Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Ecol Evol ; 14(8): e70051, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39114161

RESUMO

Sand rice (Agriophyllum squarrosum), widely distributed in Central Arid Asia and prevalent in the sand dunes of northern China, presents a promising potential as a climate-resilient crop. The plasticity of hypocotyl growth is the key trait for sand rice to cope with wind erosion and sand burial, ensure seedling emergence, and determine plant architecture. In this study, we assessed the overall hypocotyl phenotype of six sand rice elite lines, which were collected from different regions of northern China, and selected by our group over past decade through common garden trials. Significant phenotypic variations were observed in thousand-seed weight (TSW), seedling emergence percentage, hypocotyl length and diameter, and seedling fresh weight among the lines. The elite line Aerxiang (AEX) exhibited excellent agronomic performance with superior and synchronous emergence, and high survival percentage, distinguishing itself as a prime candidate for further large-scale cultivation. Contrastingly, the lines from the arid regions showed markedly lower performance. Partial Least Squares Path Modeling (PLSPM) was used to assess the impact of seed provenance climate factors, including annual mean temperature (AMT) and annual mean precipitation (AMP), on trait variability among lines. The findings indicate a significant correlation between climate factors and hypocotyl length, highlighting the intricate adaptation of sand rice to local climate. The comprehensive understanding of the mechanisms behind phenotypic variations offers valuable insights for sand rice de novo domestication and innovative germplasm resources, and lays the foundation for ecological restoration in sandy areas.

2.
J Exp Bot ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167699

RESUMO

Light and temperature are the two most variable environmental signals, which significantly regulate plant growth and development. Plants in the natural environment usually encounter warmer temperatures during the day and cooler temperatures at night, suggesting both light and temperature are closely linked signals. Due to global warming, it has become important to understand how light and temperature signaling pathways converge, and regulate plant development. This review outlines diverse mechanisms of light and temperature perception and downstream signaling, with an emphasis on their integration and interconnection. The recent research has highlighted the regulation of thermomorphogenesis by photoreceptors and their downstream light signaling proteins under different light conditions, and circadian clock components at warm temperatures. We have made an attempt to comprehensively describe these studies and demonstrate their connection with plant developmental responses. We have also explained how gene signaling pathways of light and thermomorphogenesis, are interconnected with HSR-mediated thermotolerance, which reveals new avenues to manipulate plants for climate resilience. In addition, the role of sugars as signaling molecules between light and temperature is also highlighted. Thus, we envisage that such detailed knowledge will enhance the understanding of how plants perceive light and temperature cues simultaneously and bring about responses that help in their adaptation.

3.
Planta ; 260(2): 42, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958765

RESUMO

MAIN CONCLUSION: Ambient concentrations of atmospheric nitrogen dioxide (NO2) inhibit the binding of PIF4 to promoter regions of auxin pathway genes to suppress hypocotyl elongation in Arabidopsis. Ambient concentrations (10-50 ppb) of atmospheric nitrogen dioxide (NO2) positively regulate plant growth to the extent that organ size and shoot biomass can nearly double in various species, including Arabidopsis thaliana (Arabidopsis). However, the precise molecular mechanism underlying NO2-mediated processes in plants, and the involvement of specific molecules in these processes, remain unknown. We measured hypocotyl elongation and the transcript levels of PIF4, encoding a bHLH transcription factor, and its target genes in wild-type (WT) and various pif mutants grown in the presence or absence of 50 ppb NO2. Chromatin immunoprecipitation assays were performed to quantify binding of PIF4 to the promoter regions of its target genes. NO2 suppressed hypocotyl elongation in WT plants, but not in the pifq or pif4 mutants. NO2 suppressed the expression of target genes of PIF4, but did not affect the transcript level of the PIF4 gene itself or the level of PIF4 protein. NO2 inhibited the binding of PIF4 to the promoter regions of two of its target genes, SAUR46 and SAUR67. In conclusion, NO2 inhibits the binding of PIF4 to the promoter regions of genes involved in the auxin pathway to suppress hypocotyl elongation in Arabidopsis. Consequently, PIF4 emerges as a pivotal participant in this regulatory process. This study has further clarified the intricate regulatory mechanisms governing plant responses to environmental pollutants, thereby advancing our understanding of how plants adapt to changing atmospheric conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Regulação da Expressão Gênica de Plantas , Hipocótilo , Dióxido de Nitrogênio , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/genética , Hipocótilo/efeitos dos fármacos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Dióxido de Nitrogênio/farmacologia , Dióxido de Nitrogênio/metabolismo , Regiões Promotoras Genéticas/genética , Ácidos Indolacéticos/metabolismo , Mutação
4.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928189

RESUMO

Plants photoreceptors perceive changes in light quality and intensity and thereby regulate plant vegetative growth and reproductive development. By screening a γ irradiation-induced mutant library of the soybean (Glycine max) cultivar "Dongsheng 7", we identified Gmeny, a mutant with elongated nodes, yellowed leaves, decreased chlorophyll contents, altered photosynthetic performance, and early maturation. An analysis of bulked DNA and RNA data sampled from a population segregating for Gmeny, using the BVF-IGV pipeline established in our laboratory, identified a 10 bp deletion in the first exon of the candidate gene Glyma.02G304700. The causative mutation was verified by a variation analysis of over 500 genes in the candidate gene region and an association analysis, performed using two populations segregating for Gmeny. Glyma.02G304700 (GmHY2a) is a homolog of AtHY2a in Arabidopsis thaliana, which encodes a PΦB synthase involved in the biosynthesis of phytochrome. A transcriptome analysis of Gmeny using the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed changes in multiple functional pathways, including photosynthesis, gibberellic acid (GA) signaling, and flowering time, which may explain the observed mutant phenotypes. Further studies on the function of GmHY2a and its homologs will help us to understand its profound regulatory effects on photosynthesis, photomorphogenesis, and flowering time.


Assuntos
Éxons , Regulação da Expressão Gênica de Plantas , Glycine max , Hipocótilo , Fotossíntese , Glycine max/genética , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Fotossíntese/genética , Éxons/genética , Hipocótilo/genética , Hipocótilo/crescimento & desenvolvimento , Deleção de Sequência , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Giberelinas/metabolismo , Perfilação da Expressão Gênica , Fenótipo
5.
Biochem Biophys Res Commun ; 717: 150050, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38718571

RESUMO

Cryptochromes (CRYs) act as blue light photoreceptors to regulate various plant physiological processes including photomorphogenesis and repair of DNA double strand breaks (DSBs). ADA2b is a conserved transcription co-activator that is involved in multiple plant developmental processes. It is known that ADA2b interacts with CRYs to mediate blue light-promoted DSBs repair. Whether ADA2b may participate in CRYs-mediated photomorphogenesis is unknown. Here we show that ADA2b acts to inhibit hypocotyl elongation and hypocotyl cell elongation in blue light. We found that the SWIRM domain-containing C-terminus mediates the blue light-dependent interaction of ADA2b with CRYs in blue light. Moreover, ADA2b and CRYs act to co-regulate the expression of hypocotyl elongation-related genes in blue light. Based on previous studies and these results, we propose that ADA2b plays dual functions in blue light-mediated DNA damage repair and photomorphogenesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Hipocótilo , Luz , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Hipocótilo/efeitos da radiação , Hipocótilo/genética , Criptocromos/metabolismo , Criptocromos/genética , Reparo do DNA/efeitos da radiação , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Morfogênese/efeitos da radiação , Luz Azul
6.
Plant Commun ; 5(9): 100981, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-38816994

RESUMO

The circadian clock entrained by environmental light-dark cycles enables plants to fine-tune diurnal growth and developmental responses. Here, we show that physical interactions among evening clock components, including PSEUDO-RESPONSE REGULATOR 5 (PRR5), TIMING OF CAB EXPRESSION 1 (TOC1), and the Evening Complex (EC) component EARLY FLOWERING 3 (ELF3), define a diurnal repressive chromatin structure specifically at the PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) locus in Arabidopsis. These three clock components act interdependently as well as independently to repress nighttime hypocotyl elongation, as hypocotyl elongation rate dramatically increased specifically at nighttime in the prr5-1 toc1-21 elf3-1 mutant, concomitantly with a substantial increase in PIF4 expression. Transcriptional repression of PIF4 by ELF3, PRR5, and TOC1 is mediated by the SWI2/SNF2-RELATED (SWR1) chromatin remodeling complex, which incorporates histone H2A.Z at the PIF4 locus, facilitating robust epigenetic suppression of PIF4 during the evening. Overall, these findings demonstrate that the PRR-EC-SWR1 complex represses hypocotyl elongation at night through a distinctive chromatin domain covering PIF4 chromatin.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica de Plantas , Hipocótilo , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/genética , Hipocótilo/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cromatina/metabolismo , Cromatina/genética
7.
J Exp Bot ; 75(11): 3368-3387, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38492237

RESUMO

During the last decade, knowledge about BBX proteins has greatly increased. Genome-wide studies identified the BBX gene family in several ornamental, industry, and food crops; however, reports regarding the role of these genes as regulators of agronomically important traits are scarce. Here, by phenotyping a knockout mutant, we performed a comprehensive functional characterization of the tomato locus Solyc12g089240, hereafter called SlBBX20. The data revealed the encoded protein as a positive regulator of light signaling affecting several physiological processes during the life span of plants. Through inhibition of PHYTOCHROME INTERACTING FACTOR 4 (SlPIF4)-auxin crosstalk, SlBBX20 regulates photomorphogenesis. Later in development, it controls the balance between cell division and expansion to guarantee correct vegetative and reproductive development. In fruits, SlBBX20 is transcriptionally induced by the master transcription factor RIPENING INHIBITOR (SlRIN) and, together with ELONGATED HYPOCOTYL 5 (SlHY5), up-regulates flavonoid biosynthetic genes. Finally, SlBBX20 promotes the accumulation of steroidal glycoalkaloids and attenuates Botrytis cinerea infection. This work clearly demonstrates that BBX proteins are multilayer regulators of plant physiology because they affect not only multiple processes during plant development but they also regulate other genes at the transcriptional and post-translational levels.


Assuntos
Frutas , Proteínas de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/genética , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
8.
Plant Direct ; 8(3): e573, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38481435

RESUMO

Several closely related Myb-like activator proteins are known to have partially redundant functions within the plant circadian clock, but their specific roles are not well understood. To clarify the function of the REVEILLE 4, REVEILLE 6, and REVEILLE 8 transcriptional activators, we characterized the growth and clock phenotypes of CRISPR-Cas9-generated single, double, and triple rve mutants. We found that these genes act synergistically to regulate flowering time, redundantly to regulate leaf growth, and antagonistically to regulate hypocotyl elongation. We previously reported that increasing intensities of monochromatic blue and red light have opposite effects on the period of triple rve468 mutants. Here, we further examined light quality-specific phenotypes of rve mutants and report that rve468 mutants lack the blue light-specific increase in expression of some circadian clock genes observed in wild type. To investigate the basis of these blue light-specific circadian phenotypes, we examined RVE protein abundances and degradation rates in blue and red light and found no significant differences between these conditions. We next examined genetic interactions between RVE genes and ZEITLUPE and ELONGATED HYPOCOTYL5, two factors with blue light-specific functions in the clock. We found that the RVEs interact additively with both ZEITLUPE and ELONGATED HYPOCOTYL5 to regulate circadian period, which suggests that neither of these factors are required for the blue light-specific differences that we observed. Overall, our results suggest that the RVEs have separable functions in plant growth and circadian regulation and that they are involved in blue light-specific circadian signaling via a novel mechanism.

9.
J Exp Bot ; 75(1): 241-257, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37824096

RESUMO

TCP13 belongs to a subgroup of TCP transcription factors implicated in the shade avoidance syndrome (SAS), but its exact role remains unclear. Here, we show that TCP13 promotes the SAS-like response by enhancing hypocotyl elongation and suppressing flavonoid biosynthesis as a part of the incoherent feed-forward loop in light signaling. Shade is known to promote the SAS by activating PHYTOCHROME-INTERACTING FACTOR (PIF)-auxin signaling in plants, but we found no evidence in a transcriptome analysis that TCP13 activates PIF-auxin signaling. Instead, TCP13 mimics shade by activating the expression of a subset of shade-inducible and cell elongation-promoting SAUR genes including SAUR19, by direct targeting of their promoters. We also found that TCP13 and PIF4, a molecular proxy for shade, repress the expression of flavonoid biosynthetic genes by directly targeting both shared and distinct sets of biosynthetic gene promoters. Together, our results indicate that TCP13 promotes the SAS-like response by directly targeting a subset of shade-responsive genes without activating the PIF-auxin signaling pathway.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Hipocótilo/genética , Hipocótilo/metabolismo , Ácidos Indolacéticos/metabolismo , Luz , Fitocromo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Ann Bot ; 133(3): 447-458, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38141653

RESUMO

BACKGROUND AND AIMS: Cress seeds release allelochemicals that over-stimulate the elongation of hypocotyls of neighbouring (potentially competing) seedlings and inhibit their root growth. The hypocotyl promoter is potassium, but the root inhibitor was unidentified; its nature is investigated here. METHODS: Low-molecular-weight cress-seed exudate (LCSE) from imbibed Lepidium sativum seeds was fractionated by phase partitioning, paper chromatography, high-voltage electrophoresis and gel-permeation chromatography (on Bio-Gel P-2). Fractions, compared with pure potassium salts, were bioassayed for effects on Amaranthus caudatus seedling growth in the dark for 4 days. KEY RESULTS: The LCSE robustly promoted amaranth hypocotyl elongation and inhibited root growth. The hypocotyl inhibitor was non-volatile, hot acid stable, hydrophilic and resistant to incineration, as expected for K+. The root inhibitor(s) had similar properties but were organic (activity lost on incineration). The root inhibitor(s) remained in the aqueous phase (at pH 2.0, 6.5 and 9.0) when partitioned against butan-1-ol or toluene, and were thus hydrophilic. Activity was diminished after electrophoresis, but the remaining root inhibitors were neutral. They became undetectable after paper chromatography; therefore, they probably comprised multiple compounds, which separated from each other, in part, during fractionation. On gel-permeation chromatography, the root inhibitor co-eluted with hexoses. CONCLUSIONS: Cress-seed allelochemicals inhibiting root growth are different from the agent (K+) that over-stimulates hypocotyl elongation and the former probably comprise a mixture of small, non-volatile, hydrophilic, organic substances. Abundant components identified chromatographically and by electrophoresis in cress-seed exudate fitting this description include glucose, fructose, sucrose and galacturonic acid. However, none of these sugars co-chromatographed and co-electrophoresed with the root-inhibitory principle of LCSE, and none of them (in pure form at naturally occurring concentrations) inhibited root growth. We conclude that the root-inhibiting allelochemicals of cress-seed exudate remain unidentified.


Assuntos
Brassicaceae , Feromônios/análise , Feromônios/farmacologia , Inibidores do Crescimento/análise , Inibidores do Crescimento/farmacologia , Exsudatos e Transudatos , Plântula , Sementes/química , Verduras , Potássio
11.
Plant Cell Physiol ; 64(12): 1551-1562, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37801291

RESUMO

Folate, also known as vitamin B9, is an essential cofactor for a variety of enzymes and plays a crucial role in many biological processes. We previously reported that plastidial folate prevents starch biosynthesis triggered by the influx of sugar into non-starch-accumulating plastids, such as etioplasts, and chloroplasts under darkness; hence the loss of plastidial folate induces the accumulation of starch in plastids. To understand the molecular mechanism underlying this phenomenon, we screened our in-house chemical library and searched their derivatives to identify chemicals capable of inducing starch accumulation in etioplasts. The results revealed four chemicals, compounds #120 and #375 and their derivatives, compounds #120d and #375d, respectively. The derivative compounds induced starch accumulation in etioplasts and suppressed hypocotyl elongation in dark-grown Arabidopsis seedlings. They also inhibited the post-germinative growth of seedlings under illumination. All four chemicals contained the sulfonamide group as a consensus structure. The sulfonamide group is also found in sulfa drugs, which exhibit antifolate activity, and in sulfonylurea herbicides. Further analyses revealed that compound #375d induces starch accumulation by inhibiting folate biosynthesis. By contrast, compound #120d neither inhibited folate biosynthesis nor exhibited the herbicide activity. Protein and metabolite analyses suggest that compound #120d abrogates folate-dependent inhibition of starch accumulation in etioplasts by enhancing starch biosynthesis.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Ácido Fólico/metabolismo , Amido/metabolismo , Plastídeos/metabolismo , Plântula/metabolismo , Sulfonamidas/metabolismo
12.
Plant Direct ; 7(10): e533, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37811362

RESUMO

The functions of closely related Myb-like repressor and Myb-like activator proteins within the plant circadian oscillator have been well-studied as separate groups, but the genetic interactions between them are less clear. We hypothesized that these repressors and activators would interact additively to regulate both circadian and growth phenotypes. We used CRISPR-Cas9 to generate new mutant alleles and performed physiological and molecular characterization of plant mutants for five of these core Myb-like clock factors compared with a repressor mutant and an activator mutant. We first examined circadian clock function in plants likely null for both the repressor proteins, CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY), and the activator proteins, REVEILLE 4 (RVE4), REVEILLE (RVE6), and REVEILLE (RVE8). The rve468 triple mutant has a long period and flowers late, while cca1 lhy rve468 quintuple mutants, similarly to cca1 lhy mutants, have poor circadian rhythms and flower early. This suggests that CCA1 and LHY are epistatic to RVE4, RVE6, and RVE8 for circadian clock and flowering time function. We next examined hypocotyl elongation and rosette leaf size in these mutants. The cca1 lhy rve468 mutants have growth phenotypes intermediate between cca1 lhy and rve468 mutants, suggesting that CCA1, LHY, RVE4, RVE6, and RVE8 interact additively to regulate growth. Together, our data suggest that these five Myb-like factors interact differently in regulation of the circadian clock versus growth. More generally, the near-norm al seedling phenotypes observed in the largely arrhythmic quintuple mutant demonstrate that circadian-regulated output processes, like control of hypocotyl elongation, do not always depend upon rhythmic oscillator function.

13.
New Phytol ; 240(1): 191-206, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37537721

RESUMO

Seed germination is a vital developmental transition for the production of progeny by sexual reproduction in spermatophytes. The seed-to-seedling transition is predominately driven by hypocotyl cell elongation. However, the mechanism that underlies hypocotyl growth remains largely unknown. In this study, we characterized the actin array reorganization in embryonic hypocotyl epidermal cells. Live-cell imaging revealed a basally organized actin array formed during hypocotyl cell elongation. This polarized actin assembly is a barrel-shaped network, which comprises a backbone of longitudinally aligned actin cables and a fine actin cap linking these cables. We provide genetic evidence that the basal actin array formation requires formin-mediated actin polymerization and directional movement of actin filaments powered by myosin XIs. In fh1-1 and xi3ko mutants, actin filaments failed to reorganize into the basal actin array, and the hypocotyl cell elongation was inhibited compared with wild-type plants. Collectively, our work uncovers the molecular mechanisms for basal actin array assembly and demonstrates the connection between actin polarization and hypocotyl elongation during seed-to-seedling transition.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Plântula , Hipocótilo , Actinas , Proteínas de Arabidopsis/genética , Sementes
14.
Plant J ; 116(3): 804-822, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37522556

RESUMO

Vegetative shade causes an array of morphological changes in plants called shade avoidance syndrome, which includes hypocotyl and petiole elongation, leaf hyponasty, reduced leaf growth, early flowering and rapid senescence. Here, we show that loss-of-function mutations in HISTONE DEACETYLASE 9 (HDA9) attenuated the shade-induced hypocotyl elongation in Arabidopsis. However, the hda9 cotyledons and petioles under shade were not significantly different from those in wild-type, suggesting a specific function of HDA9 in hypocotyl elongation in response to shade. HDA9 expression levels were stable under shade and its protein was ubiquitously detected in cotyledon, hypocotyl and root. Organ-specific transcriptome analysis unraveled that shade induced a set of auxin-responsive genes, such as SMALL AUXIN UPREGULATED RNAs (SAURs) and AUXIN/INDOLE-3-ACETIC ACIDs (AUX/IAAs) and their induction was impaired in hda9-1 hypocotyls. In addition, HDA9 binding to loci of SAUR15/65, IAA5/6/19 and ACS4 was increased under shade. The genetic and organ-specific gene expression analyses further revealed that HDA9 may cooperate with PHYTOCHROME-INTERACTING FACTOR 4/7 in the regulation of shade-induced hypocotyl elongation. Furthermore, HDA9 and PIF7 proteins were found to interact together and thus it is suggested that PIF7 may recruit HDA9 to regulate the shade/auxin responsive genes in response to shade. Overall, our study unravels that HDA9 can work as one component of a hypocotyl-specific transcriptional regulatory machinery that activates the auxin response at the hypocotyl leading to the elongation of this organ under shade.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Hipocótilo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Regulação da Expressão Gênica de Plantas , Luz , Proteínas de Ligação a DNA/genética
15.
Plant Commun ; 4(5): 100597, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37002603

RESUMO

Plant growth is coordinately controlled by various environmental and hormonal signals, of which light and gibberellin (GA) signals are two critical factors with opposite effects on hypocotyl elongation. Although interactions between the light and GA signaling pathways have been studied extensively, the detailed regulatory mechanism of their direct crosstalk in hypocotyl elongation remains to be fully clarified. Previously, we reported that ABA INSENSITIVE 4 (ABI4) controls hypocotyl elongation through its regulation of cell-elongation-related genes, but whether it is also involved in GA signaling to promote hypocotyl elongation is unknown. In this study, we show that promotion of hypocotyl elongation by GA is dependent on ABI4 activation. DELLAs interact directly with ABI4 and inhibit its DNA-binding activity. In turn, ABI4 combined with ELONGATED HYPOCOTYL 5 (HY5), a key positive factor in light signaling, feedback regulates the expression of the GA2ox GA catabolism genes and thus modulates GA levels. Taken together, our results suggest that the DELLA-ABI4-HY5 module may serve as a molecular link that integrates GA and light signals to control hypocotyl elongation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Giberelinas/metabolismo , Hipocótilo/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Luz , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo
16.
Front Plant Sci ; 14: 1086879, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923127

RESUMO

Hypocotyl elongation is an important process in plant growth and development, and is under hormonal regulatory signaling pathways. In our study, exogenous 6-BA significantly inhibited Picea crassifolia hypocotyl elongation more than ethylene in the dark, indicating the existence of different regulatory strategies in conifers, therefore, the P. crassifolia transcriptome was studied to explore the responsive genes and their regulatory pathways for exogenous N6-benzyladenine (6-BA) inhibition of hypocotyl elongation using RNA-Sequencing approach. We present the first transcriptome assembly of P. crassifolia obtained from 24.38 Gb clean data. With lowly-expressed and short contigs excluded, the assembly contains roughly 130,612 unigenes with an N50 length of 1,278 bp. Differential expression analysis found 3,629 differentially expressed genes (DEGs) and found that the differential expression fold of genes was mainly concentrated between 2 and 8 (1 ≤ log2FoldChange ≤ 3). Functional annotation showed that the GO term with the highest number of enriched genes (83 unigenes) was the shoot system development (GO: 0048367) and the KEGG category, plant hormone signal transduction (ko04075), was enriched 30 unigenes. Further analysis revealed that several cytokinin dehydrogenase genes (PcCTD1, PcCTD3 and PcCTD6) catabolized cytokinins, while xyloglucan endotransglucosylase hydrolase gene (PcXTH31), WALLS ARE THIN 1-like gene (PcWAT1-1) and Small auxin-induced gene (PcSAUR15) were strongly repressed thus synergistically completing the inhibition of hypocotyl elongation in P. crassifolia. Besides, PcbHLH149, PcMYB44 and PcERF14 were predicted to be potential core TFs that may form a multi-layered regulatory network with the above proteins for the regulation of hypocotyl growth.

17.
Plant Cell Physiol ; 64(6): 646-659, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-36961744

RESUMO

Hypocotyl elongation is inhibited by light and promoted by darkness. The plant hormone abscisic acid (ABA) also inhibits hypocotyl elongation. However, details of the molecular mechanism that regulates the integrated effects of light and ABA signaling on hypocotyl elongation remain unclear. Long non-coding RNAs (lncRNAs; >200 nt) do not encode proteins but play many physiological roles in organisms. Until now, only a few lncRNAs related to hypocotyl elongation have been reported. The lncRNAs BoNR8 (272 nt) and AtR8 (259 nt), both of which are transcribed by RNA polymerase III, are homologous lncRNAs that are abundantly present in cabbage and Arabidopsis, respectively. These lncRNAs shared 77% sequence identity, and their predicted RNA secondary structures were similar; the non-conserved nucleotides in both sequences were positioned mainly in the stem-loop regions of the secondary structures. A previous study showed that BoNR8 regulated seed germination along with ABA and that AtR8 may be involved in innate immune function in Arabidopsis. Our results show that the expression levels of BoNR8 and AtR8 were differentially affected by light and ABA and that overexpression (OX) of both BoNR8 and AtR8 in Arabidopsis regulated hypocotyl elongation depending on light and ABA.. The expression levels of light-related genes PHYB, COP1, HY5 and PIF4 and ABA-related genes ABI3 and ABI5 were altered in the AtR8-OX and BoNR8-OX lines, and, in an ABI3-defective mutant, hypocotyl elongation was greatly increased under dark condition with the addition of ABA. These results indicate that BoNR8 and AtR8 regulate hypocotyl elongation together with ABI3 and key downstream light signaling genes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , RNA Longo não Codificante , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Hipocótilo/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Polimerase III/metabolismo , Regulação da Expressão Gênica de Plantas
18.
New Phytol ; 239(4): 1253-1265, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36707919

RESUMO

Light and temperature are two key environmental signals that share several molecular components that, in turn, regulate plant growth. Darkness and high ambient temperatures promote skoto- and thermomorphogenesis, including stem elongation. Heat shock proteins 90 (HSP90s) facilitate the adaptation of organisms to various adverse environmental stimuli. Here, we showed that HSP90s are required for hypocotyl elongation during both skoto- and thermomorphogenesis. When HSP90s activities are impaired by the knockdown of HSP90s expression or the application of HSP90 inhibitors, the expression levels and protein abundance of PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) markedly decreased. EARLY FLOWERING 3 (ELF3) deficiency was resistant to the inhibition of HSP90s activities. Furthermore, HSP90s interacted with and destabilized ELF3. In the CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) mutant, the changes in endogenous PIF4 and ELF3 protein levels caused by the inhibition of HSP90s activities were abolished. HSP90s enhanced the interaction between COP1 and ELF3, reduced ELF3 functional effects on PIF4 and modulated hypocotyl elongation during skoto- and thermomorphogenesis. Our results indicated that HSP90s participate in light and temperature signalling via the COP1-ELF3-PIF4 module to regulate hypocotyl growth in changing environments.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Hipocótilo/metabolismo , Fitocromo/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
19.
J Exp Bot ; 74(3): 800-816, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36453983

RESUMO

Hypocotyls undergo different morphogenesis in light and dark conditions, with cortical microtubules being reoriented in response to light to coordinate cell growth status. Kinesins are microtubule-based motor proteins that are mostly responsible for transporting organelles and vesicles, although some can also regulate microtubule organization; however, it is currently not known whether they are involved in microtubule reorientation and hypocotyl elongation. In this study, we found that ARMADILLO REPEAT KINESIN 2 (ARK2) negatively regulated the hypocotyl elongation of Arabidopsis. The hypocotyl cells of plants with the ark2 null allele were longer than those of the wild type and had relatively more transversely arranged cortical microtubules. In addition, ARK2 co-localized with cortical microtubules and facilitated the light-induced reorientation of the cortical microtubule arrays. Interestingly, the ARK2 protein is stable in the light and degraded through the 26S proteasome pathway in the dark. Furthermore, we determined that ARK2 could interact with the E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), which contributed to down-regulation of ARK2 in darkness that might benefit hypocotyl growth in the dark.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas do Domínio Armadillo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas do Domínio Armadillo/metabolismo , Hipocótilo , Cinesinas/genética , Cinesinas/metabolismo , Luz , Microtúbulos/metabolismo
20.
Mol Biol Rep ; 50(1): 31-41, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36301462

RESUMO

BACKGROUND: Plants have evolved to adapt to the ever-changing environments through various morphological changes. An organism anticipates and responds to changes in its environment via the circadian clock, an endogenous oscillator lasting approximately 24 h. The circadian clock regulates various physiological processes, such as hypocotyl elongation in Arabidopsis thaliana. Phytochrome interacting factor 4 (PIF4), a member of the bHLH protein family, plays a vital hub role in light signaling pathways and temperature-mediated growth response mechanisms. PIF4 is controlled by the circadian clock and interacts with several factors. However, the components that regulate PIF4 transcription and activity are not clearly understood. METHODS AND RESULTS: Here, we showed that the Arabidopsis thaliana GATA25 (AtGATA25) transcription factor plays a fundamental role in promoting hypocotyl elongation by positively regulating the expression of PIF4. This was confirmed to in the loss-of-function mutant of AtGATA25 via CRISPR/Cas9-mediated gene editing, which inhibits hypocotyl elongation and decreases the expression of PIF4. In contrast, the overexpression of AtGATA25 in transgenic plants resulted in increased expression of PIF4 and enhanced hypocotyl elongation. To better understand AtGATA25-mediated PIF4 transcriptional regulation, we analyzed the promoter region of the target gene PIF4 and characterized the role of GATA25 through transcriptional activation analysis. CONCLUSION: Our findings suggest a novel role of the AtGATA25 transcription factor in hypocotyl elongation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hipocótilo/genética , Sistemas CRISPR-Cas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA