carcinomatous and sarcomatous components. Due to the disease's rarity, developing an effective treatment strategy for ovarian carcinosarcomas has been challenging. A study was conducted to investigate the clinicopathologic and molecular features of this rare disease. Methods: We enrolled all patients diagnosed with tubo-ovarian carcinosarcomas from January 2007 to December 2022. The clinical and pathological data were gathered from medical records. Kaplan-Meier curves were plotted to calculate OS and PFS. The Log-rank test and Cox regression model were utilized to explore the relationship between clinicopathological parameters and survival. Patients with cancer tissues available had sequencing with a 242-gene panel done to investigate the mutational landscape and signature of the disease. Results: In total, 65% of the patients were diagnosed with advanced-stage cancer. The median PFS and OS of this cohort were 27 and 40 months, respectively, and there was no significant difference in survival between the homologous and heterologous components of sarcoma. Unexpectedly, staging did not have effects on prognosis. All patients had surgical attempts, and suboptimal debulking status was correlated with poorer PFS and OS. MSI was identified in 0% with low Tumor mutation burden (TMB) indicating a poor response to immunotherapy. Low HER2 expression is controversial, according to previous reports, and gives us limited choices with this rare and aggressive disease. We surprisingly found the homologous recombination deficiency (HRD)-positive status was identified in 64% of OCS, which is significantly higher than UCS and other types of epithelial ovarian cancer. The fact that all patients in our cohort who received olaparib as maintenance therapy had survived over 30 months and two had no evidence of recurrence at the latest follow-up might further validate the role of poly (ADP-ribose) polymerase inhibitors (PARPi) in the management of OCS. Conclusion: OCS patients seemed to respond to carboplatin/paclitaxel with optimal PFS and OS. Cytoreduction with no residuals proved to be the sole independent prognostic factor. WES should be done to assess the prognosis and assist with the targeted therapy, especially the HRD test, which might help select potential patients who benefit from PARPi.

6.
Gastric Cancer ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110344

RESUMO

BACKGROUND: Homologous recombination deficiency (HRD) is one of the crucial hallmarks of cancer. It is associated with a favorable response to platinum-based chemotherapy. We explored the distinctive clinicopathological features of gastric cancer (GC) with HRD and the clinical significance of HRD in platinum-based first-line chemotherapy for unresectable metastatic GC. METHODS: We enrolled 160 patients with GC in this study. Their tumor samples were subjected to genomic profiling utilizing targeted tumor sequencing. HRD was defined as the presence of alterations in any of 16 HR genes (BARD1, BLM, BRCA1, BRCA2, BRIP1, MRE11A, NBN, PALB2, PARP1, POLD1, RAD50, RAD51, RAD51C, RAD51D, WRN, and XRCC2). The clinicopathological features and treatment outcomes of first-line chemotherapy for unresectable metastatic GC were compared between HRD and non-HRD groups. RESULTS: Forty-seven patients (29.4%) were classified into the HRD group. This group had a significantly lower proportion of macroscopic type 3 or 4 tumors and higher TMB than the non-HRD group. Among patients who underwent platinum-based first-line chemotherapy, the HRD group had a greater response rate and longer progression-free survival after treatment (median 8.0 months vs. 3.0 months, P = 0.010), with an adjusted hazard ratio of 0.337 (95% confidence interval 0.151-0.753). HRD status was not associated with treatment outcomes in patients who did not undergo platinum-based chemotherapy. CONCLUSIONS: Low proportion of macroscopic type 3 or 4 tumors and a high TMB are distinctive features of GC with HRD. HRD status is a potential predictive marker in platinum-based first-line chemotherapy for unresectable metastatic GC.

7.
Mol Oncol ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115191

RESUMO

The emergence of targeted therapies has transformed ovarian cancer treatment. However, biomarker profiling for precision medicine is limited by access to quality, tumour-enriched tissue samples. The use of cell-free DNA (cfDNA) in ascites presents a potential solution to this challenge. In this study, next-generation sequencing was performed on ascites-derived cfDNA samples (26 samples from 15 human participants with ovarian cancer), with matched DNA from ascites-derived tumour cells (n = 5) and archived formalin-fixed paraffin-embedded (FFPE) tissue (n = 5). Similar tumour purity and variant detection were achieved with cfDNA compared to FFPE and ascites cell DNA. Analysis of large-scale genomic alterations, loss of heterozygosity and tumour mutation burden identified six cases of high genomic instability (including four with pathogenic BRCA1 and BRCA2 mutations). Copy number profiles and subclone prevalence changed between sequential ascites samples, particularly in a case where deletions and chromothripsis in Chr17p13.1 and Chr8q resulted in changes in clinically relevant TP53 and MYC variants over time. Ascites cfDNA identified clinically actionable information, concordant to tissue biopsies, enabling opportunistic molecular profiling. This advocates for analysis of ascites cfDNA in lieu of accessing tumour tissue via biopsy.

8.
Cancer ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150003

RESUMO

INTRODUCTION: Homologous recombination deficiency (HRD) testing is used to determine the appropriateness of poly ADP-ribose polymerase inhibitors for patients with epithelial ovarian cancer and no germline/somatic BRCA1/2 alterations. Myriad MyChoice CDx reports a genomic instability score (GIS) to quantify the level of HRD, with a positive score defined as ≥42. The authors sought to define factors associated with obtaining an inconclusive HRD test result. METHODS: GIS was retrieved for patients at their institution with epithelial ovarian cancer without germline/somatic BRCA1/2 deleterious alterations who underwent HRD testing from April 2020-August 2023. Clinical data were abstracted from the medical record. RESULTS: Of 477 HRD test results identified, 57 (12%) were inconclusive. High-grade serous ovarian cancers had higher GIS than other histologic types (median 29 vs. 21, p < .001). Most HRD cases were of high-grade serous histology; no cases with clear cell or endometrioid histology were HRD-positive. On univariate analysis, interval versus primary cytoreductive surgery, other specimen sources versus surgical specimens, and chemotherapy exposure were risk factors for inconclusive HRD testing. On multivariable analysis, chemotherapy exposure, and tissue source were associated with an inconclusive test result, with surgical specimens more likely to yield a conclusive result than other sources (biopsy, cytology, other). Age, stage, self-reported race, and histology were not associated with an inconclusive result. CONCLUSIONS: Surgical tissue was more likely to yield a conclusive HRD test result versus other sources of epithelial ovarian cancer tissue acquisition. When feasible, laparoscopic biopsy before initiation of neoadjuvant chemotherapy may increase the likelihood of obtaining interpretable HRD test results.

9.
Genome Med ; 16(1): 107, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39187844

RESUMO

BACKGROUND: Poly (ADP-ribose) polymerase 1 and 2 (PARP1/2) inhibitors (PARPi) are targeted therapies approved for homologous recombination repair (HRR)-deficient breast, ovarian, pancreatic, and prostate cancers. Since inhibition of PARP1 is sufficient to cause synthetic lethality in tumors with homologous recombination deficiency (HRD), PARP1 selective inhibitors such as saruparib (AZD5305) are being developed. It is expected that selective PARP1 inhibition leads to a safer profile that facilitates its combination with other DNA damage repair inhibitors. Here, we aimed to characterize the antitumor activity of AZD5305 in patient-derived preclinical models compared to the first-generation PARP1/2 inhibitor olaparib and to identify mechanisms of resistance. METHODS: Thirteen previously characterized patient-derived tumor xenograft (PDX) models from breast, ovarian, and pancreatic cancer patients harboring germline pathogenic alterations in BRCA1, BRCA2, or PALB2 were used to evaluate the efficacy of AZD5305 alone or in combination with carboplatin or an ataxia telangiectasia and Rad3 related (ATR) inhibitor (ceralasertib) and compared it to the first-generation PARPi olaparib. We performed DNA and RNA sequencing as well as protein-based assays to identify mechanisms of acquired resistance to either PARPi. RESULTS: AZD5305 showed superior antitumor activity than the first-generation PARPi in terms of preclinical complete response rate (75% vs. 37%). The median preclinical progression-free survival was significantly longer in the AZD5305-treated group compared to the olaparib-treated group (> 386 days vs. 90 days). Mechanistically, AZD5305 induced more replication stress and genomic instability than the PARP1/2 inhibitor olaparib in PARPi-sensitive tumors. All tumors at progression with either PARPi (39/39) showed increase of HRR functionality by RAD51 foci formation. The most prevalent resistance mechanisms identified were the acquisition of reversion mutations in BRCA1/BRCA2 and the accumulation of hypomorphic BRCA1. AZD5305 did not sensitize PDXs with acquired resistance to olaparib but elicited profound and durable responses when combined with carboplatin or ceralasertib in 3/6 and 5/5 models, respectively. CONCLUSIONS: Collectively, these results show that the novel PARP1 selective inhibitor AZD5305 yields a potent antitumor response in PDX models with HRD and delays PARPi resistance alone or in combination with carboplatin or ceralasertib, which supports its use in the clinic as a new therapeutic option.


Assuntos
Proteína BRCA1 , Proteína BRCA2 , Inibidores de Poli(ADP-Ribose) Polimerases , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Camundongos , Proteína BRCA1/genética , Proteína BRCA2/genética , Feminino , Ftalazinas/farmacologia , Ftalazinas/uso terapêutico , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Indóis/uso terapêutico , Indóis/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Carboplatina/farmacologia , Carboplatina/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética
10.
Artigo em Inglês | MEDLINE | ID: mdl-39192643

RESUMO

BACKGROUND: Poly (ADP-ribose) polymerase inhibitors (PARPi) are now widely used in BRCA1/2 mutation or homologous recombination (HR) deficiency ovarian cancer but have limited efficacy in HR-proficient patients. GPX4 is a key regulator of ferroptosis and has been proven to be associated with multiple drug sensitivities. As a molecule that regulates the sensitivity of multiple drugs, the relationship between GPX4 and the efficacy of PARPi in HR-proficient ovarian cancer has not been elucidated. METHODS: In this study, siRNA transfection was used to regulate the expression of GPX4. The effect of GPX4 inhibition on HR-proficient ovarian cancer was determined by CCK-8 assay and flow cytometry. Immunofluorescence and comet assays were used to reflect DNA dam-age. ROS production was measured using DCFH-DA and flow cytometry. The combination index of PARP inhibitors and RSL3 was calculated using CompuSyn software based on Chou-Talalay methodology. RESULTS: GPX4 inhibition confers HR-proficient ovarian cancer cells sensitive to PARPi due to ROS generation and oxidative stress caused by DNA double-strand breakage. The combina-tion of olaparib and niraparib with GPX4 inhibitor RSL3 also showed a synergistic effect. CONCLUSION: Combining GPX4 inhibition with PARP inhibitors resulted in a notable increase in DNA damage, ultimately causing the death of cancer cells with proficient HR pathways. Our findings may provide new therapeutic options for HR-proficient patients to benefit from PARP inhibitors and improve outcomes.

11.
J Pathol Clin Res ; 10(5): e12391, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39104056

RESUMO

Homologous recombination deficiency (HRD) score is a reliable indicator of genomic instability. The significance of HRD in nasopharyngeal carcinoma (NPC), particularly its influence on prognosis and the immune microenvironment, has yet to be adequately explored. Understanding HRD status comprehensively can offer valuable insights for guiding precision treatment. We utilised three cohorts to investigate HRD status in NPC: the Zhujiang cohort from local collection and the Hong Kong (SRA288429) and Singapore (SRP035573) cohorts from public datasets. The GATK (genome analysis toolkit) best practice process was employed to investigate germline and somatic BRCA1/2 mutations and various bioinformatics tools and algorithms to examine the association between HRD status and clinical molecular characteristics. We found that individuals with a negative HRD status (no-HRD) exhibited a higher risk of recurrence [hazard ratio (HR), 1.43; 95% confidence interval (CI), 2.03-333.76; p = 0.012] in the Zhujiang cohort, whereas, in the Singapore cohort, they experienced a higher risk of mortality (HR, 26.04; 95% CI, 1.43-34.21; p = 0.016) compared with those in the HRD group. In vitro experiments demonstrated that NPC cells with BRCA1 knockdown exhibit heightened sensitivity to chemoradiotherapy. Furthermore, the HRD group showed significantly higher tumour mutational burden and tumour neoantigen burden levels than the no-HRD group. Immune infiltration analysis indicated that HRD tissues tend to have a non-inflamed tumour microenvironment. In conclusion, patients with HRD exhibit a comparatively favourable prognosis in NPC, possibly associated with a non-inflammatory immune microenvironment. These findings have positive implications for treatment stratification, enabling the selection of more precise and effective therapeutic approaches and aiding in the prediction of treatment response and prognosis to a certain extent.


Assuntos
Proteína BRCA1 , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Microambiente Tumoral , Humanos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/mortalidade , Carcinoma Nasofaríngeo/terapia , Carcinoma Nasofaríngeo/imunologia , Masculino , Feminino , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/mortalidade , Neoplasias Nasofaríngeas/terapia , Neoplasias Nasofaríngeas/imunologia , Prognóstico , Pessoa de Meia-Idade , Proteína BRCA1/genética , Proteína BRCA2/genética , Mutação , Adulto , Recombinação Homóloga/genética , Biomarcadores Tumorais/genética , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/genética , Instabilidade Genômica
12.
Crit Rev Oncol Hematol ; 202: 104469, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39111459

RESUMO

Ovarian carcinoma remains the most lethal gynaecologic malignancy. Half of all high-grade serous ovarian cancers (HGSOCs) have a homologous recombination deficiency (HRD) with regard to the repair of double-strand DNA breaks and are candidate to receive maintenance treatment with PARP inhibitors. While a wealth of literature exists regarding the therapeutic guidance of patients from a medical standpoint, the influence of the HRD status on the surgical outlook has been comparatively limited. In this review, the clinical and biological features of advanced ovarian cancers with BRCA1/2 mutation and/or HRD status are considered with particular reference to their impact on the surgical management and on the medico-surgical sequence. The modification of the surgical indications according to the results of molecular testing in first-line and recurrent settings are discussed.


Assuntos
Carcinoma Epitelial do Ovário , Neoplasias Ovarianas , Humanos , Feminino , Carcinoma Epitelial do Ovário/cirurgia , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/patologia , Carcinoma Epitelial do Ovário/diagnóstico , Neoplasias Ovarianas/cirurgia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/diagnóstico , Proteína BRCA1/genética , Mutação , Proteína BRCA2/genética , Gerenciamento Clínico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico
13.
Artigo em Inglês | MEDLINE | ID: mdl-39048852

RESUMO

BACKGROUND: The aim of this study was to assess homologous recombination deficiency (HRD) status and its correlation with carboplatin treatment response in early triple-negative breast cancer (TNBC) patients. METHODS: Tumor tissues from 225 consecutive TNBC patients were evaluated with an HRD panel and homologous recombination-related (HRR) gene expression data. HRD positivity was defined as a high HRD score and/or BRCA1/2 pathogenic or likely pathogenic mutation. Clinicopathological factors, neoadjuvant treatment response, and prognosis were analyzed with respect to HRD status in these TNBC patients. RESULTS: HRD positivity was found in 53.3% of patients and was significantly related to high Ki67 levels (P = 0.001). In patients who received neoadjuvant chemotherapy, HRD positivity (P = 0.005) or a high HRD score (P = 0.003) was significantly associated with a greater pathological complete response (pCR) rate, especially in those treated with carboplatin-containing neoadjuvant regimens (HRD positivity vs. negativity: 50.00% vs. 17.65%, P = 0.040). HRD positivity was associated with favorable distant metastasis-free survival (hazard ratio HR 0.49, 95% confidence interval CI 0.26-0.90, P = 0.022) and overall survival (HR 0.45, 95% CI 0.20-0.99, P = 0.049), irrespective of carboplatin treatment. CONCLUSION: TNBC patients with high HRDs had high Ki67 levels and BRCA mutations. HRD-positive TNBC patients treated with carboplatin had a higher pCR rate. Patients with HRD positivity had a better prognosis, irrespective of carboplatin treatment, warranting further evaluation.

14.
BMC Bioinformatics ; 25(1): 236, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997639

RESUMO

BACKGROUND: Homologous recombination deficiency (HRD) stands as a clinical indicator for discerning responsive outcomes to platinum-based chemotherapy and poly ADP-ribose polymerase (PARP) inhibitors. One of the conventional approaches to HRD prognostication has generally centered on identifying deleterious mutations within the BRCA1/2 genes, along with quantifying the genomic scars, such as Genomic Instability Score (GIS) estimation with scarHRD. However, the scarHRD method has limitations in scenarios involving tumors bereft of corresponding germline data. Although several RNA-seq-based HRD prediction algorithms have been developed, they mainly support cohort-wise classification, thereby yielding HRD status without furnishing an analogous quantitative metric akin to scarHRD. This study introduces the expHRD method, which operates as a novel transcriptome-based framework tailored to n-of-1-style HRD scoring. RESULTS: The prediction model has been established using the elastic net regression method in the Cancer Genome Atlas (TCGA) pan-cancer training set. The bootstrap technique derived the HRD geneset for applying the expHRD calculation. The expHRD demonstrated a notable correlation with scarHRD and superior performance in predicting HRD-high samples. We also performed intra- and extra-cohort evaluations for clinical feasibility in the TCGA-OV and the Genomic Data Commons (GDC) ovarian cancer cohort, respectively. The innovative web service designed for ease of use is poised to extend the realms of HRD prediction across diverse malignancies, with ovarian cancer standing as an emblematic example. CONCLUSIONS: Our novel approach leverages the transcriptome data, enabling the prediction of HRD status with remarkable precision. This innovative method addresses the challenges associated with limited available data, opening new avenues for utilizing transcriptomics to inform clinical decisions.


Assuntos
Recombinação Homóloga , Neoplasias , Transcriptoma , Humanos , Transcriptoma/genética , Recombinação Homóloga/genética , Neoplasias/genética , Algoritmos , Feminino , Perfilação da Expressão Gênica/métodos
15.
Chin J Cancer Res ; 36(3): 282-297, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38988485

RESUMO

Objective: The clinical significance of homologous recombination deficiency (HRD) in breast cancer, ovarian cancer, and prostate cancer has been established, but the value of HRD in non-small cell lung cancer (NSCLC) has not been fully investigated. This study aimed to systematically analyze the HRD status of untreated NSCLC and its relationship with patient prognosis to further guide clinical care. Methods: A total of 355 treatment-naïve NSCLC patients were retrospectively enrolled. HRD status was assessed using the AmoyDx Genomic Scar Score (GSS), with a score of ≥50 considered HRD-positive. Genomic, transcriptomic, tumor microenvironmental characteristics and prognosis between HRD-positive and HRD-negative patients were analyzed. Results: Of the patients, 25.1% (89/355) were HRD-positive. Compared to HRD-negative patients, HRD-positive patients had more somatic pathogenic homologous recombination repair (HRR) mutations, higher tumor mutation burden (TMB) (P<0.001), and fewer driver gene mutations (P<0.001). Furthermore, HRD-positive NSCLC had more amplifications in PI3K pathway and cell cycle genes, MET and MYC in epidermal growth factor receptor (EGFR)/anaplastic lymphoma kinase (ALK) mutant NSCLC, and more PIK3CA and AURKA in EGFR/ALK wild-type NSCLC. HRD-positive NSCLC displayed higher tumor proliferation and immunosuppression activity. HRD-negative NSCLC showed activated signatures of major histocompatibility complex (MHC)-II, interferon (IFN)-γ and effector memory CD8+ T cells. HRD-positive patients had a worse prognosis and shorter progression-free survival (PFS) to targeted therapy (first- and third-generation EGFR-TKIs) (P=0.042). Additionally, HRD-positive, EGFR/ALK wild-type patients showed a numerically lower response to platinum-free immunotherapy regimens. Conclusions: Unique genomic and transcriptional characteristics were found in HRD-positive NSCLC. Poor prognosis and poor response to EGFR-TKIs and immunotherapy were observed in HRD-positive NSCLC. This study highlights potential actionable alterations in HRD-positive NSCLC, suggesting possible combinational therapeutic strategies for these patients.

16.
Front Pharmacol ; 15: 1390116, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38989145

RESUMO

Standard therapy for high-grade ovarian carcinoma includes surgery followed by platinum-based chemotherapy and poly-ADP ribose polymerase inhibitors (PARPis). Deficiency in homologous recombination repair (HRD) characterizes almost half of high-grade ovarian carcinomas and is due to genetic and epigenetic alterations in genes involved in HR repair, mainly BRCA1/BRCA2, and predicts response to PARPi. The academic and commercial tests set up to define the HRD status of the tumor rely on DNA sequencing analysis, while functional tests such as the RAD51 foci assay are currently under study, but have not been validated yet and are available for patients. In a well-characterized ovarian carcinoma patient-derived xenograft platform whose response to cisplatin and olaparib, a PARPi, is known, we assessed the association between the BRCA1 foci score, determined in formalin-fixed paraffin-embedded tumor slices with an immunofluorescence technique, and other HRD biomarkers and explored the potential of the BRCA1 foci test to predict tumors' response to cisplatin and olaparib. The BRCA1 foci score was associated with both tumors' HRD status and RAD51 foci score. A low BRCA1 foci score predicted response to olaparib and cisplatin, while a high score was associated with resistance to therapy. As we recently published that a low RAD51 foci score predicted olaparib sensitivity in our xenobank, we combined the two scores and showed that the predictive value was better than with the single tests. This study reports for the first time the capacity of the BRCA1 foci test to identify HRD ovarian carcinomas and possibly predict response to olaparib.

17.
World J Clin Oncol ; 15(7): 848-858, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39071455

RESUMO

BACKGROUND: Poly (ADP-ribose) polymerase inhibitors (PARPis) are approved as first-line therapies for breast cancer gene (BRCA)-positive, human epidermal growth factor receptor 2-negative locally advanced or metastatic breast cancer. They are also effective for new and recurrent ovarian cancers that are BRCA- or homologous recombination deficiency (HRD)-positive. However, data on these mutations and PARPi use in the Middle East are limited. AIM: To assess BRCA/HRD prevalence and PARPi use in patients in the Middle East with breast/ovarian cancer. METHODS: This was a single-center retrospective study of 57 of 472 breast cancer patients tested for BRCA mutations, and 25 of 65 ovarian cancer patients tested for HRD. These adult patients participated in at least four visits to the oncology service at our center between August 2021 and May 2023. Data were summarized using descriptive statistics and compared using counts and percentages. Response to treatment was assessed using Response Evaluation Criteria in Solid Tumors criteria. RESULTS: Among the 472 breast cancer patients, 12.1% underwent BRCA testing, and 38.5% of 65 ovarian cancer patients received HRD testing. Pathogenic mutations were found in 25.6% of the tested patients: 26.3% breast cancers had germline BRCA (gBRCA) mutations and 24.0% ovarian cancers showed HRD. Notably, 40.0% of gBRCA-positive breast cancers and 66.0% of HRD-positive ovarian cancers were Middle Eastern and Asian patients, respectively. PARPi treatment was used in 5 (33.3%) gBRCA-positive breast cancer patients as first-line therapy (n = 1; 7-months progression-free), for maintenance (n = 2; > 15-months progression-free), or at later stages due to compliance issues (n = 2). Four patients (66.6%) with HRD-positive ovarian cancer received PARPi and all remained progression-free. CONCLUSION: Lower testing rates but higher BRCA mutations in breast cancer were found. Ethnicity reflected United Arab Emirates demographics, with breast cancer in Middle Eastern and ovarian cancer in Asian patients.

18.
Drug Resist Updat ; 76: 101115, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39002266

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease, notably resistant to existing therapies. Current research indicates that PDAC patients deficient in homologous recombination (HR) benefit from platinum-based treatments and poly-ADP-ribose polymerase inhibitors (PARPi). However, the effectiveness of PARPi in HR-deficient (HRD) PDAC is suboptimal, and significant challenges remain in fully understanding the distinct characteristics and implications of HRD-associated PDAC. We analyzed 16 PDAC patient-derived tissues, categorized by their homologous recombination deficiency (HRD) scores, and performed high-plex immunofluorescence analysis to define 20 cell phenotypes, thereby generating an in-situ PDAC tumor-immune landscape. Spatial phenotypic-transcriptomic profiling guided by regions-of-interest (ROIs) identified a crucial regulatory mechanism through localized tumor-adjacent macrophages, potentially in an HRD-dependent manner. Cellular neighborhood (CN) analysis further demonstrated the existence of macrophage-associated high-ordered cellular functional units in spatial contexts. Using our multi-omics spatial profiling strategy, we uncovered a dynamic macrophage-mediated regulatory axis linking HRD status with SIGLEC10 and CD52. These findings demonstrate the potential of targeting CD52 in combination with PARPi as a therapeutic intervention for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Recombinação Homóloga , Macrófagos , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Microambiente Tumoral/imunologia
19.
Mod Pathol ; 37(10): 100572, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033963

RESUMO

Sarcomas rarely develop in bones previously compromised by infarcts. These infarct-associated sarcomas often present as undifferentiated pleomorphic sarcomas (UPS), and their genetic characteristics are poorly understood. High-grade UPS of bone are typically treated with a combination of surgery and chemotherapy, similar to osteosarcoma. We conducted a detailed clinicopathologic and genomic analysis of 6 cases of intraosseous sarcomas arising from histologically and radiographically confirmed bone infarcts. We analyzed 523 genes for sequence-level mutations using next-generation sequencing with the TruSight Oncology 500 panel and utilized whole-genome single nucleotide polymorphism Microarray (OncoScan CNV) to detect copy number alterations and loss of heterozygosity (LOH). Genomic instability was assessed through homologous recombination deficiency (HRD) metrics, incorporating LOH, telomeric allelic imbalance, and large-scale state transitions. Fluorescence in situ hybridization and immunohistochemistry validated the findings. The cohort included 3 men and 3 women, with a median age of 70 years, and tumors located in the femur and tibia. Five of the 6 patients developed distant metastases. Treatment involved surgery and chemotherapy or immune checkpoint inhibitors. Genomic analysis revealed significant complexity and high HRD scores, ranging from 32 to 57 (with a cutoff of 32). Chromosome 12 alterations, including segmental amplification or chromothripsis, were observed in 4 cases. Notably, MDM2 amplification, confirmed by fluorescence in situ hybridization, was detected in 2 cases. Homozygous deletion of CDKN2A/B was observed in all six cases. Tumor mutational burden levels ranged from 2.4 to 7.9 mutations per megabase. Notable pathogenic mutations included H3-3A mutations (p.G35R and p.G35W), and mutations in HRAS, DNMT3A, NF2, PIK3CA, POLE, and TP53, each in one case. These results suggest that high-grade infarct-associated sarcomas of bone, whereas sharing high levels of structural variations with osteosarcoma, may exhibit potentially less frequent TP53 mutations and more common CDKN2A/B deletions. This points to the possibility that the mutation spectrum and disrupted pathways could be distinct from conventional osteosarcoma.

20.
J Ovarian Res ; 17(1): 133, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937827

RESUMO

PURPOSE: Ovarian cancer (OC) is characterized by a high recurrence rate, and homologous recombination deficiency (HRD) is an important biomarker in the clinical management of OC. We investigated the differences in clinical genomic profiles between the primary and platinum-sensitive recurrent OC (PSROC), focusing on HRD status. MATERIALS AND METHODS: A total of 40 formalin-fixed paraffin-embedded (FFPE) tissues of primary tumors and their first platinum-sensitive recurrence from 20 OC patients were collected, and comprehensive genomic profiling (CGP) analysis of FoundationOne®CDx (F1CDx) was applied to explore the genetic (dis)similarities of the primary and recurrent tumors. RESULTS: By comparing between paired samples, we found that genomic loss of heterozygosity (gLOH) score had a high intra-patient correlation (r2 = 0.79) and that short variants (including TP53, BRCA1/2 and NOTCH1 mutations), tumor mutational burden (TMB) and microsatellite stability status remained stable. The frequency of (likely) pathological BRCA1/2 mutations was 30% (12/40) in all samples positively correlated with gLOH scores, but the proportion of gLOH-high status (score > 16%) was 50% (10/20) and 55% (11/20) in the primary and recurrent samples, respectively. An additional 20% (4/20) of patients needed attention, a quarter of which carried the pathological BRCA1 mutation but had a gLOH-low status (gLOH < 16%), and three-quarters had different gLOH status in primary-recurrent pairs. Furthermore, we observed the PSROC samples had higher gLOH scores (16.1 ± 9.24 vs. 19.4 ± 11.1, p = 0.007), more CNVs (36.1% vs. 15.1% of discordant genomic alternations), and significant enrichment of altered genes in TGF-beta signaling and Hippo signaling pathways (p < 0.05 for all) than their paired primaries. Lastly, mutational signature and oncodrive gene analyses showed that the computed mutational signature similarity in the primary and recurrent tumors were best matched the COSMI 3 signature (Aetiology of HRD) and had consistent candidate cancer driver genes of MSH2, NOTCH1 and MSH6. CONCLUSION: The high genetic concordance of the short variants remains stable along OC recurrence. However, the results reveal significantly higher gLOH scores in the recurrent setting than in paired primaries, supporting further clinically instantaneity HRD assay strategy.


Assuntos
Genômica , Recidiva Local de Neoplasia , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Genômica/métodos , Idoso , Mutação , Perda de Heterozigosidade , Adulto , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA