Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
JBMR Plus ; 8(3): ziae007, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38505220

RESUMO

High-resolution peripheral quantitative computed tomography (HR-pQCT) has been used for in vivo 3D visualization of trabecular microstructure. Second-generation HR-pQCT (HR-pQCT II) has been shown to have good agreement with first generation HR-pQCT (HR-pQCT I). Advanced Individual Trabecula Segmentation (ITS) decomposes the trabecula network into individual plates and rods. ITS based on HR-pQCT I showed a strong correlation to ITS based on micro-computed tomography (µCT) and identified trabecular changes in metabolic bone diseases. ITS based on HR-pQCT II has new potential because of the enhanced resolution but has yet to be validated. The objective of this study was to assess the agreement between ITS based on HR-pQCT I, HR-pQCT II, and µCT to assess the capability of ITS on HR-pQCT images as a tool for studying bone structure. Freshly frozen tibia and radius bones were scanned in the distal region using HR-pQCT I at 82 µm, HR-pQCT II at 60.7 µm, and µCT at 37 µm. Images were registered, binarized, and ITS analysis was performed. Bone volume fraction (pBV/TV, rBV/TV), number density (pTb.N, rTb.N), thickness (pTb.Th, rTb.Th), and plate-to-rod (PR) ratio (pBV/rBV) of trabecular plates and rods were obtained. Paired Student's t-tests with post hoc Bonferroni analysis were used to examine the differences. Linear regression was used to determine the correlation coefficient. The HR-pQCT I parameters were different from the µCT measurements. The HR-pQCT II parameters were different from the µCT measurements except for rTb.N, and the HR-pQCT I parameters were different from the HR-pQCT II measurements except for pTb.Th. The strong correlation between HR-pQCT II and µCT microstructural analysis (R2 = 0.55-0.94) suggests that HR-pQCT II can be used to assess changes in plate and rod microstructure and that values from HR-pQCT I can be corrected.

2.
Bone ; 154: 116187, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34530172

RESUMO

BACKGROUND: Age-related trabecular microstructural deterioration and conversion from plate-like trabeculae to rod-like trabeculae occur because of unbalanced rapid remodeling. As denosumab achieves greater remodeling suppression and lower cortical porosity than alendronate, we hypothesized that denosumab might also preserve trabecular plate microstructure, bone stiffness and strength more effectively than alendronate. METHODS: In this post hoc analysis of a phase 2 study, postmenopausal women randomized to placebo (P, n = 74), denosumab (D, n = 72), or alendronate (A, n = 68). HR-pQCT scans of the distal radius and tibia were performed at baseline and Month-12 (M12). Trabecular compartment was subjected to Individual Trabecula Segmentation while finite element analysis was performed to estimate stiffness and strength. Percent change from baseline at M12 of each parameter was compared between patient groups. RESULTS: At the distal tibia, in the placebo group, plate surface area (pTb.S, -1.3%) decreased while rod bone volume fraction (rBV/TV, +4.5%) and number (rTb.N, +2.1%) increased. These changes were prevented by denosumab but persisted despite alendronate therapy (pTb.S: -1.7%; rBV/TV: +6.9%; rTb.N: +3.0%). Both treatments improved whole bone stiffness (D: +3.1%; A: +1.8%) and failure load (D: +3.0%; A: +2.2%); improvements using denosumab was significant compared to placebo (stiffness: p = 0.004; failure load: p = 0.003). At the distal radius, denosumab increased total trabecular bone volume fraction (BV/TV, +3.4%) and whole bone failure load (+4.0%), significantly different from placebo (BV/TV: p = 0.044; failure load: p = 0.046). Significantly different effects of either drug on plate and rod microstructure were not detected. CONCLUSIONS: Denosumab preserved trabecular plate microstructure. Alendronate did not. However, estimated strength did not differ between denosumab and alendronate treated groups.


Assuntos
Alendronato , Denosumab , Alendronato/farmacologia , Alendronato/uso terapêutico , Densidade Óssea , Denosumab/farmacologia , Denosumab/uso terapêutico , Feminino , Humanos , Rádio (Anatomia)/diagnóstico por imagem , Tíbia/diagnóstico por imagem
3.
J Orthop Translat ; 22: 50-57, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32440499

RESUMO

OBJECTIVE: Developmental dysplasia of the hip (DDH) is recognized as a frequent cause of secondary osteoarthritis (OA). The purpose in this study was to compare structural and biomechanical properties of subchondral trabecular bone â€‹and its relationship with cartilage damage between patients with DDH and patients with primary hip OA. METHODS: Forty-three femoral head specimens obtained from patients who underwent total hip arthroplasty [DDH, n â€‹= â€‹17; primary OA, n â€‹= â€‹16; and normal control (NC), n â€‹= â€‹10] were scanned by microcomputed tomography and analyzed by individual trabecula segmentation to obtain the microstructural types of subchondral trabecular bone. The biomechanical properties were analyzed by micro-finite element analysis, and cartilage damage was evaluated by histology. The linear regression analysis was used to indicate the association between microstructures, biomechanical property, and articular cartilage. RESULTS: The DDH group showed the lowest total bone volume fractions (BV/TV) and plate BV/TV in the three groups (p â€‹< â€‹0.05). There were also different discrepancies between the three groups in plate/rod trabecular number, plate/rod trabecular thickness, trabecular plate surface area/trabecular rod length, and junction density with different modes (plate-plate, rod-rod, and plate-rod junction density). The micro-finite element analysis, histology, and linear regression revealed that the subchondral trabecular bone in the DDH group had inferior biomechanical properties â€‹and cartilage damage of patients with DDH was more serious with different subchondral trabecular bone microstructures. CONCLUSION: Our findings detected deteriorating subchondral trabecular bone microstructures in patients with DDH. The mass and type of subchondral trabecular bone play a key role in mechanical properties in DDH, which might be related to cartilage damage. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: Our findings suggested that changes of subchondral trabecular bone play a critical role â€‹in DDH progression and that the improvement on subchondral trabecular bone may be a sensitive and promising way in treatment of DDH.

4.
J Bone Miner Res ; 33(9): 1665-1675, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29750829

RESUMO

Type 2 diabetes (T2D) patients have an increased fracture risk, which may be partly explained by compromised bone microarchitecture within the cortical bone compartment. Data on trabecular bone parameters in T2D are contradictory. By high-resolution peripheral quantitative computed tomography (HR-pQCT), trabecular microarchitecture is preserved, yet larger trabecular holes are detected in T2D by MRI and DXA-based trabecular bone scores are abnormal. To determine if there are differences in trabecular microstructure, connectivity, and alignment in postmenopausal women with T2D as compared with controls, we performed an individual trabecula segmentation (ITS) analysis on HR-pQCT scans of the distal radius and tibia in 92 women with (n = 42) and without (n = 50) T2D. Unadjusted analyses showed that T2D subjects had greater total trabecular bone volume, trabecular plate volume fraction, plate number density, plate junction density, and axial alignment at the radius and tibia, and increased plate tissue fraction, but decreased rod tissue fraction and rod length at the radius (p < 0.05 for all). After adjustments for clinical covariates, plate number density and plate junction density remained higher at the radius and tibia, whereas total trabecular bone volume was increased and trabecular rod length was decreased at the radius. These differences remained significant after adjustment for hip BMD and trabecular volumetric bone density. Notably, the increased plate-like ITS qualities were seen in those with T2D duration of <10 years, whereas ITS parameters in subjects with T2D duration ≥10 years did not differ from those of control subjects. In conclusion, postmenopausal women with early T2D had a greater plate-like and less rod-like trabecular network. This early advantage in trabecular plate quality does not explain the well-established increased fracture risk in these patients and does not persist in the later stage of T2D. © 2018 American Society for Bone and Mineral Research.


Assuntos
Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/patologia , Diabetes Mellitus Tipo 2/patologia , Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X , Absorciometria de Fóton , Fenômenos Biomecânicos , Densidade Óssea , Estudos de Casos e Controles , Estudos de Coortes , Diabetes Mellitus Tipo 2/diagnóstico por imagem , Feminino , Humanos , Pessoa de Meia-Idade , Rádio (Anatomia)/diagnóstico por imagem , Rádio (Anatomia)/patologia , Tíbia/diagnóstico por imagem , Tíbia/patologia , Fatores de Tempo
5.
J Bone Miner Res ; 33(2): 316-327, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29044705

RESUMO

Developing effective treatment for osteoarthritis (OA), a prevalent and disabling disease, has remained a challenge, primarily because of limited understanding of its pathogenesis and late diagnosis. In the subchondral bone, rapid bone loss after traumatic injuries and bone sclerosis at the advanced stage of OA are well-recognized hallmarks of the disease. Recent studies have further demonstrated the crucial contribution of subchondral bone in the development of OA. However, the microstructural basis of these bone changes has not been examined thoroughly, and the paradox of how abnormal resorption can eventually lead to bone sclerosis remains unanswered. By applying a novel microstructural analysis technique, individual trabecula segmentation (ITS), to micro-computed tomography (µCT) images of human OA knees, we have identified a drastic loss of rod-like trabeculae and thickening of plate-like trabeculae that persisted in all regions of the tibial plateau, underneath both severely damaged and still intact cartilage. The simultaneous reduction in trabecular rods and thickening of trabecular plates provide important insights to the dynamic and paradoxical subchondral bone changes observed in OA. Furthermore, using an established guinea pig model of spontaneous OA, we discovered similar trabecular rod loss and plate thickening that preceded cartilage degradation. Thus, our study suggests that rod-and-plate microstructural changes in the subchondral trabecular bone may play an important role in the development of OA and that advanced microstructural analysis techniques such as ITS are necessary in detecting these early but subtle changes. With emerging high-resolution skeletal imaging modalities such as the high-resolution peripheral quantitative computed tomography (HR-pQCT), trabecular rod loss identified by ITS could potentially be used as a marker in assessing the progression of OA in future longitudinal studies or clinical diagnosis. © 2017 American Society for Bone and Mineral Research.


Assuntos
Reabsorção Óssea/patologia , Osso Esponjoso/patologia , Osteoartrite do Joelho/patologia , Idoso , Animais , Reabsorção Óssea/diagnóstico por imagem , Osso Esponjoso/diagnóstico por imagem , Cartilagem/patologia , Feminino , Cobaias , Humanos , Masculino , Modelos Biológicos , Osteoartrite do Joelho/diagnóstico por imagem , Microtomografia por Raio-X
6.
J Bone Miner Res ; 32(5): 1100-1108, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27958659

RESUMO

Black women have lower fracture risk compared with white women, which may be partly explained by improved volumetric bone mineral density (vBMD) and bone microarchitecture primarily within the cortical bone compartment. To determine if there are differences in trabecular microstructure, connectivity, and alignment according to race/ethnicity, we performed individual trabecular segmentation (ITS) analyses on high-resolution peripheral quantitative computed tomography (HR-pQCT) scans of the distal radius and tibia in 273 peri- and postmenopausal black (n = 100) and white (n = 173) women participating in the Study of Women's Health Across the Nation in Boston. Unadjusted analyses showed that black women had greater trabecular plate volume fraction, plate thickness, plate number density, and plate surface area along with greater axial alignment of trabeculae, whereas white women had greater trabecular rod tissue fraction (p < 0.05 for all). Adjustment for clinical covariates augmented these race/ethnicity-related differences in plates and rods, such that white women had greater trabecular rod number density and rod-rod connectivity, whereas black women continued to have superior plate structural characteristics and axial alignment (p < 0.05 for all). These differences remained significant after adjustment for hip BMD and trabecular vBMD. In conclusion, black women had more plate-like trabecular morphology and higher axial alignment of trabeculae, whereas white women had more rod-like trabeculae. These differences may contribute to the improved bone strength and lower fracture risk observed in black women. © 2016 American Society for Bone and Mineral Research.


Assuntos
Negro ou Afro-Americano , Osso Esponjoso , Fraturas da Tíbia , População Branca , Adulto , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/metabolismo , Feminino , Seguimentos , Humanos , Pessoa de Meia-Idade , Fatores de Risco , Fraturas da Tíbia/diagnóstico por imagem , Fraturas da Tíbia/epidemiologia , Fraturas da Tíbia/metabolismo
7.
Osteoporos Int ; 28(2): 549-558, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27638138

RESUMO

This is a cross-sectional study to assess differences in bone quality in young Asian and Caucasian (n = 30/group) men between 25 and 35 years. We found that Asians had smaller bones, thicker and denser cortices, and more plate-like trabeculae, but stiffness did not differ between groups. INTRODUCTION: We conducted a cross-sectional study to assess differences in bone quality in young Asian and Caucasian (n = 30/group) men between 25 and 35 years. METHODS: We measured bone mineral density (BMD) at the spine, total hip (TH), femoral neck (FN), and forearm by dual energy X-ray absorptiometry (DXA), and bone geometry, density, microarchitecture, and mechanical competence at the radius and tibia by high-resolution peripheral quantitative computed tomography (HR-pQCT) with application of individual trabecula segmentation (ITS) and trabecular and whole bone finite element analysis (FEA). We measured load-to-strength ratio to account for differences in bone size and height, respectively. We used Wilcoxon rank sum and generalized linear models adjusted for height, weight, and their interaction for comparisons. RESULTS: Asians were 3.9 % shorter and weighed 6.5 % less than Caucasians. In adjusted models: by DXA, there were no significant race-based differences in areal BMD; by HR-pQCT, at the radius, Asians had smaller total and trabecular area (p = 0.003 for both), and denser (p = 0.01) and thicker (p = 0.04) cortices at the radius; by ITS, at the radius Asians, had more plate-like than rod-like trabeculae (PR ratio p = 0.01), greater plate trabecular surface (p = 0.009) and longer rod length (p = 0.002). There were no significant race-based differences in FEA or the load-to-strength ratio. CONCLUSIONS: Asians had smaller bones, thicker and denser cortices, and more plate-like trabeculae, but biomechanical estimates of bone strength did not differ between groups. Studies are needed to determine whether these differences persist later in life.


Assuntos
Povo Asiático/estatística & dados numéricos , Densidade Óssea/fisiologia , População Branca/estatística & dados numéricos , Absorciometria de Fóton/métodos , Adulto , Estudos Transversais , Colo do Fêmur/anatomia & histologia , Colo do Fêmur/diagnóstico por imagem , Colo do Fêmur/fisiologia , Análise de Elementos Finitos , Articulação do Quadril/anatomia & histologia , Articulação do Quadril/diagnóstico por imagem , Articulação do Quadril/fisiologia , Humanos , Vértebras Lombares/anatomia & histologia , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/fisiologia , Masculino , Rádio (Anatomia)/anatomia & histologia , Rádio (Anatomia)/diagnóstico por imagem , Rádio (Anatomia)/fisiologia , Tomografia Computadorizada por Raios X/métodos
8.
Bone ; 88: 39-46, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27083398

RESUMO

Postmenopausal women with vertebral fractures have abnormal bone microarchitecture at the distal radius and tibia by HR-pQCT, independent of areal BMD. However, whether trabecular plate and rod microarchitecture is altered in women with vertebral fractures is unknown. This study aims to characterize the abnormalities of trabecular plate and rod microarchitecture, cortex, and bone stiffness in postmenopausal women with vertebral fractures. HR-pQCT images of distal radius and tibia were acquired from 45 women with vertebral fractures and 45 control subjects without fractures. Trabecular and cortical compartments were separated by an automatic segmentation algorithm and subjected to individual trabecula segmentation (ITS) analysis for measuring trabecular plate and rod morphology and cortical bone evaluation for measuring cortical thickness and porosity, respectively. Whole bone and trabecular bone stiffness were estimated by finite element analysis. Fracture and control subjects did not differ according to age, race, body mass index, osteoporosis risk factors, or medication use. Women with vertebral fractures had thinner cortices, and larger trabecular area compared to the control group. By ITS analysis, fracture subjects had fewer trabecular plates, less axially aligned trabeculae and less trabecular connectivity at both the radius and the tibia. Fewer trabecular rods were observed at the radius. Whole bone stiffness and trabecular bone stiffness were 18% and 22% lower in women with vertebral fractures at the radius, and 19% and 16% lower at the tibia, compared with controls. The estimated failure load of the radius and tibia were also reduced in the fracture subjects by 13% and 14%, respectively. In summary, postmenopausal women with vertebral fractures had both trabecular and cortical microstructural deterioration at the peripheral skeleton, with a preferential loss of trabecular plates and cortical thinning. These microstructural deficits translated into lower whole bone and trabecular bone stiffness at the radius and tibia. Our results suggest that abnormalities in trabecular plate and rod microstructure may be important mechanisms of vertebral fracture in postmenopausal women.


Assuntos
Pós-Menopausa/fisiologia , Rádio (Anatomia)/patologia , Rádio (Anatomia)/fisiopatologia , Fraturas da Coluna Vertebral/fisiopatologia , Tíbia/patologia , Tíbia/fisiopatologia , Absorciometria de Fóton , Idoso , Fenômenos Biomecânicos , Densidade Óssea , Osso Esponjoso/patologia , Osso Esponjoso/fisiopatologia , Estudos de Casos e Controles , Osso Cortical/patologia , Osso Cortical/fisiopatologia , Feminino , Análise de Elementos Finitos , Humanos , Processamento de Imagem Assistida por Computador , Modelos Logísticos , Rádio (Anatomia)/diagnóstico por imagem , Fraturas da Coluna Vertebral/diagnóstico por imagem , Fraturas da Coluna Vertebral/patologia , Tíbia/diagnóstico por imagem , Tomografia Computadorizada por Raios X
9.
Osteoporos Int ; 27(8): 2497-505, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26952010

RESUMO

UNLABELLED: Young adults with cystic fibrosis have compromised plate-like trabecular microstructure, altered axial alignment of trabeculae, and reduced connectivity between trabeculae that may contribute to the reduced bone strength and increased fracture risk observed in this patient population. INTRODUCTION: The risk of fracture is increased in patients with cystic fibrosis (CF). Individual trabecular segmentation (ITS)-based morphological analysis of high-resolution peripheral quantitative computed tomography (HR-pQCT) images segments trabecular bone into individual plates and rods of different alignment and connectivity, which are important determinants of trabecular bone strength. We sought to determine whether alterations in ITS variables are present in patients with CF and may help explain their increased fracture risk. METHODS: Thirty patients with CF ages 18-40 years underwent DXA scans of the hip and spine and HR-pQCT scans of the radius and tibia with further assessment of trabecular microstructure by ITS. These CF patients were compared with 60 healthy controls matched for age (±2 years), race, and gender. RESULTS: Plate volume fraction, thickness, and density as well as plate-plate and plate-rod connectivity were reduced, and axial alignment of trabeculae was lower in subjects with CF at both the radius and the tibia (p < 0.05 for all). At the radius, adjustment for BMI eliminated most of these differences. At the tibia, however, reductions in plate volume fraction and number, axially aligned trabeculae, and plate-plate connectivity remained significant after adjustment for BMI alone and for BMI and aBMD (p < 0.05 for all). CONCLUSIONS: Young adults with CF have compromised plate-like and axially aligned trabecular morphology and reduced connectivity between trabeculae. ITS analysis provides unique information about bone integrity, and these trabecular deficits may help explain the increased fracture risk in adults with CF not accounted for by BMD and/or traditional bone microarchitecture measurements.


Assuntos
Densidade Óssea , Fibrose Cística/fisiopatologia , Rádio (Anatomia)/patologia , Tíbia/patologia , Absorciometria de Fóton , Adolescente , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Rádio (Anatomia)/diagnóstico por imagem , Tíbia/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Adulto Jovem
10.
J Bone Miner Res ; 30(9): 1641-50, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25736715

RESUMO

Trabecular bone quality includes both microstructural and intrinsic tissue mineralization properties. However, the tissue mineralization in individual trabeculae of different trabecular types and orientations has not yet been investigated. The aim of this study was to develop an individual trabecula mineralization (ITM) analysis technique to determine tissue mineral density (TMD) distributions in plate- and rod-like trabeculae, respectively, and to compare the TMD of trabeculae along various orientations in micro-computed tomography (µCT) images of trabecular bone samples from the femoral neck, greater trochanter, and proximal tibia. ITM analyses indicated that trabecular plates, on average, had significantly higher TMD than trabecular rods. In addition, the distribution of TMD in trabecular plates depended on trabecular orientation with the lowest TMD in longitudinal plates and the highest TMD in transverse plates. Conversely, there was a relatively uniform distribution of TMD among trabecular rods, with respect to trabecular orientation. Further analyses of TMD distribution revealed that trabecular plates had higher mean and peak TMD, whereas trabecular rods had a wider TMD distribution and a larger portion of low mineralized trabeculae. Comparison of apparent Young's moduli derived from micro-finite element models with and without heterogeneous TMD demonstrated that heterogeneous TMD in trabecular plates had a significant influence on the elastic mechanical property of trabecular bone. In conclusion, this study revealed differences in TMD between plate- and rod-like trabeculae and among various trabecular orientations. The observation of less mineralized longitudinal trabecular plates suggests interesting implications of these load-bearing plates in bone remodeling. The newly developed ITM analysis can be a valuable technique to assess the influence of metabolic bone diseases and their pharmaceutical treatments on not only microstructure of trabecular bone but also the microarchitectural heterogeneity of tissue mineralization.


Assuntos
Densidade Óssea , Osso e Ossos/diagnóstico por imagem , Colo do Fêmur/fisiologia , Idoso , Remodelação Óssea , Osso e Ossos/patologia , Módulo de Elasticidade , Feminino , Fêmur/diagnóstico por imagem , Fêmur/fisiologia , Colo do Fêmur/diagnóstico por imagem , Análise de Elementos Finitos , Humanos , Masculino , Pessoa de Meia-Idade , Osteoporose/diagnóstico por imagem , Osteoporose/patologia , Tíbia/diagnóstico por imagem , Tíbia/fisiologia , Microtomografia por Raio-X
11.
Bone ; 72: 71-80, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25460571

RESUMO

The microstructure of trabecular bone is usually perceived as a collection of plate-like and rod-like trabeculae, which can be determined from the emerging high-resolution skeletal imaging modalities such as micro-computed tomography (µCT) or clinical high-resolution peripheral quantitative CT (HR-pQCT) using the individual trabecula segmentation (ITS) technique. It has been shown that the ITS-based plate and rod parameters are highly correlated with elastic modulus and yield strength of human trabecular bone. In the current study, plate-rod (PR) finite element (FE) models were constructed completely based on ITS-identified individual trabecular plates and rods. We hypothesized that PR FE can accurately and efficiently predict elastic modulus and yield strength of human trabecular bone. Human trabecular bone cores from proximal tibia (PT), femoral neck (FN) and greater trochanter (GT) were scanned by µCT. Specimen-specific ITS-based PR FE models were generated for each µCT image and corresponding voxel-based FE models were also generated in comparison. Both types of specimen-specific models were subjected to nonlinear FE analysis to predict the apparent elastic modulus and yield strength using the same trabecular bone tissue properties. Then, mechanical tests were performed to experimentally measure the apparent modulus and yield strength. Strong linear correlations for both elastic modulus (r(2) = 0.97) and yield strength (r(2) = 0.96) were found between the PR FE model predictions and experimental measures, suggesting that trabecular plate and rod morphology adequately captures three-dimensional (3D) microarchitecture of human trabecular bone. In addition, the PR FE model predictions in both elastic modulus and yield strength were highly correlated with the voxel-based FE models (r(2) = 0.99, r(2) = 0.98, respectively), resulted from the original 3D images without the PR segmentation. In conclusion, the ITS-based PR models predicted accurately both elastic modulus and yield strength determined experimentally across three distinct anatomic sites. Trabecular plates and rods accurately determine elastic modulus and yield strength of human trabecular bone.


Assuntos
Osso e Ossos/patologia , Módulo de Elasticidade , Estresse Mecânico , Adulto , Idoso , Idoso de 80 Anos ou mais , Densidade Óssea , Osso e Ossos/diagnóstico por imagem , Feminino , Colo do Fêmur/diagnóstico por imagem , Análise de Elementos Finitos , Humanos , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade , Pressão , Valores de Referência , Microtomografia por Raio-X
12.
J Biomech ; 47(3): 702-8, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24360196

RESUMO

Individual trabecula segmentation (ITS) technique can decompose the trabecular bone network into individual trabecular plates and rods and is capable of quantifying the plate/rod-related microstructural characteristics of trabecular bone. This novel technique has been shown to be able to provide in-depth insights into micromechanics and failure mechanisms of human trabecular bone, as well as to distinguish the fracture status independent of area bone mineral density in clinical applications. However, the plate/rod microstructural parameters from ITS have never been correlated to experimentally determined mechanical properties of human trabecular bone. In this study, on-axis cylindrical trabecular bone samples from human proximal tibia (n=22), vertebral body (n=10), and proximal femur (n=21) were harvested, prepared, scanned using micro computed-tomography (µCT), analyzed with ITS and mechanically tested. Regression analyses showed that the plate bone volume fraction (pBV/TV) and axial bone volume fraction (aBV/TV) calculated by ITS analysis correlated the best with elastic modulus (R(2)=0.96-0.97) and yield strength (R(2)=0.95-0.96). Trabecular plate-related microstructural parameters correlated highly with elastic modulus and yield strength, while most rod-related parameters were found inversely and only moderately correlated with the mechanical properties. In addition, ITS analysis also identified that trabecular bone at human femoral neck had the highest trabecular plate-related parameters while the other sites were similar with each other in terms of plate-rod microstructure.


Assuntos
Módulo de Elasticidade/fisiologia , Colo do Fêmur/fisiologia , Coluna Vertebral/fisiologia , Tíbia/fisiologia , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos/fisiologia , Densidade Óssea/fisiologia , Força Compressiva/fisiologia , Feminino , Colo do Fêmur/diagnóstico por imagem , Colo do Fêmur/ultraestrutura , Fraturas Ósseas/diagnóstico por imagem , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Osteoporose/fisiopatologia , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/ultraestrutura , Tíbia/diagnóstico por imagem , Tíbia/ultraestrutura , Microtomografia por Raio-X/métodos
13.
Bone Res ; 1(4): 346-54, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26273512

RESUMO

Osteoporotic hip fracture is associated with significant trabecular bone loss, which is typically characterized as low bone density by dual-energy X-ray absorptiometry (DXA) and altered microstructure by micro-computed tomography (µCT). Emerging morphological analysis techniques, e.g. individual trabecula segmentation (ITS), can provide additional insights into changes in plate-like and rod-like trabeculae, two major microstructural types serving different roles in determining bone strength. Using ITS, we evaluated trabecular microstructure of intertrochanteric bone cores obtained from 23 patients undergoing hip replacement surgery for intertrochanteric fracture and 22 cadaveric controls. Micro-finite element (µFE) analyses were performed to further understand how the abnormalities seen by ITS might translate into effects on bone strength. ITS analyses revealed that, near fracture site, plate-like trabeculae were seriously depleted in fracture patients, but trabecular rod volume was maintained. Besides, decreased plate area and rod length were observed in fracture patients. Fracture patients also showed decreased elastic moduli and shear moduli of trabecular bone. These results provided evidence that in intertrochanteric hip fracture, preferential loss of plate-like trabeculae led to more rod-like microstructure and deteriorated mechanical competence adjacent to the fracture site, which increased our understanding of the biomechanical pathogenesis of hip fracture in osteoporosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA