Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Arch Pharm (Weinheim) ; 357(9): e2400242, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38763904

RESUMO

Previously, we documented the synthesis and assessed the biological effects of chalcones containing selenium against HT-29 human colorectal adenocarcinoma cells, demonstrating their significant potential. As research on selenium-containing flavonoids remains limited, this article outlines our design and synthesis of three selenium-based flavonols and three 2-styrylchromones. We conducted evaluations of these compounds to determine their impact on human lung cancer cells (A549, H1975, CL1-0, and CL1-5) and their influence on normal lung fibroblast MRC5 cells. Additionally, we included selenium-based chalcones in our testing for comparative purposes. Our findings highlight that the simplest compound, designated as compound 1, exhibited the most promising performance among the tested molecules.


Assuntos
Antineoplásicos , Chalconas , Flavonóis , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Chalconas/farmacologia , Chalconas/síntese química , Chalconas/química , Relação Estrutura-Atividade , Flavonóis/farmacologia , Flavonóis/síntese química , Flavonóis/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Compostos Organosselênicos/farmacologia , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/química , Relação Dose-Resposta a Droga , Cromonas/farmacologia , Cromonas/síntese química , Cromonas/química , Sobrevivência Celular/efeitos dos fármacos , Células A549 , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia
2.
Fitoterapia ; 168: 105542, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37172633

RESUMO

Seven new C-geranylated flavanones, fortunones F - L (1-7), were isolated from the fresh mature fruits of Paulownia fortunei (Seem.) Hemsl. Their structures were determined by extensive spectroscopic data interpretation (UV, IR, HRMS, NMR, and CD). These new isolated compounds were all with a cyclic side chain modified from the geranyl group. Among them, compounds 1-3 all possessed a dicyclic geranyl modification, which was described firstly for Paulownia C-geranylated flavonoids. All the isolated compounds were subjected to the cytotoxic assay on human lung cancer cell A549, mouse prostate cancer cell RM1 and human bladder cancer cell T24, respectively. Results indicated A549 cell line was more sensitive to C-geranylated flavanones than the other two cancer cell lines and compounds 1, 7 and 8 exhibited potential anti-tumor effects (IC50 ˂ 10 µM). Further research revealed the effective C-geranylated flavanones could exert their anti-proliferative activity on A549 cells by inducing apoptosis and blocking cells in G1 phase.


Assuntos
Flavanonas , Neoplasias , Animais , Camundongos , Humanos , Frutas/química , Estrutura Molecular , Flavanonas/farmacologia , Flavanonas/química , Flavonoides/química , Linhagem Celular , Neoplasias/tratamento farmacológico
3.
Cancers (Basel) ; 14(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36428739

RESUMO

This study underlines the importance of SARS-CoV-2 spike S1 in prompting death in cultured non-small cell lung cancer (NSCLC) cells and in vivo in lung tumors in mice. Interestingly, we found that recombinant spike S1 treatment at very low doses led to death of human A549 NSCLC cells. On the other hand, boiled recombinant SARS-CoV-2 spike S1 remained unable to induce death, suggesting that the induction of cell death in A549 cells was due to native SARS-CoV-2 spike S1 protein. SARS-CoV-2 spike S1-induced A549 cell death was also inhibited by neutralizing antibodies against spike S1 and ACE2. Moreover, our newly designed wild type ACE2-interacting domain of SARS-CoV-2 (wtAIDS), but not mAIDS, peptide also attenuated SARS-CoV-2 spike S1-induced cell death, suggesting that SARS-CoV-2 spike S1-induced death in A549 NSCLC cells depends on its interaction with ACE2 receptor. Similarly, recombinant spike S1 treatment also led to death of human H1299 and H358 NSCLC cells. Finally, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) intoxication led to the formation tumors in lungs of A/J mice and alternate day intranasal treatment with low dose of recombinant SARS-CoV-2 spike S1 from 22-weeks of NNK insult (late stage) induced apoptosis and tumor regression in the lungs. These studies indicate that SARS-CoV-2 spike S1 may have implications for lung cancer treatment.

4.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077349

RESUMO

Radiotherapy is an important component in the treatment of lung cancer, one of the most common cancers worldwide, frequently resulting in death within only a few years of diagnosis. In order to evaluate new therapeutic approaches and compare their efficiency with regard to tumour control at a pre-clinical stage, it is important to develop standardized samples which can serve as inter-institutional outcome controls, independent of differences in local technical parameters or specific techniques. Recent developments in 3D bioprinting techniques could provide a sophisticated solution to this challenge. We have conducted a pilot project to evaluate the suitability of standardized samples generated from 3D printed human lung cancer cells in radiotherapy studies. The samples were irradiated at high dose rates using both broad beam and microbeam techniques. We found the 3D printed constructs to be sufficiently mechanically stable for use in microbeam studies with peak doses up to 400 Gy to test for cytotoxicity, DNA damage, and cancer cell death in vitro. The results of this study show how 3D structures generated from human lung cancer cells in an additive printing process can be used to study the effects of radiotherapy in a standardized manner.


Assuntos
Bioimpressão , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/radioterapia , Projetos Piloto , Impressão Tridimensional
5.
Biomedicine (Taipei) ; 12(2): 31-39, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836974

RESUMO

Background: Desmodium gangeticum (L.)DC., which belongs to the Leguminosae family, has been used in Taiwan and other subtropical countries as an external medicine to remove blood stasis, activate blood circulation, and reduce inflammation. It has been reported to have antioxidant effects and improve inflammatory responses in rats stimulated by pro-inflammatory agents and induced gastric ulcers in experimental animals over the past few decades. This plant has also been used to treat parasitic infections, but there are no reports regarding its effects on lung cancer. Therefore, this study attempted to investigate its water crude extract (in abbreviation DG) on lung cancer cells. Methods: A549 human lung cancer cells were tested for survival using MTT, trypan blue, and propidium iodide. The effects of various concentrations of the crude extract of D. gangeticum (DG) (0.125~1 mg/ml) on the cell cycle and apoptosis of A549 cells were analyzed by flow cytometry and Western blotting methods. Results: DG can inhibit the growth of A549 human lung cancer cells in a concentration- and time-dependent manner. DG arrested A549 cells in the G1 phase by increasing the proteins expression of p21, p27, cyclin D1, and cyclin E. Additionally, DG decreased the expression of cyclin A, B1, and Cdc 2 (CDK1) proteins. Conclusions: DG demonstrated the anti-lung cancer activity by arresting the cell cycle in G1 via increasing the p21, p27, cyclin D1, cyclin E, and decreasing Cdc2, cyclin A, and B1 proteins expression in A549 human lung cancer cells.

6.
Nat Prod Res ; 36(11): 2875-2877, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33980087

RESUMO

The inhibitory effect of three degraded sesquiterpene lactones, iso-seco-tanapartholide, arteludooicinolide A and millifolide A isolated from Achillea millefolium L., on anti-human lung cancer cells was examined using MTT and reporter gene assays. Millifolide A has significant inhibitory effects on the proliferation of human lung cancer cells probably through inducing cell apoptosis.


Assuntos
Achillea , Neoplasias Pulmonares , Sesquiterpenos , Linhagem Celular , Proliferação de Células , Éter/farmacologia , Humanos , Lactonas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Sesquiterpenos/farmacologia
7.
J Nat Med ; 75(4): 949-966, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34287745

RESUMO

The incidence of metastasis stage crucially contributes to high recurrence and mortality rate in lung cancer patients. Unfortunately, no available treatment inhibits migration, a key metastasis process in lung cancer. In this study, the effect of 22-O-(N-Boc-L-glycine) ester of renieramycin M (22-Boc-Gly-RM), a semi-synthetic amino ester derivative of bistetrahydroisoquinolinequinone alkaloid isolated from Xestospongia sp., on migratory behavior of human lung cancer cells was investigated. Following 24 h of treatment, 22-Boc-Gly-RM at non-toxic concentrations (0.5-1 µM) effectively restrained motility of human lung cancer H460 cells assessed through wound healing, transwell migration, and multicellular spheroid models. The capability to invade through matrix component was also repressed in H460 cells cultured with 0.1-1 µM 22-Boc-Gly-RM. The dose-dependent reduction of phalloidin-stained actin stress fibers corresponded with the downregulated Rac1-GTP level presented via western blot analysis in 22-Boc-Gly-RM-treated cells. Treatment with 0.1-1 µM of 22-Boc-Gly-RM obviously caused suppression of p-FAK/p-Akt signal and consequent inhibition of epithelial-to-mesenchymal transition (EMT), which was evidenced with augmented level of E-cadherin and reduction of N-cadherin expression. The alteration of invasion-related proteins in 22-Boc-Gly-RM-treated H460 cells was indicated by the diminution of matrix metalloproteinases (MT1-MMP, MMP-2, MMP-7, and MMP-9), as well as the upregulation of tissue inhibitors of metalloproteinases (TIMP), TIMP2, and TIMP3. Thus, 22-Boc-Gly-RM is a promising candidate for anti-metastasis treatment in lung cancer through inhibition of migratory features associated with suppression on EMT.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias Pulmonares , Linhagem Celular Tumoral , Movimento Celular , Sobrevivência Celular , Ésteres , Glicina/farmacologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Tetra-Hidroisoquinolinas
8.
AMB Express ; 11(1): 61, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33900505

RESUMO

The current study evaluated the anti-cancer properties of bio-functionalized silver nanoparticles fabricated by Juniperus chinensis leaf extracts. The nanoparticles were characterized by scanning electron microscopy, transmission electron microscopy, UV-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, dynamic light scattering, Zeta potential and X-ray spectroscopy. Further, this study elucidated the cellular and molecular mechanisms of nanoparticles for anti-proliferative and apoptotic effects on human lung cancer cells (A549) and compared them with commercial drug cisplatin. The size of the spherical nanoparticle was 12.96 nm with negative zeta potential. Up-regulation of caspase 3,9 and p53, Annexin V-FITC/PI, DAPI staining, and ROS production indicated the remarkable apoptotic effect of AgNPs compared to cisplatin. Moreover, down-regulation of MMP2/MMP9 scratch and matrigel assays revealed anti-metastatic properties of AgNPs. Cell cycle analysis and downregulation of cyclin D1 indicated cancer cell cessation in the G0/G1 phase. Overall, the results revealed that the green-synthetized AgNPs had anti-metastasis and anti-proliferation effects on lung cancer cells in comparison to cisplatin with lower side effects on the normal cell line.

9.
Bioorg Med Chem Lett ; 31: 127715, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33246109

RESUMO

The effects of 3 bufadienolides, namely kalantuboside B, kalantuboside A, and bryotoxin C, isolated from Kalanchoe tubiflora (Harvey) were evaluated and characterized in CL1-5 highly metastatic human lung cancer cells. In contrast to their apoptosis-promoting activity in other cancer cells, these bufadienolides only slight or did not induce apoptosis in CL1-5 cancer cells. Instead, they activated an autophagy pathway, as indicated by increased autophagosome formation. Autophagy induced by these bufadienolides was demonstrated to be linked to the down-regulation of p-mTOR and the up-regulation of LC3-II, ATG5, ATG7, and Beclin-1. Our findings revealed an autophagy as the alternative mechanism of drug action by bufadienolides in CL1-5 lung cancer cells and provided evidence that bufadienolides are a potential therapeutic strategy for highly metastatic human lung cancer.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Bufanolídeos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Bufanolídeos/síntese química , Bufanolídeos/química , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Conformação Molecular , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
10.
Int J Biol Macromol ; 164: 4010-4021, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32853609

RESUMO

In the present study, the chemical composition of Morinda citrifolia essential oils was determined by gas chromatography-mass spectrometry and was found to contain several anti-cancer compounds including L-scopoletin, nordamnacanthal, ß-morindone, α-copaene, 9-H-pyrido[3,4-b]indole, ß-thujene and terpinolene. The physico-chemical characterization of chitosan, chitosan nanoparticles and Morinda citrifolia essential oils loaded chitosan nanoparticles combination was carried out by Fourier transform infrared spectroscopy, powder X-ray diffraction and dynamic light scattering coupled with zeta potential. The morphological observation obtained by scanning electron microscopy and transmission electron microscopy provided clear indication that the immobile chitosan polymer formed a coating onto the Morinda citrifolia essential oils surface. The cytotoxic effect of Morinda citrifolia essential oils loaded chitosan nanoparticles against A549 cells were investigated, resulting in 54% inhibition at 40 µg/ml-1. Information about in vitro morphological modification, nucleus damages, ROS generation and cell cycle arrest was obtained by fluorescence microscopy and flow cytometer analysis. The toxicity evaluation against human red blood cells suggested that the Morinda citrifolia essential oils loaded chitosan nanoparticles possess minimum cytotoxicity. Altogether, the present study suggests that these Morinda citrifolia essential oils loaded chitosan nanoparticles are valuable biomaterials owing to their ability to fight against A549 cancer cells.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Quitosana/química , Morinda/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Células A549 , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Fenômenos Químicos , Citometria de Fluxo , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Neoplasias Pulmonares , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral , Difração de Raios X
11.
Molecules ; 25(4)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32069989

RESUMO

The inherent limitations, including serious side-effects and drug resistance, of current chemotherapies necessitate the search for alternative treatments especially for lung cancer. Herein, the anticancer activity of colicin N, bacteria-produced antibiotic peptide, was investigated in various human lung cancer cells. After 24 h of treatment, colicin N at 5-15 µM selectively caused cytotoxicity detected by MTT assay in human lung cancer H460, H292 and H23 cells with no noticeable cell death in human dermal papilla DPCs cells. Flow cytometry analysis of annexin V-FITC/propidium iodide indicated that colicin N primarily induced apoptosis in human lung cancer cells. The activation of extrinsic apoptosis evidenced with the reduction of c-FLIP and caspase-8, as well as the modulation of intrinsic apoptosis signaling proteins including Bax and Mcl-1 were observed via Western blot analysis in lung cancer cells cultured with colicin N (10-15 µM) for 12 h. Moreover, 5-15 µM of colicin N down-regulated the expression of activated Akt (p-Akt) and its upstream survival molecules, integrin ß1 and αV in human lung cancer cells. Taken together, colicin N exhibits selective anticancer activity associated with suppression of integrin-modulated survival which potentiate the development of a novel therapy with high safety profile for treatment of human lung cancer.


Assuntos
Apoptose/efeitos dos fármacos , Colicinas/farmacologia , Neoplasias Pulmonares/metabolismo , Western Blotting , Caspase 8/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citometria de Fluxo , Humanos , Integrinas/metabolismo , Propídio/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo
12.
Am J Chin Med ; 48(1): 201-222, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31918564

RESUMO

Aggressive tumor cells mainly rely on glycolysis, and further release vast amounts of lactate and protons by monocarboxylate transporter (MCT), which causes a higher intracellular pH (pHi) and acidic extracellular pH. Isoorientin, a principle flavonoid compound extracted from several plant species, shows various pharmacological activities. However, effects of isoorientin on anticancer and MCT await to explore in human lung cancer cells. Human lung cancer tissues were obtained from cancer patients undergoing surgery, while the human lung adenocarcinoma cells (A549) were bought commercially. Change of pHi was detected by microspectrofluorometry method with a pH-sensitive fluorescent dye, BCECF. MTT and wound-healing assay were used to detect the cell viability and migration, respectively. Western blot techniques and immunocytochemistry staining were used to detect the protein expression. Our results indicated that the expression of MCTs1/4 and CD147 were upregulated significantly in human lung tissues. In experiments of A549 cells, under HEPES-buffer, the resting pHi was 7.47, and isoorientin (1-300µM) inhibited functional activity of MCT concentration-dependently (up to -42%). Pretreatment with isoorientin (3-100µM) for 24h, MCT activity and cell migration were significantly inhibited (-25% and -40%, respectively), while the cell viability was not affected. Moreover, the expression of MCTs1/4, CD147, and matrix metalloproteinase (MMP) 2/9 were significantly down regulated. In summary, MCTs1/4 and CD147 are significantly upregulated in human lung adenocarcinoma tissues, and isoorientin inhibits cells-migration by inhibiting activity/expression of MCTs1/4 and MMPs2/9 in human lung cancer cells. These novel findings suggest that isoorientin could be a promising pharmacological agent for lung cancer.


Assuntos
Movimento Celular/efeitos dos fármacos , Luteolina/farmacologia , Transportadores de Ácidos Monocarboxílicos/metabolismo , Células A549 , Sobrevivência Celular/efeitos dos fármacos , Humanos , Luteolina/química , Estrutura Molecular , Prótons
13.
Molecules ; 24(19)2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31547522

RESUMO

Ursolic and oleanolic acids are natural isomeric triterpenes known for their anticancer activity. Here, we investigated the effect of triterpenes on the viability of A549 human lung cancer cells and the role of autophagy in their activity. The induction of autophagy, the mitochondrial changes and signaling pathway stimulated by triterpenes were systematically explored by confocal microscopy and western blotting. Ursolic and oleanolic acids induce autophagy in A549 cells. Ursolic acid activates AKT/mTOR pathways and oleanolic acid triggers a pathway independent on AKT. Both acids promote many mitochondrial changes, suggesting that mitochondria are targets of autophagy in a process known as mitophagy. The PINK1/Parkin axis is a pathway usually associated with mitophagy, however, the mitophagy induced by ursolic or oleanolic acid is just dependent on PINK1. Moreover, both acids induce an ROS production. The blockage of autophagy with wortmannin is responsible for a decrease of mitochondrial membrane potential (Δψ) and cell death. The wortmannin treatment causes an over-increase of p62 and Nrf2 proteins promote a detoxifying effect to rescue cells from the death conducted by ROS. In conclusion, the mitophagy and p62 protein play an important function as a survival mechanism in A549 cells and could be target to therapeutic control.


Assuntos
Mitofagia/efeitos dos fármacos , Ácido Oleanólico/farmacologia , Triterpenos/farmacologia , Células A549 , Humanos , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ácido Ursólico
14.
J Cell Mol Med ; 23(11): 7749-7761, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31475459

RESUMO

Solamargine (SM) has been shown to have anti-cancer properties. However, the underlying mechanism involved remains undetermined. We showed that SM inhibited the growth of non-small cell lung cancer (NSCLC) cells, which was enhanced in cells with silencing of long non-coding RNA (lncRNA) HOX transcript antisense RNA (HOTAIR), while it overcame by overexpression of HOTAIR. In addition, SM increased the expression of miR-214-3p and inhibited 3-phosphoinositide-dependent protein kinase-1 (PDPK1) gene expression, which was strengthened by miR-214-3p mimics. Intriguingly, HOTAIR could directly bind to miR-214-3p and sequestered miR-214-3p from the target gene PDPK1. Intriguingly, overexpression of PDPK1 overcame the effects of SM on miR-214-3p expressions and neutralized the SM-inhibited cell growth. Similar results were observed in vivo. In summary, our results showed that SM-inhibited NSCLC cell growth through the reciprocal interaction between HOTAIR and miR-214-3p, which ultimately suppressed PDPK1 gene expression. HOTAIR effectively acted as a competing endogenous RNA (ceRNA) to stimulate the expression of target gene PDPK1. These complex interactions and feedback mechanisms contribute to the overall effect of SM. This unveils a novel molecular mechanism underlying the anti-cancer effect of SM in human lung cancer.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/antagonistas & inibidores , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Pulmonares/genética , MicroRNAs/genética , RNA Longo não Codificante/metabolismo , Alcaloides de Solanáceas/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Humanos , Neoplasias Pulmonares/patologia , Camundongos Nus , MicroRNAs/metabolismo , RNA Longo não Codificante/genética
15.
Oncol Lett ; 17(3): 2890-2896, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30854065

RESUMO

Claudins are a family of tight junction proteins, and serve important roles in epithelial barrier, selective ion transports and cancer metastasis. Although the exact role of claudin-7 in human lung cancer has not been completely elucidated, recent clinical studies have demonstrated that claudin-7 is associated with the survival of patients with lung cancer. Our previous studies have demonstrated that claudin-7 forms a protein complex with integrin ß1 in human lung cancer cells. The knockdown (KD) of claudin-7 by short hairpin RNA (shRNA) reduced integrin ß1 expression and increased the cell proliferative rate, whereas claudin-7 re-expression in the KD cells decreased the cell proliferation. It is unknown as to whether claudin-7 and integrin ß1 regulate cell proliferation and invasion synergistically or independently. In the present study, it was observed that ectopic expression of integrin ß1 in claudin-7 KD lung cancer cells did not reduce the cell proliferation. However, integrin ß1-transfected cells migrated more effectively in wound healing and cell invasion assays and were more adhesive in a cell attachment assay when compared with those of claudin-7 KD cells. This indicates that claudin-7 controls cell proliferation, while cell attachment and motility were regulated partially through integrin ß1. Additionally, claudin-7 overexpression in claudin-7 KD cells resulted in an improved ability to attach to the surface of cell culture plates and a higher expression of focal adhesion proteins when compared with claudin-7 non-KD control cells, which supports the role of claudin-7 in cell adhesion and motility. Taken together, these data suggest that claudin-7 regulates cell motility through integrin ß1, providing additional insight into the roles of claudins in carcinogenesis and cancer cell metastasis.

16.
In Vivo ; 33(2): 383-391, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30804116

RESUMO

BACKGROUND/AIM: Ursolic acid (UA), a triterpene compound present in natural plants, has been shown to induce cytotoxic effects on many human cancer cells through induction of cell-cycle arrest and apoptosis. This study investigated the effects of UA on human lung cancer NCI-H292 cells in vitro. MATERIALS AND METHODS: Flow cytometric assay was used to measure the percentage of cell viability, apoptotic cell death by double staining of annexin V and propidium iodide (PI), production of reactive oxygen species (ROS) and Ca2+, and mitochondriaI membrane potential (Ψm). UA-induced chromatin condensation and DNA fragmentation were examined by 4',6-diamidino-2-phenylindole staining and DNA gel electrophoresis, respectively. Western blotting was used to examine the changes of apoptosis-associated protein expression in NCI-H292 cells. RESULTS: UA reduced cell viability and induced apoptotic cell death. UA increased Ca2+ production, reduced Ψm, but did not affect ROS production in NCI-H292 cells. UA increased apoptosis-inducing factor (AIF) and endonuclease G in NCI-H292 cells. CONCLUSION: Based on these observations, we suggest UA induces apoptotic cell death via AIF and Endo G release through a mitochondria-dependent pathway in NCI-H292 cells.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Triterpenos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Fragmentação do DNA/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/patologia , Transdução de Sinais/efeitos dos fármacos , Ácido Ursólico
17.
Molecules ; 23(12)2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30551590

RESUMO

Bulnesia sarmientoi (BS) has long been used as an analgesic, wound-healing and anti-inflammatory medicinal plant. The aqueous extract of its bark has been demonstrated to have anti-cancer activity. This study investigated the anti-proliferative and anti-metastatic effects of BS supercritical fluid extract (BSE) on the A549 and H661 lung cancer cell lines. The cytotoxicity on cancer cells was assessed by an MTT assay. After 72 h treatment of A549 and H661 cells, the IC50 values were 18.1 and 24.7 µg/mL, respectively. The cytotoxicity on MRC-5 normal cells was relatively lower (IC50 = 61.1 µg/mL). BSE arrested lung cancer cells at the S and G2/M growth phase. Necrosis of A549 and H661 cells was detected by flow cytometry with Annexin V-FITC/PI double staining. Moreover, the cytotoxic effect of BSE on cancer cells was significantly reverted by Nec-1 pretreatment, and BSE induced TNF-α and RIP-1 expression in the absence of caspase-8 activity. These evidences further support that BSE exhibited necroptotic effects on lung cancer cells. By wound healing and Boyden chamber assays, the inhibitory effects of BSE on the migration and invasion of lung cancer cells were elucidated. Furthermore, the chemical composition of BSE was examined by gas chromatography-mass analysis where ten constituents of BSE were identified. α-Guaiene, (-)-guaiol and ß-caryophyllene are responsible for most of the cytotoxic activity of BSE against these two cancer cell lines. Since BSE possesses significant cytotoxicity and anti-metastatic activity on A549 and H661 cells, it may serve as a potential target for the treatment of lung cancer.


Assuntos
Apoptose/efeitos dos fármacos , Cromatografia com Fluido Supercrítico , Neoplasias Pulmonares/patologia , Extratos Vegetais/farmacologia , Zygophyllaceae/química , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Humanos , Necrose , Invasividade Neoplásica , Metástase Neoplásica , Extratos Vegetais/química , Cicatrização/efeitos dos fármacos
18.
Cell Physiol Biochem ; 49(4): 1615-1632, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30223276

RESUMO

BACKGROUND/AIMS: We previously showed that the major bioactive compound of Atractylodes macrocephula Koidz atractylenolide 1 (ATL-1) inhibited human lung cancer cell growth by suppressing the gene expression of 3-Phosphoinositide dependent protein kinase-1 (PDK1 or PDPK1). However, the potentially associated molecules and downstream effectors of PDK1 underlying this inhibition, particularly the mechanism for enhancing the anti-tumor effects of epidermal growth factor receptor-tyrosine-kinase inhibitors (EGFR-TKIs), remain unknown. METHODS: Cell viability and cell cycle distribution were measured using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and flow cytometry assays, respectively. Western blot analyses were performed to examine the protein expressions of PDK1 and of zeste homolog 2 (EZH2). The levels of long non-coding RNA (lncRNA) and HOX transcript antisense RNA (HOTAIR) were examined via qRT-PCR. RNA-binding protein immunoprecipitation assays were used to analyze HOTAIR interaction with EZH2. The promoter activity of the EZH2 gene was determined using Secrete-Pair Dual Luminescence Assay Kit. Exogenous expressions of PDK1, HOTAIR, and EZH2 were conducted via transient transfection assays. A xenografted tumor model was used to further evaluate the effect of ATL-1 in the presence or absence of erlotinib in vivo. RESULTS: We showed that the combination of ATL-1 and EGFR-TKI erlotinib further inhibited growth and induced cell arrest of the human lung cancer cells, determined by both MTT and flow cytometry assays. ATL-1 inhibited the protein expression and the promoter activity of EZH2, which was reversed in cells with PDK1 overexpression. Interestingly, ATL-1 inhibited the expression levels of HOTAIR. While silencing HOTAIR inhibited the expressions of PDK1 and EZH2, overexpression of HOTAIR reduced the ATL-1-reduced PDK1 and EZH2 protein expressions and EZH2 promoter activity. In addition, ATL-1 reduced the HOTAIR binding to the EZH2 protein. Moreover, we found that exogenously expressed EZH2 antagonized the effect of ATL-1 on cell growth inhibition. Consistent with the in vitro results, ATL-1 inhibited tumor growth and the expression levels of HOTAIR, protein expressions of EZH2 and PDK1 in vivo. Importantly, there was synergy of the combination of ATL-1 and erlotinib in this process. CONCLUSION: Here, we provide the first evidence that ATL-1 inhibits lung cancer cell growth through inhibiting not only the PDK1 but also the lncRNA HOTAIR, which results in the reduction of one downstream effector EZH2 expression. The novel interplay between the HOTAIR and EZH2, as well as repressions of the PDK1 and HOTAIR coordinate the overall effects of ATL-1. Importantly, the combination of ATL-1 and EGFR-TKI erlotinib exhibits synergy. Thus, targeting the PDK1- and HOTAIR-mediated downstream molecule EZH2 by the combination of ATL-1 and erlotinib potentially facilitates the development of an additional novel strategy to combat lung cancer.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Cloridrato de Erlotinib/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Lactonas/farmacologia , RNA Longo não Codificante/metabolismo , Sesquiterpenos/farmacologia , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/antagonistas & inibidores , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Cloridrato de Erlotinib/uso terapêutico , Feminino , Humanos , Lactonas/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Interferência de RNA , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , RNA Interferente Pequeno/metabolismo , Sesquiterpenos/uso terapêutico
19.
Biomed Pharmacother ; 103: 391-398, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29674274

RESUMO

Many curcumin derivatives were produced and characterized to improve the physiochemical instability and low solubility of curcumin. Here, MHMM-41 (a novel curcumin derivative) was used to treat non-small lung cancer cells of human (known as A549) and to identify its anti-proliferative activities. Our results suggested that MHMM-41 display no significant cytotoxicity toward normal human lung fibroblast 2BS cells and mouse embryonal fibroblast 3T3 cells. It also had better anti-proliferative activity than curcumin in A549 cells. Further study showed a significant increase of apoptotic A549 cells in time and dose dependent manners. The activation of caspase-3, 8, 9, 12, Bax and PARP proteins were detected. Consequently, MHMM-41 treatment led to the reduction of mitochondrial membrane potential by JC-1 staining and characteristic nuclei fragmentation by Hoechst 33,342 staining, respectively, which showed that A549 apoptosis could be triggered by the extrinsic and intrinsic mitochondrial pathways. The release of ROS was also measured by flow cytometry. Further, wound healing assay and transwell experiments confirmed the anti-migration ability of MHMM-41 in A549 cells. Our current study suggested the potentials of MHMM-41 to inhibit the A549 cell proliferation. However, the intensive mechanical research on the anti-proliferation of A549 cells needs to be performed in the future.


Assuntos
Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Curcumina/análogos & derivados , Curcumina/farmacologia , Neoplasias Pulmonares/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células 3T3 , Células A549 , Animais , Apoptose/fisiologia , Movimento Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Curcumina/uso terapêutico , Relação Dose-Resposta a Droga , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos
20.
Anticancer Res ; 38(4): 2137-2147, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29599332

RESUMO

BACKGROUND/AIM: Some lung cancer patients treated with gefitinib develop resistance to this drug resulting in unsatisfactory treatment outcomes. Phenethyl isothiocyanate (PEITC), present in our common cruciferous vegetables, exhibits anticancer activities in many human cancer cell lines. Currently, there is no available information on the possible modification of gefitinib resistance of lung cancer in vitro by PEITC. Thus, the effects of PEITC on gefitinib resistant lung cancer NCI-H460 cells were investigated in vitro. MATERIALS AND METHODS: The total cell viability, apoptotic cell death, production of reactive oxygen species (ROS) and Ca2+, levels of mitochondria membrane potential (ΔΨm) and caspase-3, -8 and -9 activities were measured by flow cytometry assay. PEITC induced chromatin condensation was examined by DAPI staining. RESULTS: PEITC-induced cell morphological changes, decreased total viable cell number and induced apoptotic cell death in NCI-H460 and NCI-H460/G cells. PEITC decreased ROS production in NCI-H460 cells, but increased production in NCI-H460/G cells. PEITC increased Ca2+ production, decreased the levels of ΔΨm and increased caspase-3, -8 and -9 activities in both NCI-H460 and NCI-H460/G cells. Western blotting was used to examine the effect of apoptotic cell death associated protein expression in NCI-H460 NCI-H460/G cells after exposure to PEITC. Results showed that PEITC increased expression of cleaved caspase-3, PARP, GADD153, Endo G and pro-apoptotic protein Bax in NCI-H460/G cells. CONCLUSION: Based on these results, we suggest that PEITC induces apoptotic cell death via the caspase- and mitochondria-dependent pathway in NCI-H460/G cells.


Assuntos
Apoptose/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Isotiocianatos/farmacologia , Neoplasias Pulmonares/patologia , Mitocôndrias/efeitos dos fármacos , Quinazolinas/uso terapêutico , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular Tumoral , Gefitinibe , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA