Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ChemSusChem ; : e202400427, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39172751

RESUMO

Plastic not only brings convenience but also places a great burden on the environment. Utilizing plastic as low-cost feed-stock for producing valuable chemicals and fuels is one of the most attractive directions. Among the huge types of plastics, polyolefins (PO), especially polyethylene (PE), were the most abundant type and the most difficult to upgrade. Hydrocracking and hydrogenolysis operate at relatively low reaction temperatures which show promising applications. Herein, Iridium-based catalysts were developed and proved to be effective in PE hydrogenolysis under relatively mild conditions. A highest 92.7% percent of liquid products could be obtained under 250°C, 3 MPa of H2 in 8 hours with Ir/γ-Al2O3 catalyst. The Ir catalysts showed better selectivity for liquid products than Ru under similar conversions. The support could also affect the performance, including Lewis acid amount, surface areas, and morphology.

2.
Angew Chem Int Ed Engl ; : e202411468, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105386

RESUMO

Hydroboranes are versatile reagents in synthetic chemistry, but their synthesis relies on energy-intensive processes. Herein, we report a new method for the preparation of hydroboranes from hydrogen and the corresponding haloboranes. Triethylamine (NEt3) form with dialkylchloroboranes a Frustrated Lewis Pair (FLP) able to split H2 and afford the desired hydroborane with ammonium salts. Unreactive haloboranes were unlocked using a catalytic amount of Cy2BCl, enabling the synthesis of commonly used hydroboranes such as pinacolborane or catecholborane. The mechanisms of these reactions have been examined by DFT studies, highlighting the importance of the base selection. Finally, the system's robustness has been evaluated in one-pot B-Cl hydrogenolysis/hydroboration reactions of C=C unsaturated bonds.

3.
Environ Sci Pollut Res Int ; 31(37): 49727-49743, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39080163

RESUMO

Lignin, a vital renewable biopolymer, serves as the Earth's primary source of aromatics and carbon. Its depolymerization presents significant potential for producing phenolic fine chemicals. This study assesses promoted Ni-based bimetallic catalysts (Ni-Co/C and Ni-Cu/C) supported on activated carbon in isopropanol for lignin depolymerization, compared to monometallic counterparts. BET, SEM, EDX, and XPS analyses highlight their physicochemical properties and promotional effects, enhancing hydrogenolysis activity and hydrogen transformation. Reaction parameter exploration elucidates the influence on lignin depolymerization, with cobalt and copper as promoters notably increasing conversion and monomer yield. Ni-Co/C exhibits the highest lignin conversion (94.2%) and maximum monomer yield (53.1 wt%) under specified conditions, with lower activation energy (36.1 kJ/mol) and higher turnover frequency (31.6 h-1) compared to Ni/C. FT-IR, GPC, GC-FID, and GC-MS analyses confirm effective depolymerization, identifying 20 monomer products. Proposed reaction mechanisms underscore the potential of Ni-based bimetallic catalysts for lignin valorization, offering insights into developing efficient catalytic systems for lignin hydrogenolysis. This research enhances understanding and facilitates the development of selective catalytic processes for lignin valorization.


Assuntos
2-Propanol , Cobalto , Lignina , Níquel , Fenóis , Solventes , Lignina/química , Catálise , Níquel/química , Cobalto/química , Fenóis/química , Solventes/química , 2-Propanol/química , Cobre/química , Polimerização
4.
Proc Natl Acad Sci U S A ; 121(30): e2406133121, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39008674

RESUMO

A kinetic/mechanistic investigation of gaseous propane hydrogenolysis over the single-site heterogeneous polyolefin depolymerization catalysts AlS/ZrNp2 and AlS/HfNp2 (AlS = sulfated alumina, Np = neopentyl), is use to probe intrinsic catalyst properties without the complexities introduced by time- and viscosity-dependent polymer medium effects. In a polymer-free automated plug-flow catalytic reactor, propane hydrogenolysis turnover frequencies approach 3,000 h-1 at 150 °C. Both catalysts exhibit approximately linear relationships between rate and [H2] at substoichiometric [H2] with rate law orders of 0.66 ± 0.09 and 0.48 ± 0.07 for Hf and Zr, respectively; at higher [H2], the rates approach zero-order in [H2]. Reaction orders in [C3H8] and [catalyst] are essentially zero-order under all conditions, with the former implying rapid, irreversible alkane binding/activation. This rate law, activation parameter, and DFT energy span analysis support a scenario in which [H2] is pivotal in one of two plausible and competing rate-determining transition states-bimolecular metal-alkyl bond hydrogenolysis vs. unimolecular ß-alkyl elimination. The Zr and Hf catalyst activation parameters, ΔH‡ = 16.8 ± 0.2 kcal mol-1 and 18.2 ± 0.6 kcal mol-1, respectively, track the relative turnover frequencies, while ΔS‡ = -19.1 ± 0.8 and -16.7 ± 1.4 cal mol-1 K-1, respectively, imply highly organized transition states. These catalysts maintain activity up to 200 °C, while time-on-stream data indicate multiday activities with an extrapolated turnover number ~92,000 at 150 °C for the Zr catalyst. This methodology is attractive for depolymerization catalyst discovery and process optimization.

5.
Angew Chem Int Ed Engl ; : e202407750, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899860

RESUMO

The cleavage of C-O bonds is one of the most promising strategies for lignin-to-chemicals conversion, which has attracted considerable attention in recent years. However, current catalytic system capable of selectively breaking C-O bonds in lignin often requires a precious metal catalyst and/or harsh conditions such as high-pressure H2 and elevated temperatures. Herein, we report a novel protocol of paired electrolysis to effectively cleave the Cß-O-4 bond of lignin model compounds and real lignin at room temperature and ambient pressure. For the first time, "cathodic hydrogenolysis of Cß-O-4 linkage" and "anodic C-H/N-H cross-coupling reaction" are paired in an undivided cell, thus the cleavage of C-O bonds and the synthesis of valuable triarylamine derivatives could be simultaneously achieved in an energy-effective manner. This protocol features mild reaction conditions, high atom economy, remarkable yield with excellent chemoselectivity, and feasibility for large-scale synthesis. Mechanistic studies indicate that indirect H* (chemical absorbed hydrogen) reduction instead of direct electron transfer might be the pathway for the cathodic hydrogenolysis of Cß-O-4 linkage.

6.
ChemSusChem ; : e202401017, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38924639

RESUMO

2, 5-Dimethylfuran (DMF), which is a promising new-generation liquid biofuel, has attracted widespread attention owing to the sustainability of biomass-derived energy sources. In this study, a highly dispersed zirconia-supported nickel catalyst (CA-Ni/ZrO2) was prepared via citric acid-assisted wetness impregnation for the selective hydrogenolysis of 5-hydroxymethylfurfural (HMF) to produce DMF. The characterization results confirmed the presence of Zr3+ species in the mesoporous CA-Ni/ZrO2 catalyst and the formation of oxygen vacancies during its preparation, which led to the formation of a large number of catalytically active sites for the adsorption and activation of the C=O/C-O groups. Under appropriate reaction parameters, an excellent DMF selectivity of 99.1 % and an HMF conversion of 98.4 % were achieved. A suitable kinetic model revealed that DMF was preferentially formed via the 2,5-dihydroxymethylfuran intermediate route, although a 5-methylfurfural route was also observed. Additionally, the interaction between Ni and ZrO2 significantly affected the stability of the catalyst. This study will provide guidelines for optimizing the catalytic conversion of furan derivatives over heterogeneous catalysts.

7.
Bioresour Technol ; 403: 130858, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38777229

RESUMO

Pentanediols are substances with significant market potential as the key monomers for advanced polymeric materials. In this study, we successfully achieved directly hydrogenolysis of biomass-based furfural to 1,5-pentanediol with a remarkable yield of 53.4 % using Cu-modified cobalt supported on cerium dioxide catalysts. Through comprehensive characterization techniques, including H2-TPR, NH3-TPD, XPS, EPR and Raman analysis, the study revealed that the introduction of Cu altered the dispersion of Co species, attenuated the interaction between Co species and cerium dioxide, enhanced its reduction extent, and fostered the formation of plentiful cobalt oxide species and oxygen vacancies on the catalyst's surface. The cooperative influence of Cu and Co heightened the selectivity of the hydrogenolysis reaction. This work provides a novel strategy for the development of greener and more efficient catalytic processes based on non-precious metals that for the selective conversion of biomass-derived furfural to high-value pentanediols.


Assuntos
Cobalto , Cobre , Furaldeído , Cobalto/química , Catálise , Cobre/química , Furaldeído/química , Cério/química , Glicóis/química , Biomassa
8.
Chemistry ; 30(42): e202401262, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38777793

RESUMO

Cationic half-sandwich zinc complexes containing chelating amines [Cp*Zn(Ln)][BAr4 F] (2 a, Cp*=η3-C5Me5, Ln=N,N,N',N'-tetramethylethylenediamine, TMEDA; 2 b, Ln=N,N,N',N'-tetraethylethylenediamine, TEEDA; 2 c, Cp*=η1-C5Me5, Ln=N,N,N',N'',N''-pentamethyldiethylenetriamine, PMDTA; Ar4 F=(3,5-(CF3)2C6H3)4) reacted with dihydrogen (ca. 2 bar) in THF at 80 °C to give molecular zinc hydride cations [(Ln)ZnH(thf)m][BAr4 F] (3 a,b, m=1; 3 c, m=0) previously reported along with Cp*H. Pseudo first-order kinetics with respect to the concentration of 2 b suggests heterolytic cleavage of dihydrogen by the Zn-Cp* bond, reminiscent of σ-bond metathesis. Hydrogenolysis of the zinc cation 2 b in the presence of benzophenone gave the zinc alkoxide [(TEEDA)Zn(OCHPh2)(thf)][BAr4 F] (5 b). Cation 2 b was shown to catalytically hydrogenate N-benzylideneaniline. The PMDTA complex 2 c underwent C-H bond activation in acetonitrile to give a dinuclear µ-κC,κN-cyanomethyl zinc complex [(PMDTA)Zn(CH2CN)]2[BAr4 F]2 (6 c).

9.
ChemSusChem ; : e202400238, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609332

RESUMO

The hydrogenolysis of polymers is emerging as a promising approach to deconstruct plastic waste into valuable chemicals. Yet, the complexity of plastic waste, including multilayer packaging, is a significant barrier to handling realistic waste streams. Herein, we reveal fundamental insights into a new chemical route for transforming a previously unaddressed fraction of plastic waste - poly(ethylene-co-vinyl alcohol) (EVOH) and related polymer blends - into alkane products. We report that Ru/ZrO2 is active for the concurrent hydrogenolysis, hydrogenation, and hydrodeoxygenation of EVOH and its thermal degradation products into alkanes (C1-C35) and water. Detailed reaction data, product analysis, and catalyst characterization reveal that the in-situ thermal degradation of EVOH forms aromatic intermediates that are detrimental to catalytic activity. Increased hydrogen pressure promotes hydrogenation of these aromatics, preventing catalyst deactivation and improving alkane product yields. Calculated apparent rates of C-C scission reveal that the hydrogenolysis of EVOH is slower than low-density polyethylene. We apply these findings to achieve hydrogenolysis of EVOH/polyethylene blends and elucidate the sensitivity of hydrogenolysis catalysts to such blends. Overall, we demonstrate progress towards efficient catalytic processes for the hydroconversion of waste multilayer film plastic packaging into valuable products.

10.
Int J Biol Macromol ; 267(Pt 2): 131538, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38621572

RESUMO

Lignin is continuously investigated by various techniques for valorization due to its high content of oxygen-containing functional groups. Catalytic systems employing hydrolysis­hydrogenolysis, leveraging the synergistic effect of redox metal sites and acid sites, exhibit efficient degradation of lignin. The predominance of either hydrolysis or hydrogenolysis reactions hinges upon the relative activity of acid and metal sites, as well as the intensity of the reductive atmosphere. In this study, the Pd-MoOx/TiO2 catalyst was found to primarily catalyze hydrolysis in the lignin depolymerization process, attributed to the abundance of moderate acidic sites on Pd and the redox-assisted catalysis of MoOx under inert conditions. After subjecting the reaction to 240 °C for 30 h, a yield of 48.22 wt% of total phenolic monomers, with 5.90 wt% consisting of diphenols, was achieved. Investigation into the conversion of 4-propylguaiacol (4-PG), a major depolymerized monomer of corncob lignin, revealed the production of ketone intermediates, a phenomenon closely linked to the unique properties of MoOx. Dehydrogenation of the propyl is a key step in initiating the reaction, and 4-PG could be almost completely transformed, accompanied by an over 97 % of 4-propylcatechol selectivity. This distinctive system lays a new theoretical groundwork for the eco-friendly valorization of lignin.


Assuntos
Lignina , Paládio , Titânio , Lignina/química , Hidrólise , Catálise , Titânio/química , Paládio/química , Hidrogênio/química , Molibdênio/química , Oxirredução , Óxidos/química
11.
ACS Nano ; 18(17): 11438-11448, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38627232

RESUMO

Hydro-depolymerization presents a promising avenue for transforming plastic waste into high-value hydrocarbons, offering significant potential for value-added recycling. However, a major challenge in this method arises from kinetic limitations due to insufficient hydrogen concentration near the active sites, requiring optimal catalytic performance only at higher hydrogen pressures. In this study, we address this hurdle by developing "hydrogen bubble catalysts" featuring Ru nanoparticles within mesoporous SBA-15 channels (Ru/SBA). The distinctive feature of Ru/SBA catalysts lies in their capacity for physical hydrogen storage and chemically reversible hydrogen spillover, ensuring a timely and ample hydrogen supply. Under identical reaction conditions, the catalytic activity of Ru/SBA surpassed that of Ru/SiO2 (no hydrogen storage capacity) by over 4-fold. This substantial enhancement in catalytic performance provides significant opportunities for near atmospheric pressure hydro-depolymerization of plastic waste.

12.
Int J Biol Macromol ; 265(Pt 2): 131084, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521312

RESUMO

Lignocellulosic biomass contains lignin, an aromatic and oxygenated substance and a potential method for lignin utilization is achieved through catalytic conversion into useful phenolic and aromatic monomers. The application of monometallic catalysts for lignin hydrogenolysis reaction remains one of the major reasons for the underutilization of lignin to produce valuable chemicals. Monometallic catalysts have many limitations such as limited catalytic sites for interacting with different lignin linkages, poor catalytic activity, low lignin conversion, and low product selectivity. It is due to lack of synergy with other metallic catalysts that can enhance the catalytic activity, stability, selectivity, and overall catalytic performance. To overcome these limitations, works on the application of bimetallic catalysts that can offer higher activity, selectivity, and stability have been initiated. In this review, cutting-edge insights into the catalytic hydrogenolysis of lignin, focusing on the production of phenolic and aromatic monomers using bimetallic catalysts within an internal hydrogen donor solvent are discussed. The contribution of this work lies in a critical discussion of recent reported findings, in-depth analyses of reaction mechanisms, optimal conditions, and emerging trends in lignin catalytic hydrogenolysis. The specific effects of catalytic active components on the reaction outcomes are also explored. Additionally, this review extends beyond current knowledge, offering forward-looking suggestions for utilizing lignin as a raw material in the production of valuable products across various industrial processes. This work not only consolidates existing knowledge but also introduces novel perspectives, paving the way for future advancements in lignin utilization and catalytic processes.


Assuntos
Hidrogênio , Lignina , Lignina/química , Solventes/química , Fenóis , Catálise
13.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542457

RESUMO

Biomass valorization is an essential strategy for converting organic resources into valuable energy and chemicals, contributing to the circular economy, and reducing carbon footprints. Glycerol, a byproduct of biodiesel production, can be used as a feedstock for a variety of high-value products and can contribute to reducing the carbon footprint. This study examines the impact of surface-level modifications of Mg, Cu, and Sn on Ni-Ce-Zr catalysts for the hydrogenolysis of glycerol, with in situ generated hydrogen. The aim of this approach is to enhance the efficiency and sustainability of the biomass valorization process. However, the surface modification resulted in a decrease in the global conversion of glycerol due to the reduced availability of metal sites. The study found that valuable products, such as H2 and CH4 in the gas phase, and 1,2-PG in the liquid phase, were obtained. The majority of the liquid fraction was observed, particularly for Cu- and Sn-doped catalysts, which was attributed to their increased acidity. The primary selectivity was towards the cleavage of the C-O bond. Post-reaction characterizations revealed that the primary causes of deactivation was leaching, which was reduced by the inclusion of Cu and Sn. These findings demonstrate the potential of Cu- and Sn-modified Ni-Ce-Zr catalysts to provide a sustainable pathway for converting glycerol into value-added chemicals.


Assuntos
Glicerol , Metais , Glicerol/química , Hidrogênio/química , Catálise , Biocombustíveis
14.
Adv Sci (Weinh) ; 11(22): e2310202, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38493491

RESUMO

The reductive catalytic fractionation (RCF) of lignocellulose, considering lignin valorization at design time, has demonstrated the entire utilization of all lignocellulose components; however, such processes always require catalysts based on precious metals or high-loaded nonprecious metals. Herein, the study develops an ultra-low loaded, atomically dispersed cobalt catalyst, which displays an exceptional performance in the RCF of lignocellulose. An approximately theoretical maximum yield of phenolic monomers (48.3 wt.%) from lignin is realized, rivaling precious metal catalysts. High selectivity toward 4-propyl-substituted guaiacol/syringol facilitates their purification and follows syntheses of highly adhesive polyesters. Lignin nanoparticles (LNPs) are generated by simple treatment of the obtained phenolic dimers and oligomers. RCF-resulted carbohydrate pulp are more obedient to enzymatic hydrolysis. Experimental studies on lignin model compounds reveal the concerted cleavage of Cα-O and Cß-O pathway for the rupture of ß-O-4 structure. Overall, the approach involves valorizing products derived from lignin biopolymer, providing the opportunity for the comprehensive utilization of all components within lignocellulose.

15.
Angew Chem Int Ed Engl ; 63(20): e202403092, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38415808

RESUMO

The hydrogenolysis of oxygenates such as alcohols and ethers is central to the biomass valorization and also a valuable transformation in organic synthesis. However, a mild and efficient catalyst system for the hydrogenolysis of a large variety of alcohols and ethers with various functional groups is still underdeveloped. Here, we report an aluminum metaphosphate-supported Pt nanoparticles (Pt/Al(PO3)3) for the hydrogenolysis of a wide variety of primary, secondary, and tertiary alkyl and benzylic alcohols, and dialkyl, aryl alkyl, and diaryl ethers, including biomass-derived furanic compounds, under mild conditions (0.1-1 atm of H2, as low as 70 °C). Mechanistic studies suggested that H2 induces formation of the surface Brønsted acid sites via its cleavage by supported Pt nanoparticles. Accordingly, the high efficiency and the wide applicability of the catalyst system are attributed to the activation and cleavage of C-O bonds by the hydrogen-induced Brønsted acid sites with the assistance of Lewis acidic Al sites on the catalyst surface. The high efficiency of the catalyst implies its potential application in energy-efficient biomass valorization or fine chemical synthesis.

16.
ACS Appl Mater Interfaces ; 16(9): 11361-11376, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38393744

RESUMO

Supported platinum nanoparticle catalysts are known to convert polyolefins to high-quality liquid hydrocarbons using hydrogen under relatively mild conditions. To date, few studies using platinum grafted onto various metal oxide (MxOy) supports have been undertaken to understand the role of the acidity of the oxide support in the carbon-carbon bond cleavage of polyethylene under consistent catalytic conditions. Specifically, two Pt/MxOy catalysts (MxOy = SrTiO3 and SiO2-Al2O3; Al = 3.0 wt %, target Pt loading 2 wt % Pt ∼1.5 nm), under identical catalytic polyethylene hydrogenolysis conditions (T = 300 °C, P(H2) = 170 psi, t = 24 h; Mw = ∼3,800 g/mol, Mn = ∼1,100 g/mol, D = 3.45, Nbranch/100C = 1.0), yielded a narrow distribution of hydrocarbons with molecular weights in the range of lubricants (Mw = < 600 g/mol; Mn < 400 g/mol; D = 1.5). While Pt/SrTiO3 formed saturated hydrocarbons with negligible branching, Pt/SiO2-Al2O3 formed partially unsaturated hydrocarbons (<1 mol % alkenes and ∼4 mol % alkyl aromatics) with increased branch density (Nbranch/100C = 5.5). Further investigations suggest evidence for a competitive hydrocracking mechanism occurring alongside hydrogenolysis, stemming from the increased acidity of Pt/SiO2-Al2O3 compared to Pt/SrTiO3. Additionally, the products of these polymer deconstruction reactions were found to be independent of the polyethylene feedstock, allowing the potential to upcycle polyethylenes with various properties into a value-added product.

17.
ChemSusChem ; 17(3): e202301315, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37932870

RESUMO

The successful synthesis of finely tuned Ni1.5 Sn nanoalloy phases containing ZnO catalyst with a small particle size (6.7 nm) from a mixed-metal zeolitic imidazolate framework (MM-ZIF) is investigated. The catalyst was evaluated for the efficient production of 1,2-propanediol (1,2-PDO) from crude glycerol and comprehensively characterized using several analytical techniques. Among the catalysts, 3Ni1Sn/ZnO (Ni/Sn=3/1) showed the best catalytic performance and produced the highest yield (94.2 %) of 1,2-PDO at ~100 % conversion of glycerol; it also showed low apparent activation energy (15.4 kJ/mol) and excellent stability. The results demonstrated that the synergy between Ni-Sn alloy, finely dispersed Ni metallic sites, and the Lewis acidity of SnOx species-loaded ZnO played a pivotal role in the high activity and selectivity of the catalyst. The confirmation of acetol intermediate and theoretical calculations verify the Ni1.5 Sn phases provide the least energetic pathway for the formation of 1,2-PDO selectively. The reusability of solvent for successive ZIF synthesis, along with the excellent recyclability of the ZIF-derived catalyst, enables an overall sustainable process. We believe that the present synthetic protocol that uses MM-ZIF for the conversion of various biomass-derived platform chemicals into valuable products can be applied to various nanoalloy preparations.

18.
Adv Sci (Weinh) ; 11(1): e2306693, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37964410

RESUMO

Lignin is the main component of lignocellulose and the largest source of aromatic substances on the earth. Biofuel and bio-chemicals derived from lignin can reduce the use of petroleum products. Current advances in lignin catalysis conversion have facilitated many of progress, but understanding the principles of catalyst design is critical to moving the field forward. In this review, the factors affecting the catalysts (including the type of active metal, metal particle size, acidity, pore size, the nature of the oxide supports, and the synergistic effect of the metals) are systematically reviewed based on the three most commonly used supports (carbon, oxides, and zeolites) in lignin hydrogenolysis. The catalytic performance (selectivity and yield of products) is evaluated, and the emerging catalytic mechanisms are introduced to better understand the catalyst design guidelines. Finally, based on the progress of existing studies, future directions for catalyst design in the field of lignin depolymerization are proposed.

19.
Angew Chem Int Ed Engl ; 63(11): e202317526, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38105396

RESUMO

Catalytic hydrogenolysis has the potential to convert high-density polyethylene (HDPE), which comprises about 30 % of plastic waste, into valuable alkanes. Most investigations have focused on increasing activity for lab grade HDPEs displaying low molecular weight, with limited mechanistic understanding of the product distribution. No efficient catalyst is available for consumer grades due to their lower reactivity. This study targets HDPE used in bottle caps, a waste form generated globally at a rate of approximately one million units per hour. Ultrafine ruthenium particles (1 nm) supported on titania (anatase) achieved up to 80 % conversion into light alkanes (C1 -C45 ) under mild conditions (498 K, 20 bar H2 , 4 h) and were reused for three cycles. Small ruthenium nanoparticles were critical to achieving relevant conversions, as activity sharply decreased with particle size. Selectivity commonalities and peculiarities across HDPE grades were disclosed by a reaction modelling approach applied to products. Isomerization cedes to backbone scission as the reaction progresses. Within this trend, low molecular weight favor isomerization whilst high molecular weight favor cleavage. Commercial caps obeyed this trend with decreased activity, anticipating the influence of additives in realistic processing. This study demonstrates effective hydrogenolysis of consumer grade polyethylene and provides selectivity patterns for product control.

20.
Bioengineering (Basel) ; 10(11)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38002388

RESUMO

The use of biomass-based glycerol to produce chemicals with high added value is of great significance for solving the problem of glycerol surplus and thus reducing the production cost of biodiesel. The production of 1,2-propanediol (abbreviated as 1,2-PDO) and 1,3-propanediol (abbreviated as 1,3-PDO) via the hydrogenolysis of glycerol is one of the most representative and highest-potential processes for the comprehensive utilization of biomass-based glycerol. Glycerol hydrogenolysis may include several parallel and serial reactions (involving broken C-O and C-C bonds), and therefore, the catalyst is a key factor in improving the rate of glycerol hydrogenolysis and the selectivities of the target products. Over the past 20 years, glycerol hydrogenolysis has been extensively investigated, and until now, the developments of catalysts for glycerol hydrogenolysis have been active research topics. Non-precious metals, including Cu, Ni, and Co, and some precious metals (Ru, Pd, etc.) have been used as the active components of the catalysts for the hydrogenolysis of glycerol to 1,2-PDO, while precious metals such as Pt, Rh, Ru, Pd, and Ir have been used for the catalytic conversion of glycerol to 1,3-PDO. In this article, we focus on reviewing the research progress of the catalyst systems, including Cu-based catalysts and Pt-, Ru-, and Pd-based catalysts for the hydrogenolysis of glycerol to 1,2-PDO, as well as Pt-WOx-based and Ir-ReOx-based catalysts for the hydrogenolysis of glycerol to 1,3-PDO. The influence of the properties of active components and supports, the effects of promoters and additives, and the interaction and synergic effects between active component metals and supports are also examined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA