Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2402292, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39240055

RESUMO

Perianal fistulas represent a common, aggressive, and disabling complication of Crohn's disease (CD). Despite recent drug developments, novel surgical interventions as well as multidisciplinary treatment approaches, the outcome is dismal, with >50% therapy failure rates. Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) offer potential therapeutic benefits for treating fistulizing CD, due to the pro-regenerative paracrine signals. However, a significant obstacle to clinical translation of EV-based therapy is the rapid clearance and short half-life of EVs in vivo. Here, an injectable, biodegradable nanofiber-hydrogel composite (NHC) microgel matrix that serves as a carrier to deliver MSC-derived EVs to a rat model of CD perianal fistula (PAF) is reported. It is found that EV-loaded NHC (EV-NHC) yields the best fistula healing when compared to other treatment arms. The MRI assessment reveals that the EV-NHC reduces inflammation at the fistula site and promotes tissue healing. The enhanced therapeutic outcomes are contributed by extended local retention and sustained release of EVs by NHC. In addition, the EV-NHC effectively reduces inflammation at the fistula site and promotes tissue healing and regeneration via macrophage polarization and neo-vascularization. This EV-NHC platform provides an off-the-shelf solution that facilitates its clinical translation.

2.
Sci Rep ; 14(1): 19001, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152177

RESUMO

UV sensing 3D printed optical fiber hydrogels provide a flexible and precise method of remotely of detecting exposure to UV radiations. The optical fibers were created using digital light processing 3D printing technique with hydrogel composites, including micro-sized photochromic dyes (pink, blue and their combination). When exposed to ultraviolet (UV) radiation, these dyes exhibited specific absorption characteristics, resulting in significant decreases in both reflection and transmittance mode spectra at 560 nm, 620 nm, and 590 nm. Optical fibers of lengths 1, 2, and 3 cm were manufactured in two orientations: vertical and horizontal. Scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction were utilized to characterize the printed fiber probes. The optical performance of the fibers was tested using customized measurement setups. The reflection and transmission of the printed fibers reduced as the length increased due to optical losses. Reflection and transmisson loss of 20-40% can be observed when the length is increased from 1 to 3 cm. The maximum loss in reflection is observed for pink fiber in the presence of UV irradiation. Also, the type of powder used impacted the response and retraction time, whereas the mixed fiber showed the highest response time of 12-20 s under various conditions. The pink dye added fiber probes shows quick response to UV radiation. An increase in the response time is observed with increasing fiber length. The impact of printing orientation on the transmission and reflectance mode operations of optical fibers was assessed. In addition, the stability of the fiber probes are assesed using a green laser having wavelength 532 nm. This work comprehensively examines the optical properties, manufacturing procedures, and sensing capacities of UV-sensitive photochromic optical fiber sensors.

3.
Adv Healthc Mater ; : e2400668, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135411

RESUMO

This review highlights the promise of fiber-reinforced hydrogel composites (FRHCs) for augmenting tendon and ligament repair and regeneration. Composed of reinforcing fibers embedded in a hydrogel, these scaffolds provide both mechanical strength and a conducive microenvironment for biological processes required for connective tissue regeneration. Typical properties of FRHCs are discussed, highlighting their ability to simultaneously fulfill essential mechanical and biological design criteria for a regenerative scaffold. Furthermore, features of FRHCs are described that improve specific biological aspects of tendon healing including mesenchymal progenitor cell recruitment, early polarization to a pro-regenerative immune response, tenogenic differentiation of recruited progenitor cells, and subsequent production of a mature, aligned collagenous matrix. Finally, the review offers a perspective on clinical translation of tendon FRHCs and outlines key directions for future work.

4.
Gels ; 10(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38920905

RESUMO

The UV-B component of sunlight damages the DNA in skin cells, which can lead to skin cancer and premature aging. Therefore, it is necessary to use creams that also contain UV-active substances. Many sunscreens contain titanium dioxide due to its capacity to absorb UV-B wavelengths. In the present study, titan dioxide was introduced in alginate and chitosan-alginate hydrogel composites that are often involved as scaffold compositions in tissue engineering applications. Alginate and chitosan were chosen due to their important role in skin regeneration and skin protection. The composites were cross-linked with calcium ions and investigated using FT-IR, Raman, and UV-Vis spectroscopy. The stability of the obtained samples under solar irradiation for skin protection and regeneration was analyzed. Then, the hydrogel composites were assayed in vitro by immersing them in simulated body fluid and exposing them to solar simulator radiation for 10 min. The samples were found to be stable under solar light, and a thin apatite layer covered the surface of the sample with the two biopolymers and titanium dioxide. The in vitro cell viability assay suggested that the anatase phase in alginate and chitosan-alginate hydrogel composites have a positive impact.

5.
J Hazard Mater ; 467: 133654, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38341894

RESUMO

Self-propelled micro/nanomotors have attracted great attention for environmental remediation, however, their use for radioactive waste detection and removal has not been addressed. Engineered micromotors that are able to combine fast detection and highly adsorptive capability are promising tools for radioactive waste management but remain challenging. Herein, we design self-propelled micromotors based on zeolite imidazolate framework (ZIF-8)-hydrogel composites via inverse emulsion polymerization and show their potential for efficient uranium detection and removal. The incorporation of magnetic ferroferric oxide nanoparticles enables the magnetic recycling and actuation of the single micromotors as well as formation of swarms of worm-like or tank-treading structure. Benefited from the enhanced motion, the micromotors show fast and high-capacity uranium adsorption (747.3 mg g-1), as well as fast uranium detection based on fluorescence quenching. DFT calculation confirms the strong binding between carboxyl groups and uranyl ions. The combination of poly(acrylic acid-co-acrylamide) with ZIF-8 greatly enhances the fluorescence of the micromotor, facilitating the high-resolution fluorescence detection. A low detection limit of 250 ppb is reached by the micromotors. Such self-propelled micromotors provide a new strategy for the design of smart materials in remediation of radioactive wastewater.

6.
ACS Appl Bio Mater ; 7(1): 168-181, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38109842

RESUMO

Reconstruction of critical sized bone defects in the oral and maxillofacial region continues to be clinically challenging despite the significant development of osteo-regenerative materials. Among 3D biomaterials, hydrogels and hydrogel composites have been explored for bone regeneration, however, their inferior clinical performance in comparison to autografts is mainly attributed to variable rates of degradation and lack of vascularization. In this study, we report hydrogel composite magnetic scaffolds formed from calcium carbonate, poly(vinyl alcohol) (PVA), and magnetic nanoparticles (MNPs), using PVA as matrix and calcium carbonate particles in vaterite phase as filler, to enhance the cross-linking of matrix and porosity with MNPs that can target and regulate cell signaling pathways to control cell behavior and improve the osteogenic and angiogenic potential. The physical and mechanical properties were evaluated, and cytocompatibility was investigated by culturing human osteoblast-like cells onto the scaffolds. The vaterite phase due to its higher solubility in comparison to calcium phosphates, combined with the freezing-thawing process of PVA, yielded porous scaffolds that exhibited adequate thermal stability, favorable water-absorbing capacity, excellent mineralization ability, and cytocompatibility. An increasing concentration from 1, 3, and 6 wt % MNPs in the scaffolds showed a statistically significant increase in compressive strength and modulus of the dry specimens that exhibited brittle fracture. However, the hydrated specimens were compressible and showed a slight decrease in compressive strength with 6% MNPs, although this value was higher compared to that of the scaffolds with no MNPs.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Humanos , Hidrogéis , Carbonato de Cálcio , Fenômenos Magnéticos
7.
Gels ; 9(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38131926

RESUMO

The photoantibacterial properties of titania nanoparticles (TiO2NPs) are attracting much interest, but the separation of their suspension limits their application. In this study, the encapsulation of commercial TiO2NPs within self-assembling tripeptide hydrogels to form hgel-TiO2NP composites with significant photoantibacterial properties is reported. The Fmoc-Phe3 hydrogelator was synthesized via an enzymatic method. The resulting composite was characterized with DLS, ζ-potential, SAXS, FESEM-EDS and rheological measurements. Two different concentrations of TiO2NPs were used. The results showed that, by increasing the TiO2NP quantity from 5 to 10 mg, the value of the elastic modulus doubled, while the swelling ratio decreased from 63.6 to 45.5%. The antimicrobial efficacy of hgel-TiO2NPs was tested against a laboratory Staphylococcus aureus (S. aureus) strain and two methicillin-resistant S. aureus (MRSA) clinical isolates. Results highlighted a concentration-dependent superior antibacterial activity of hgel-TiO2NPs over TiO2NPs in the dark and after UV photoactivation. Notably, UV light exposure substantially increased the biocidal action of hgel-TiO2NPs compared to TiO2NPs. Surprisingly, in the absence of UV light, both composites significantly increased S. aureus growth relative to control groups. These findings support the role of hgel-TiO2NPs as promising biocidal agents in clinical and sanitation contexts. However, they also signal concerns about TiO2NP exposure influencing S. aureus virulence.

8.
Gels ; 9(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37999004

RESUMO

Cultivated meat is a nascent technology that aims to create an environmentally and animal-friendly alternative to conventional meat. Producing skeletal muscle tissue in an animal-free system allowing for high levels of myofusion and maturation is important for the nutritional and sensorial value of cultivated meat. Alginate is an attractive biomaterial to support muscle formation as it is food-safe, sustainable and cheap and can be crosslinked using non-toxic methods. Although alginate can be functionalized to promote cell attachment, limitations in its mechanical properties, including form, viscosity, and stress relaxation, hinder the cellular capacity for myogenic differentiation and maturation in alginate-based hydrogels. Here, we show that the addition of electrospun short-stranded zein fibers increased hydrogel degradation, resulting in faster compaction, improved cell-gel interaction, and enhanced alignment of bovine muscle precursor cells. We conclude that fiber-hydrogel composites are a promising approach to support optimal formation of 3D constructs, by improving tissue stability and thus prolonging culture duration. Together, this improves muscle-related protein content by facilitating myogenic differentiation and priming muscle organoids for maturation.

9.
Biomed Mater ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37918000

RESUMO

Liquid metals (LMs) and hydrogels each represent advanced frontiers in emerging biomaterials and biomedicine. In particular, LMs, which possess liquid and metallic properties at normal temperature and pressure, are a new type of conductive material that has gained increasing attention. When integrated into hydrogel polymers, LMs act exceptionally as an "active" filler and/or responsive element. The presence of LMs in these composites endows the liquid metal hydrogel composites (LMHGs) with intriguing properties such as self-healing, flexibility, responsiveness, and thermal and electrical conductivity. These properties significantly broaden their applications in various fields. This review introduces the featured performances of LMs, as well as emphatically summarizes advanced biomedical applications of LMHGs involving medical electronics, biomedical engineering, and soft electronics actuators. The present opportunities and challenges associated with the biological applications of LMHGs are also discussed. .

10.
ACS Nano ; 17(21): 20939-20948, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37906739

RESUMO

We reveal the mechanism for the strong reinforcement of attractive nanofiller-hydrogel composites. Measuring the linear viscoelastic properties of hydrogels containing filler nanoparticles, we show that a significant increase of the modulus can be achieved at unexpectedly low volume fractions of nanofillers when the filler-hydrogel interactions are attractive. Using three-dimensional numerical simulations, we identify a general microscopic mechanism for the reinforcement, common to hydrogel matrices of different compositions and concentrations and containing nanofillers of varying sizes. The attractive interactions induce a local increase in the gel density around the nanofillers. The effective fillers, composed of the nanofillers and the densified regions around them, assemble into a percolated network, which constrains the gel displacement and enhances the stress coupling throughout the system. A global reinforcement of the composite is induced as the stresses become strongly coupled. This physical mechanism of reinforcement, which relies only on attractive filler-matrix interactions, provides design strategies for versatile composites that combine low nanofiller fractions with an enhanced mechanical strength.

11.
Gels ; 9(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37623076

RESUMO

In this study, we present the synthesis of a novel peptide-based magnetogel obtained through the encapsulation of γ-Fe2O3-polyacrylic acid (PAA) nanoparticles (γ-Fe2O3NPs) into a hydrogel matrix, used for enhancing the ability of the hydrogel to remove Cr(III), Co(II), and Ni(II) pollutants from water. Fmoc-Phe (Fluorenylmethoxycarbonyl-Phenylalanine) and diphenylalanine (Phe2) were used as starting reagents for the hydrogelator (Fmoc-Phe3) synthesis via an enzymatic method. The PAA-coated magnetic nanoparticles were synthesized in a separate step, using the co-precipitation method, and encapsulated into the peptide-based hydrogel. The resulting organic/inorganic hybrid system (γ-Fe2O3NPs-peptide) was characterized with different techniques, including FT-IR, Raman, UV-Vis, DLS, ζ-potential, XPS, FESEM-EDS, swelling ability tests, and rheology. Regarding the application in heavy metals removal from aqueous solutions, the behavior of the obtained magnetogel was compared to its precursors and the effect of the magnetic field was assessed. Four different systems were studied for the separation of heavy metal ions from aqueous solutions, including (1) γ-Fe2O3NPs stabilized with PAA, (γ-Fe2O3NPs); (2) Fmoc-Phe3 hydrogel (HG); (3) γ-Fe2O3NPs embedded in peptide magnetogel (γ-Fe2O3NPs@HG); and (4) γ-Fe2O3NPs@HG in the presence of an external magnetic field. To quantify the removal efficiency of these four model systems, the UV-Vis technique was employed as a fast, cheap, and versatile method. The results demonstrate that both Fmoc-Phe3 hydrogel and γ-Fe2O3NPs peptide magnetogel can efficiently remove all the tested pollutants from water. Interestingly, due to the presence of magnetic γ-Fe2O3NPs inside the hydrogel, the removal efficiency can be enhanced by applying an external magnetic field. The proposed magnetogel represents a smart multifunctional nanosystem with improved absorption efficiency and synergic effect upon applying an external magnetic field. These results are promising for potential environmental applications of γ-Fe2O3NPs-peptide magnetogels to the removal of pollutants from aqueous media.

12.
Ecotoxicol Environ Saf ; 263: 115361, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37597289

RESUMO

Cadmium (Cd) removal from soil to reduce Cd accumulation in plants is essential for agroecology, food safety, and human health. Cd enters plants from soil and affects plant growth and development. Hydrogels can easily combine with Cd, thereby altering its bioavailability in soil. However, few studies have evaluated the effects of hydrogel on the complex phytotoxicity caused by Cd uptake in plants and the microbial community structure. Herein, a new poly (acrylic acid)-grafted starch and potassium humate composite (S/K/AA) hydrogel was added to soil to evaluate its impact on tobacco growth and the soil microenvironment. The results indicate that the addition of S/K/AA hydrogel can significantly improve the biomass, chlorophyll (Chl) content, and photosynthetic capacity of tobacco plants during Cd stress conditions, and decrease Cd concentration, probably by affecting Cd absorption through the expression of Cd absorption transporters (e.g., NRAMP5, NRAMP3, and IRT1). Moreover, the application of S/K/AA hydrogel not only reduced the accumulation of reactive oxygen species (ROS), but also reduced the antioxidant activities of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT), suggesting that S/K/AA hydrogel alleviates Cd toxicity via a non-antioxidant pathway. Notably, we further analyzed the effectiveness of the hydrogel on microbial communities in Cd-contaminated soil and found that it increased the Cd-tolerant microbial community (Arthrobacter, Massilia, Streptomyces), enhancing the remediation ability of Cd-contaminated soil and helping tobacco plants to alleviate Cd toxicity. Overall, our study provides primary insights into how S/K/AA hydrogel affects Cd bioavailability and alleviates Cd toxicity in plants.


Assuntos
Arthrobacter , Cádmio , Humanos , Cádmio/toxicidade , Disponibilidade Biológica , Nicotiana , Hidrogéis
13.
Gels ; 9(4)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37102939

RESUMO

Water scarcity is a growing global issue, particularly in areas with limited freshwater sources, urging for sustainable water management practices to insure equitable access for all people. One way to address this problem is to implement advanced methods for treating existing contaminated water to offer more clean water. Adsorption through membranes technology is an important water treatment technique, and nanocellulose (NC)-, chitosan (CS)-, and graphene (G)- based aerogels are considered good adsorbents. To estimate the efficiency of dye removal for the mentioned aerogels, we intend to use an unsupervised machine learning approach known as "Principal Component Analysis". PCA showed that the chitosan-based ones have the lowest regeneration efficiencies, along with a moderate number of regenerations. NC2, NC9, and G5 are preferred where there is high adsorption energy to the membrane, and high porosities could be tolerated, but this allows lower removal efficiencies of dye contaminants. NC3, NC5, NC6, and NC11 have high removal efficiencies even with low porosities and surface area. In brief, PCA presents a powerful tool to unravel the efficiency of aerogels towards dye removal. Hence, several conditions need to be considered when employing or even manufacturing the investigated aerogels.

14.
Front Bioeng Biotechnol ; 11: 1077490, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860881

RESUMO

Due to recalcitrant microangiopathy and chronic infection, traditional treatments do not easily produce satisfactory results for chronic diabetic ulcers. In recent years, due to the advantages of high biocompatibility and modifiability, an increasing number of hydrogel materials have been applied to the treatment of chronic wounds in diabetic patients. Research on composite hydrogels has received increasing attention since loading different components can greatly increase the ability of composite hydrogels to treat chronic diabetic wounds. This review summarizes and details a variety of newly loaded components currently used in hydrogel composites for the treatment of chronic diabetic ulcers, such as polymer/polysaccharides/organic chemicals, stem cells/exosomes/progenitor cells, chelating agents/metal ions, plant extracts, proteins (cytokines/peptides/enzymes) and nucleoside products, and medicines/drugs, to help researchers understand the characteristics of these components in the treatment of diabetic chronic wounds. This review also discusses a number of components that have not yet been applied but have the potential to be loaded into hydrogels, all of which play roles in the biomedical field and may become important loading components in the future. This review provides a "loading component shelf" for researchers of composite hydrogels and a theoretical basis for the future construction of "all-in-one" hydrogels.

15.
ACS Appl Mater Interfaces ; 15(8): 11379-11387, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36791211

RESUMO

On-skin electronic sensors are demanded for healthcare monitoring such as the continuous recording of biopotential and motion signals from patients. However, the mechanical mismatches and poor interface adhesion at the skin/sensor interfaces always cause high interfacial impedance and artifacts, frequent interfacial failure, and unexpected depletion of the device, which significantly limit the performance of the sensors. We here develop an on-skin sensor based on a conductive pressure-sensitive tape, which is assembled from supramolecular dual-cross-linked hydrogel composites. Both covalent and noncovalent cross-links in the hydrogel networks could harvest high flexibility, pressure-sensitive adhesion, and high interfacial toughness altogether, enabling a convenient "Press-N-Go" application of the sensor on human skin without additional pre/post-treatment on the skin or the senor. The high conformability and low resistivity of the tape can sustainably lower the interfacial impedance and thus improve signal quality in various measurement conditions. Our design provides a feasible path to develop interface-toughened on-skin electronics, which is desired in dynamic human-machine interfaces.


Assuntos
Dispositivos Eletrônicos Vestíveis , Humanos , Pele , Condutividade Elétrica , Impedância Elétrica , Hidrogéis
16.
Adv Biol (Weinh) ; 7(5): e2200067, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35999488

RESUMO

A heart attack results in the permanent loss of heart muscle and can lead to heart disease, which kills more than 7 million people worldwide each year. To date, outside of heart transplantation, current clinical treatments cannot regenerate lost heart muscle or restore full function to the damaged heart. There is a critical need to create engineered heart tissues with structural complexity and functional capacity needed to replace damaged heart muscle. The inextricable link between structure and function suggests that hydrogel composites hold tremendous promise as a biomaterial-guided strategy to advance heart muscle tissue engineering. Such composites provide biophysical cues and functionality as a provisional extracellular matrix that hydrogels cannot on their own. This review describes the latest advances in the characterization of these biomaterial systems and using them for heart muscle tissue engineering. The review integrates results across the field to provide new insights on critical features within hydrogel composites and perspectives on the next steps to harnessing these promising biomaterials to faithfully reproduce the complex structure and function of native heart muscle.


Assuntos
Hidrogéis , Engenharia Tecidual , Humanos , Hidrogéis/química , Engenharia Tecidual/métodos , Miocárdio , Coração , Materiais Biocompatíveis
17.
Adv Mater ; 35(14): e2209408, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36574632

RESUMO

Soft materials that exhibit compliance, programmability, and reconfigurability can have a transformative impact as electronic skin for applications in wearable electronics/soft robotics. There has been significant progress in soft conductive materials; however, achieving electrically controlled and reversible changes in conductivity and circuit connectivity remains challenging. To overcome this limitation, a soft material architecture with reconfigurable conductive networks of silver flakes embedded within a hydrogel matrix is presented. The conductive networks can be reversibly created/disconnected through various stimuli, including current, humidity, or temperature. Such stimuli affect electrical connectivity of the hydrogel by controlling its water content, which can be modulated by evaporation under ambient conditions (passive dehydration), evaporation through electrical Joule heating (active dehydration), or absorption of additional water (rehydration). The resulting change in electrical conductivity is reversible and repeatable, endowing the composite with on-demand reconfigurable conductivity. To highlight this material's unique properties, it is shown that conductive traces can be reconfigured after severe damage and revert to lower conductivity after rehydration. Additionally, a quadruped robot is demonstrated that can respond to stimuli by changing direction following exposure to excess water, thereby achieving reprogrammable locomotion behaviors.

18.
J Dairy Res ; 90(4): 376-381, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38186216

RESUMO

This research paper presents the development and evaluation of pioneering nanocomposites (NCs) based on the combination of k-carrageenan and linseed mucilage. When loaded with macela extract nanoemulsion they present an innovative approach for the sustained release of antimicrobial herbal constituents, specifically tailored for bovine mastitis treatment. The NCs, encompassing various ratios of k-carrageenan and linseed mucilage polymers (8:2, 7:3, and 5:5 w/w) with 1.25 mg of macela extract/g of gel, underwent in vitro assessment, emphasizing viscosity, degradation speed, release of herbal actives from macela nanoemulsion and antimicrobial activity. The NCs exhibited thermoreversible characteristics, transitioning from liquid at 60°C to a gel at 25°C. NCs allowed a gradual release of phenolic compounds, reaching approximately 80% of total phenolics release (w/v) within 72 h. NCs inhibited the growth of MRSA (ATCC 33592) until 8 h of incubation. No toxic effect in vitro of NCs was found on MAC-T cells. Thus, the developed materials are relevant for the treatment of bovine mastitis, especially in the dry period, and the data support future evaluations in vivo.


Assuntos
Achyrocline , Anti-Infecciosos , Doenças dos Bovinos , Linho , Mastite Bovina , Nanocompostos , Feminino , Bovinos , Animais , Carragenina , Mastite Bovina/tratamento farmacológico , Óleo de Semente do Linho , Extratos Vegetais/farmacologia
19.
Gels ; 8(11)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36354608

RESUMO

The present paper investigated the synthesis of peptide-based hydrogel composites containing photo-generated silver nanoparticles (AgNPs) obtained in the presence and absence of honey as tensile strength enhancer and hydrogel stabilizer. Fmoc-Phe and diphenylalanine (Phe2) were used as starting reagents for the hydrogelator synthesis via an enzymatic method. In particular, we developed an in situ one-pot approach for preparing AgNPs inside peptide hydrogels using a photochemical synthesis, without any toxic reducing agents, with reaction yields up to 30%. The structure and morphology of the nanohybrids were characterized with different techniques such as FESEM, UV-Vis, DLS, SAXS and XPS. Moreover, the antibacterial activity of these hybrid biomaterials was investigated on a laboratory strain and on a clinical isolate of Staphylococcus aureus. Results demonstrated that honey increased both swelling ability and also mechanical stability of the hydrogel. Finally, a higher antibacterial effect of AgNPs in the hybrid was observed in the presence of honey. In particular, AgNPs/hgel and AgNPs/hgel-honey showed an enhanced antibacterial activity (3.12 mg/L) compared to the free form of AgNPs, alone or in combination with honey (6.25 mg/L) for both S. aureus strains.

20.
Gels ; 8(11)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36354610

RESUMO

Water pollution is caused by multiple factors, such as industrial dye wastewater. Dye-contaminated water can be treated using hydrogels as adsorbent materials. Recently, composite hydrogels containing metal oxide nanoparticles (MONPs) have been used extensively in wastewater remediation. In this study, we use a statistical and artificial intelligence method, based on principal component analysis (PCA) with different applied parameters, to evaluate the adsorption efficiency of 27 different MONP composite hydrogels for wastewater dye treatment. PCA showed that the hydrogel composites CTS@Fe3O4, PAAm/TiO2, and PEGDMA-rGO/Fe3O4@cellulose should be used in situations involving high pH, time to reach equilibrium, and adsorption capacity. However, as the composites PAAm-co-AAc/TiO2, PVPA/Fe3O4@SiO2, PMOA/ATP/Fe3O4, and PVPA/Fe3O4@SiO2, are preferred when all physical and chemical properties investigated have low magnitudes. To conclude, PCA is a strong method for highlighting the essential factors affecting hydrogel composite selection for dye-contaminated water treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA