RESUMO
The whole Hypericum patulum Thunb. plant is utilized in traditional medicine for its properties of clearing heat, detoxifying, soothing meridians, relaxing the liver, and stopping bleeding. In folk medicine, it is frequently used to treat hepatitis, colds, tonsillitis, and bruises. Phytochemical investigation of a 30% ethanol extract of the fresh ripe fruits of H. patulum has resulted in the isolation of two new pinane-type monoterpenoid glycosides 1-2, named patulumside E-F, and three new chain-shaped monoterpenoid glycosides 3-5, named patulumside G-H, J. Their structures were determined using extensive spectroscopic techniques, such as HR-ESI-MS, 1D and 2D NMR spectroscopy, and electronic circular dichroism (ECD) calculation. The anti-inflammatory activities of these compounds were evaluated in the LPS-induced RAW264.7 cells. This research represents the inaugural comprehensive phytochemical study of H. patulum, paving the way for further exploration of monoterpenoid glycosides.
Assuntos
Frutas , Glicosídeos , Hypericum , Monoterpenos , Extratos Vegetais , Hypericum/química , Glicosídeos/química , Glicosídeos/farmacologia , Glicosídeos/isolamento & purificação , Camundongos , Animais , Células RAW 264.7 , Frutas/química , Monoterpenos/química , Monoterpenos/farmacologia , Monoterpenos/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Estrutura Molecular , Lipopolissacarídeos/farmacologia , Espectroscopia de Ressonância Magnética , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificaçãoRESUMO
Tumor necrosis factor-α (TNF-α) is a promising target for inflammatory and autoimmune diseases. Spirohypertones A (1) and B (2), two unprecedented polycyclic polyprenylated acylphloroglucinols with highly rearranged skeletons, were isolated from Hypericum patulum. The structures of 1 and 2 were confirmed through comprehensive spectroscopic analysis, single-crystal X-ray diffraction and electronic circular dichroism calculations. Importantly, 2 showed remarkable TNF-α inhibitory activity, which could protect L929 cells from death induced by co-incubation with TNF-α and actinomycin D. It also demonstrated the ability to suppress the inflammatory response in HaCaT cells stimulated with TNF-α. Notably, in an imiquimod-induced psoriasis murine model, 2 restrained symptoms of epidermal hyperplasia associated with psoriasis, presenting anti-inflammatory and antiproliferative effects. This discovery positions 2 as a potent TNF-α inhibitor, providing a promising lead compound for developing an antipsoriatic agent.
RESUMO
Hyparillums A (1) and B (2), two previously unidentified polycyclic polyprenylated acylphloroglucinols (PPAPs) with intricate architectures, were isolated from Hypericum patulum Thunb. Hyparillum A was the first PPAP with eight-carbon rings based on an unprecedented 6/6/5/6/6/5/6/4 octocyclic system featuring a rare heptacyclo[10.8.1.11,10.03,8.08,21.012,19.014,17]docosane core. In contrast, hyparillum B featured a novel heptacyclic architecture (6/6/5/6/6/5/5) based on a hexacyclo[9.6.1.11,9.03,7.07,18.011,16]nonadecane motif. Furthermore, hyparillums A and B demonstrated promising inhibitory effects on the proliferation of murine splenocytes stimulated by anti-CD3/anti-CD28 monoclonal antibodies and lipopolysaccharide, exhibiting half-maximal inhibitory concentration (IC50) values ranging from 6.13 ± 0.86 to 12.69 ± 1.31 µmol·L-1.
Assuntos
Hypericum , Camundongos , Animais , Estrutura Molecular , Floroglucinol/farmacologiaRESUMO
Four new xanthone glucosides, 3-hydroxy-2-methoxyxanthone-4-O-ß-D-glucopyranoside (1), 4,8-dihydroxy-2-methoxyxanthone-3-O-ß-D-glucopyranoside (2), 2-methoxyxanthone-5-O-ß-D-glucopyranoside (3), 4-hydroxy-2-methoxyxanthone-3-O-ß-D-glucopyranoside (4), a new phenolic acid, 4,4'-dihydroxy-3,3'-imino-di-benzoic acid monomethyl ester (5), and a new isoquinoline, methyl 6-hydroxy-1-oxo-1,2,3,4-tetrahydroisoquinoline-4-carboxylate (6) were isolated from the fruit of Hypericum patulum. The structural elucidation of the isolated compounds was primarily based on HR-ESI-MS, UV, IR, 1D and 2D NMR. All compounds were evaluated for their inhibitory effect against LPS-induced NO production in RAW 264.7 cells. Compoundâ 2, 3 exhibited moderate inhibitory activity against NO production.
Assuntos
Hypericum , Hypericum/química , Frutas/química , Glucosídeos/química , Espectroscopia de Ressonância MagnéticaRESUMO
A new naphthoquinone, patulumnaphthoquinone A (1) and three new glycosides, patulumside B (2), patulumside C (3) and patulumside D (4) were isolated from the 30% ethanol extract of the fresh ripe fruits of Hypericum patulum Thunb. using column chromatography techniques. The structures of these compounds including absolute configurations were elucidated on the basis of HRESIMS, NMR spectroscopic analyses, calculated electronic circular dichroism spectra and comparison with the literatures.
RESUMO
Five new spirocyclic polycyclic polyprenylated acylphloroglucinols, Hyperpatulones C-G (1-5), were obtained from the leaves of Hypericum patulum. Their structures were characterized by the comprehensive analysis of their IR, NMR, CD spectra and HRESIMS data. All the new compounds were evaluated for the α-glycosidase inhibitory activities. Among them, compounds 3-5 showed α-glucosidase inhibitory activities, with IC50 values of 14.06-37.69 µM.
Assuntos
Inibidores de Glicosídeo Hidrolases/farmacologia , Hypericum/química , Floroglucinol/farmacologia , China , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Estrutura Molecular , Floroglucinol/isolamento & purificação , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Folhas de Planta/química , alfa-GlucosidasesRESUMO
Hypericum patulum has been used as a folk medicine for its varied therapeutic effects including antifungal, wound-healing, spasmolytic, stimulant, hypotensive activities. The water decoction is drank as tea could treat cold, infantile malnutrition. The present study aims to isolate the constituents of the plant and investigate their effects on the glucose consumption in insulin-resistant HepG2 cells, furthermore, lipid metabolism in oleic acid (OA)-treated HepG2 cells was also studied. The phytochemical investigation of the plant led to the isolation of eleven compounds, and their structures were identified by spectroscopic analysis as n-dotriacontanol (1), shikimic acid (2), 1-O-caffeoylquinic acid methyl ester (3), 5-O-caffeoylquinic acid methyl ester (4), 5-O-coumaroylquinic acid methyl ester (5), 5-O-caffeoylquinic acid butyl ester (6), quercetin-3-O-α-L-rhamnoside (7), quercetin (8), quercetin-3-O-(4×´-methoxy)-α-L-rahmnopyranosyl (9), hyperoside (10), and rutin (11). The results revealed that compounds 7, 9, and 10 could enhance glucose consumption significantly in hyperglycemia induced HepG2 cells and insulin-resistant HepG2 cells. In addition, the western blotting analysis result exhibited that compounds 7, 9, and 10 in high concentration (5 µM, H) group could dramatically upregulate the expression of PPARγ protein, and even the effect of them had no significant difference compared with that of rosiglitazone. Furthermore, compounds 9 and 10 in middle concentration (2.5 µM, M) group and H group could dramatically promote triglyceride metabolism and decrease TG content in OA-treated HepG2 cells, and even in H group, reactive oxygen species (ROS) level were significantly decreased compared with model group. PRACTICAL APPLICATIONS: Hypericum patulum is a well-known plant of the genera Hypericum for its varied preventive and therapeutic potential activities. To study the chemical constituents and their effects on glucose and lipid metabolism in vitro, we detected glucose consumption in insulin-resistant HepG2 cells, triglyceride content and reactive oxygen species level in OA-treated HepG2 cells. In addition, PPARγ protein was also detected by western blotting analysis in the study. Compounds 1, 2, 3, 5, 6, 9, 10, and 11 were isolated from the plant for the first time. Quercetin-3-O-(4"-methoxy)-α-L-rahmnopyranosyl (9) and hyperoside (10) had potential therapeutic benefit against glucose and lipid metabolic disease. Therefore, this study might have certain guiding significance for further research and development of H. patulum.
Assuntos
Hypericum , Flavonoides , Glucose , Células Hep G2 , Humanos , Ácido OleicoRESUMO
Five new 2-nor-bicyclic polyprenylated acylphloroglucinols (BPAPs), norhyperpalums A-E (1-5), three new 2,3-nor-BPAPs, norhyperpalums F-H (8-10), one new 2,3,4-nor-BPAP (13), and four known analogs (6, 7, 11 and 12) were obtained from Hypericum patulum. Their structures were confirmed by spectroscopic data, electronic circular dichroism (ECD) calculations and comparisons, quantum-chemical 13C NMR calculations with DP4 + probability analysis, the modified Mosher's method, Rh2(OCOCF3)4-induced ECD, and X-ray crystallographic data. Norhyperpalums A-E (1-5) are rare 2-nor-BPAPs bearing a 6/5/5 system based on a hexacyclic-fused 1,6-dioxaspiro[4.4]nonane core, and norhyperpalums F and G (8 and 9) exhibit an unusual 6-oxabicyclo[3.2.1]octane architecture. More significantly, compound 2 displayed pronounced cytotoxicities against hepatoma cell lines by the induction of S-phase cell cycle arrest and promotion of cell apoptosis.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Descoberta de Drogas , Hypericum/química , Floroglucinol/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Teoria da Densidade Funcional , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Floroglucinol/química , Floroglucinol/isolamento & purificação , Relação Estrutura-AtividadeRESUMO
A new prenylated benzophenone, hypatulin C (1), was isolated from the leaves of Hypericum patulum together with a biogenetically related analog, hypelodin B (2). Hypatulin C (1) had a tricyclic [4.3.1.03,7]-decane moiety substituted by four prenyl groups. The structure of 1 was elucidated by detailed spectroscopic analyses, while the absolute stereochemistries of 1 and 2 were assigned by comparison of their ECD spectra with TDDFT calculated spectra.
Assuntos
Benzofenonas/química , Hypericum/química , Estrutura Molecular , Floroglucinol/análogos & derivados , Folhas de Planta/química , Prenilação , EstereoisomerismoRESUMO
Nine new spirocyclic acylphloroglucinol derivatives, hyperpatulols A-I (1-9), were characterized from the flowers of Hypericum patulum. Their structures were elucidated by the basic analysis of the obtained spectroscopic data, and their absolute configurations were assigned by both the electronic circular dichroism (ECD) exciton chirality method and ECD calculation. The evaluation of their anti-migration effects on U2-OS human osteosarcoma cells showed that compound 4 exhibited moderate inhibitory activity in a dose-dependent manner. Further pharmacological studies revealed that 4 could regulate the expression of the proteins Vimentin and E-cadherin.