Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 456
Filtrar
1.
Transl Lung Cancer Res ; 13(9): 2139-2161, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39430338

RESUMO

Background: Lung cancer is a globally prevailing malignancy, and the predominant histological subtype is lung adenocarcinoma (LUAD). IL-1 receptor-associated kinase 3 (IRAK3) has been identified in connection with innate immune and inflammatory response. The aim of this study is to investigate the impact of IRAK3 on prognosis and immunotherapy efficacy in LUAD, which remains incompletely elucidated. Methods: Our study delved into multiple online databases to find out expression, methylation and prognostic potentials of IRAK3 in LUAD and other malignancies. We employed tissue microarrays to assess IRAK3 protein levels in our LUAD cohort [National Cancer Center (NCC), China] and explore prognostic values. The correlations between IRAK3 and immune infiltration based on The Cancer Genome Atlas (TCGA) data were analyzed by corresponding algorithms. The contribution of IRAK3 to immunotherapy response was explored through the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm. Both LinkedOmics database and gene set enrichment analysis (GSEA) were applied to investigate how IRAK3 influences the tumor immune microenvironment and regulates immunotherapy response. We applied single-cell RNA sequencing datasets for the investigation of IRAK3 expression across diverse immune cells. Moreover, we employed genomics of drug sensitivity in cancer (GDSC) databases to examine how IRKA3 expression correlates with different drug responses. Results: Compared with normal tissues, various tumor tissues had lower IRAK3 expression which could be regulated by its high methylation level. Reduced IRAK3 protein level was observed to correlate with advanced tumor stages and unfavorable prognosis among patients with LUAD, especially individuals with lymph node metastasis. Gene set enrichment analysis (GSEA) and tumor infiltration analysis proved that IRAK3 provoked immune infiltration. Macrophages/monocytes, CD4+ T cells, CD8+ T cells and neutrophils correlated significantly with IRAK3 expression. With TIDE algorithm, IRAK3 was verified to be related to poor immune checkpoint blockade (ICB) response. IRAK3 demonstrated positive associations with T-cell dysfunction score and immune checkpoint markers. Conversely, it exhibited negative correlations with microsatellite instability (MSI) and tumor mutation burden (TMB). High IRAK3 expression exacerbated cytotoxic T lymphocyte (CTL) dysfunction and predicted immunotherapy resistance by involvement of multiple inflammation-related pathways including IL-6/JAK/STAT3 signaling, inflammatory response and interferon-gamma (IFN-γ) response pathways. Additionally, elevated IRAK3 expression was predicted to be related with better responses to chemotherapeutic and molecular targeted drugs. Conclusions: Our findings indicated that IRAK3 could function as an independent prognostic predictor and an immunotherapeutic indicator in LUAD through involvement of multiple inflammation-related pathways.

2.
Cells ; 13(20)2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39451208

RESUMO

Interleukin-1 Receptor Associated Kinase 1 (IRAK1) is a serine/threonine kinase that plays a critical role as a signaling transducer of the activated Toll-like receptor (TLR)/Interleukin-1 receptor (IL-1R) signaling pathway in both immune cells and cancer cells. Upon hyperphosphorylation by IRAK4, IRAK1 forms a complex with TRAF6, which results in the eventual activation of the NF-κB and MAPK pathways. IRAK1 can translocate to the nucleus where it phosphorylates STAT3 transcription factor, leading to enhanced IL-10 gene expression. In immune cells, activated IRAK1 coordinates innate immunity against pathogens and mediates inflammatory responses. In cancer cells, IRAK1 is frequently activated, and the activation is linked to the progression and therapeutic resistance of various types of cancers. Consequently, IRAK1 is considered a promising cancer drug target and IRAK1 inhibitors have been developed and evaluated preclinically and clinically. This is a comprehensive review that summarizes the roles of IRAK1 in regulating metastasis-related signaling pathways of importance to cancer cell proliferation, cancer stem cells, and dissemination. This review also covers the significance of IRAK1 in mediating cancer resistance to therapy and the underlying molecular mechanisms, including the evasion of apoptosis and maintenance of an inflammatory tumor microenvironment. Finally, we provide timely updates on the development of IRAK1-targeted therapy for human cancers.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Quinases Associadas a Receptores de Interleucina-1 , Metástase Neoplásica , Neoplasias , Humanos , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Quinases Associadas a Receptores de Interleucina-1/genética , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Transdução de Sinais , Animais , Pesquisa Translacional Biomédica
3.
Adv Biol Regul ; : 101055, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39406588

RESUMO

The transcription factor NF-κB plays a critical role in the control of innate and adaptive immunity and inflammation. Several recent studies have demonstrated that the mutation of different splicing factor genes, including SF3B1, SRSF2 and U2AF1, in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) result in hyperactive NF-κB signaling through the aberrant splicing of different target genes. The presence of U2AF1 and SF3B1 mutations in the bone marrow cells of MDS and AML patients induces oncogenic isoforms of the target gene IRAK4, leading to hyperactivation of NF-κB signaling and an increase in the fitness of leukemic stem and progenitor cells (LSPCs). The potent IRAK4 inhibitor CA-4948 has shown efficacy in both pre-clinical studies and MDS clinical trials, with splicing factor mutant patients showing the higher response rates. Emerging data has, however, revealed that co-targeting of IRAK4 and its paralog IRAK1 is required to maximally suppress LSPC function in vitro and in vivo by inducing cellular differentiation. These findings provide a link between the presence of the commonly mutated splicing factor genes and activation of innate immune signaling pathways in myeloid malignancies and have important implications for targeted therapy in these disorders.

4.
Biochem Biophys Res Commun ; 734: 150782, 2024 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-39378786

RESUMO

Lenvatinib resistance presents a significant challenge in the clinical management of advanced hepatocellular carcinoma (HCC). To address this issue, we established lenvatinib resistant HCC cells and performed high-throughput screening using FDA-approved anti-cancer drug library. Through quantitative selective drug sensitivity scoring (sDSS), pacritinib, a well-known JAK inhibitor, emerged as the top candidate, displaying the highest sDSS score among 219 compounds. We further demonstrated that pacritinib reduced the viability of a panel of HCC cell lines in a dose-dependent manner, while exhibiting minimal effects on normal liver cells. Interestingly, pacritinib, but not other JAK inhibitors such as ruxolitinib, upadacitinib, or filgotinib, acted synergistically with lenvatinib in HCC cells. In lenvatinib-resistant HCC cells, pacritinib significantly decreased proliferation and induced apoptosis. Rescue studies using IL-1 receptor-associated kinase 1 (IRAK1) overexpression and knockdown revealed that pacritinib's effects are mediated through IRAK1, with minimal impact on normal liver cells. In a xenograft model of lenvatinib-resistant HCC, oral administration of pacritinib significantly reduced tumor size without affecting body weight. Immunohistochemical analysis of tumor sections revealed that pacritinib reduced Ki67 staining and phosphorylated IRAK1. Our findings suggest that pacritinib may be a promising therapeutic option for the treatment of advanced HCC, particularly in patients who have developed resistance to lenvatinib.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Resistencia a Medicamentos Antineoplásicos , Ensaios de Triagem em Larga Escala , Quinases Associadas a Receptores de Interleucina-1 , Neoplasias Hepáticas , Compostos de Fenilureia , Quinolinas , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Animais , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ensaios de Triagem em Larga Escala/métodos , Camundongos Nus , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Apoptose/efeitos dos fármacos , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Hidrocarbonetos Aromáticos com Pontes
5.
Expert Opin Ther Pat ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39327780

RESUMO

BACKGROUND: It is more than two decades since IRAK4, a promising target for therapies against various medical conditions, was first reported, but no compounds targeting this enzyme are active on the market or under late-stage clinical development. So it is necessary to continue exploring new and/or improved chemotypes for IRAK4-targeting compounds, to which updated patent reviews are supposed to be of considerable contribution. AREAS COVERED: PCT patents claiming IRAK4-targeting compounds and published through 2019 to present were retrieved, screened and reviewed for the title compounds disclosed therein, where chemotype-specific strategies were adopted for the said reviewing process. Included patents featuring non-Protac compounds were described in terms of generic formulas and variable-indicated moieties of the title compounds, as well as selected title compounds and relevant prior documents. Included patents featuring Protac-based compounds were described in terms of general examples of IRAK-binding moieties and ligase-binding moieties, as well as the presence of conventional linker types. Insights were finally extracted from the patent review. EXPERT OPINION: The last five years has seen a steady increase in the number of PCT patents claiming IRAK4-targeting therapeutic compounds, with some of them being based on new chemotypes and/or discovered by new organizations as potential new players.

6.
Front Neurol ; 15: 1436997, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39346771

RESUMO

Background: Interleukin-1 receptor-associated kinase 3 (IRAK3) modulates neuroinflammation. This study aimed to determine the prognostic role of serum IRAK3 in acute intracerebral hemorrhage (ICH). Methods: In this prospective observational cohort study, 152 patients with supratentorial ICH, along with 63 healthy controls, were recruited. Serum IRAK3 levels were measured at the time of enrollment for controls, at admission for all patients, and on poststroke days 1, 3, 5, 7, 10, and 15 in a subset of 63 patients. Stroke severity was assessed using the National Institutes of Health Stroke Scale (NIHSS) and hematoma volume. Poststroke 6-month modified Rankin Scale (mRS) scores were registered, with scores of 3-6 representing a poor prognosis. Multivariate models were established to investigate severity correlation and prognosis association. Results: Serum IRAK3 levels were significantly elevated at the admission of patients, peaked at day 1, plateaued at day 3, gradually declined until day 15, and were substantially higher over the first 15 days poststroke than in controls. Admission serum IRAK3 levels were independently associated with NIHSS scores, hematoma volume, and 6-month mRS scores in a multivariate linear regression model. They were linearly correlated with the risk of poor prognosis in a restricted cubic spline analysis and were independently predictive of poor prognosis in a binary logistic regression model. Additionally, they demonstrated strong prognostic ability in the receiver operating characteristic curve analysis. Using subgroup analysis, no interactions were found between admission serum IRAK3 levels and some routine variables, such as age, gender, hypertension, and diabetes mellitus. Moreover, the model combining admission serum IRAK3, NIHSS scores, and hematoma volume demonstrated stability and clinical value in calibration and decision curve analyses. Conclusion: A significant increase in serum IRAK3 levels during the early phase after ICH, strongly correlated with disease severity, is independently associated with a poor 6-month prognosis, establishing serum IRAK3 as a valuable prognostic biomarker for ICH.

7.
Adv Exp Med Biol ; 1460: 595-627, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39287866

RESUMO

In obesity, the process of adipogenesis largely determines the number of adipocytes in body fat depots. Adipogenesis is regulated by several adipocyte-selective micro-ribonucleic acids (miRNAs) and transcription factors that modulate adipocyte proliferation and differentiation. However, some miRNAs block the expression of master regulators of adipogenesis. Since the specific miRNAs display different expressions during adipogenesis, in mature adipocytes and permanent obesity, their use as biomarkers or therapeutic targets is feasible. Upregulated miRNAs in persistent obesity are downregulated during adipogenesis. Moreover, some of the downregulated miRNAs in obese individuals are upregulated in mature adipocytes. Induction of adipocyte stress and hypertrophy leads to the release of adipocyte-derived exosomes (AdEXs) that contain the cargo molecules, miRNAs. miRNAs are important messengers for intercellular communication involved in metabolic responses and have very specific signatures that direct the metabolic activity of target cells. While each miRNA targets multiple messenger RNAs (mRNAs), which may coordinate or antagonize each other's functions, several miRNAs are dysregulated in other tissues during obesity-related comorbidities. Deletion of the miRNA-processing enzyme DICER in pro-opiomelanocortin-expressing cells results in obesity, which is characterized by hyperphagia, increased adiposity, hyperleptinemia, defective glucose metabolism, and alterations in the pituitary-adrenal axis. In recent years, RNA-based therapeutical approaches have entered clinical trials as novel therapies against overweight and its complications. Development of lipid droplets, macrophage accumulation, macrophage polarization, tumor necrosis factor receptor-associated factor 6 activity, lipolysis, lipotoxicity, and insulin resistance are effectively controlled by miRNAs. Thereby, miRNAs as epigenetic regulators are used to determine the new gene transcripts and therapeutic targets.


Assuntos
Adipogenia , Epigênese Genética , MicroRNAs , Obesidade , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade/genética , Obesidade/metabolismo , Adipogenia/genética , Animais , Adipócitos/metabolismo , Exossomos/metabolismo , Exossomos/genética , Regulação da Expressão Gênica
8.
J Cell Physiol ; : e31426, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39221900

RESUMO

Dysregulation of alternative pre-mRNA splicing plays a critical role in the progression of cancers, yet the underlying molecular mechanisms remain largely unknown. It is reported that metastasis-associated in colon cancer 1 (MACC1) is a novel prognostic and predictive marker in many types of cancers, including lung adenocarcinoma. Here, we reveal that the oncogene MACC1 specifically drives the progression of lung adenocarcinoma through its control over cancer-related splicing events. MACC1 depletion inhibits lung adenocarcinoma progression through triggering IRAK1 from its long isoform, IRAK1-L, to the shorter isoform, IRAK1-S. Mechanistically, MACC1 interacts with splicing factor HNRNPH1 to prevent the production of the short isoform of IRAK1 mRNA. Specifically, the interaction between MACC1 and HNRNPH1 relies on the involvement of MACC1's SH3 domain and HNRNPH1's GYR domain. Further, HNRNPH1 can interact with the pre-mRNA segment (comprising exon 11) of IRAK1, thereby bridging MACC1's regulation of IRAK1 splicing. Our research not only sheds light on the abnormal splicing regulation in cancer but also uncovers a hitherto unknown function of MACC1 in tumor progression, thereby presenting a novel potential therapeutic target for clinical treatment.

9.
J Nat Med ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283364

RESUMO

Previously, we reported that azamollugin, an aza-derivative of mollugin, exhibited potent inhibitory activity on NO production in LPS-stimulated RAW 264.7 cells. Further investigations in this study revealed that azamollugin not only suppressed iNOS gene expression regulated by NF-κB, but also inhibited LPS-induced IFN-ß expression, which is known to be regulated by IRF3. Azamollugin exhibited an inhibitory activity on LPS-induced IRAK1 activation, suggesting inhibitory effect on the MyD88-dependent pathway. Furthermore, azamollugin inhibited LPS-induced phosphorylation of IRF3 and its upstream factor, TBK1/IKKε, suggesting an inhibitory effect on the TRIF-dependent pathway via TLR4. In addition, azamollugin also suppressed poly(I:C)-induced phosphorylation of TBK1 and IRF3, suggesting an inhibitory effect on the TRIF-dependent pathway via TLR3. These results suggest that azamollugin has inhibitory activity against both the MyD88-dependent and TRIF-dependent pathways, respectively.

10.
Int Immunopharmacol ; 142(Pt B): 113117, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39293313

RESUMO

BACKGROUND: The main causes of abnormal white matter development (periventricular leukomalacia) in premature infants are perinatal inflammation and the consequent oxidant/antioxidant imbalance in oligodendrocyte precursor cells (OPCs); however, the underlying mechanisms remain largely unclear. In this work, a rat model of prenatal inflammation was used to examine the mechanism by which artemisinin (ART) protects against white matter dysplasia. METHODS: We established a primary OPC model and rat model of perinatal inflammation. ART was identified from the FDA-approved medicinal chemical library to be beneficial for treating OPC inflammation in model systems. Based on bioinformatics analysis of protein interactions and molecular docking analysis, we further identified the possible targets of ART and evaluated its specific effects and the underlying molecular mechanisms in vivo and in vitro. RESULTS: Following inflammatory stimulation, ART strongly promoted the maturation of OPCs and the development of white matter in the brain. A Cellular thermal shift assay (CETSA) demonstrated that interleukin-1 receptor-associated kinase-4 (IRAK-4) and interleukin-1 receptor-associated kinase-1 (IRAK-1) may be targets of ART, which was consistent with the findings from molecular modelling with Autodock software. Experiments conducted both in vivo and in vitro demonstrated the activation of the IRAK-4/IRAK-1/nuclear factor kappa-B (NF-κB) pathway and the production of inflammatory factors (IL-1ß, IL-6, and TNF-α) in OPCs were greatly suppressed in the group treated with ART compared to the lipopolysaccharide (LPS)-treated group. Moreover, ART dramatically decreased reactive oxygen species (ROS) levels in OPCs while increasing nuclear factor e2-related factor 2 (Nrf2) levels. CONCLUSION: Our findings suggest that ART can significantly reduce OPC perinatal inflammation and consequent oxidative stress. The targeted inhibition of IRAK-4 and IRAK-1 by ART may be a potential therapeutic strategy for alleviating abnormalities in white matter development in premature newborns.


Assuntos
Artemisininas , Quinases Associadas a Receptores de Interleucina-1 , Células Precursoras de Oligodendrócitos , Estresse Oxidativo , Animais , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Células Precursoras de Oligodendrócitos/metabolismo , Ratos , Feminino , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Gravidez , Humanos , Inflamação/tratamento farmacológico , Células Cultivadas , Ratos Sprague-Dawley , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Simulação de Acoplamento Molecular , Modelos Animais de Doenças , Animais Recém-Nascidos , NF-kappa B/metabolismo
11.
Acta Crystallogr D Struct Biol ; 80(Pt 9): 661-674, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39207897

RESUMO

A key prerequisite for the successful application of protein crystallography in drug discovery is to establish a robust crystallization system for a new drug-target protein fast enough to deliver crystal structures when the first inhibitors have been identified in the hit-finding campaign or, at the latest, in the subsequent hit-to-lead process. The first crucial step towards generating well folded proteins with a high likelihood of crystallizing is the identification of suitable truncation variants of the target protein. In some cases an optimal length variant alone is not sufficient to support crystallization and additional surface mutations need to be introduced to obtain suitable crystals. In this contribution, four case studies are presented in which rationally designed surface modifications were key to establishing crystallization conditions for the target proteins (the protein kinases Aurora-C, IRAK4 and BUB1, and the KRAS-SOS1 complex). The design process which led to well diffracting crystals is described and the crystal packing is analysed to understand retrospectively how the specific surface mutations promoted successful crystallization. The presented design approaches are routinely used in our team to support the establishment of robust crystallization systems which enable structure-guided inhibitor optimization for hit-to-lead and lead-optimization projects in pharmaceutical research.


Assuntos
Cristalização , Cristalização/métodos , Cristalografia por Raios X/métodos , Humanos , Descoberta de Drogas/métodos , Mutação , Modelos Moleculares , Proteínas Serina-Treonina Quinases/química
12.
Steroids ; 211: 109503, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39208922

RESUMO

Anabolic-androgenic steroids (AAS) abuse is linked to some abnormalities in several tissues including the kidney. However, the precise molecular mediators involved in AAS-induced kidney disorder remain elusive. The main objective of the present study was to investigate the effect of Nandrolone decanoate on kidney injury alone or in combination with moderate exercise and its related mechanisms. Thirty-two male Wistar rats were subdivided randomly into four groups. control (Con), Nandrolone (10 mg/kg)(N), Exercise (Exe), Nandrolone + Exercise (N+Exe). RESULTS: After 6 weeks, nandrolone treatment led to a significant increase in functional parameters such as serum cystatin c, urea, creatinine, albuminuria and Albumin/ creatinine ratio indicating kidney dysfunction. Moreover, nandrolone treatment increased vacuolization, focal inflammation, hemorragia, cast formation fibrosis in the renal tissue of rats. miRNA-146a increased in kidney tissue after nandrolone exposure by using RT-PCR which may be considered idealtheranomiRNAcandidates for diagnosis and treatment. Western blotting indicated that IRAK1, TRAF6, TNF-α, NF-κB, iNOS and TGF-ß protein expressions were considerably elevated in the kidneys of nandrolone treated rats. Moderate exercise could alleviate the renal dysfunction, histological abnormalities and aforementioned proteins. Our findings suggested that nandrolone consumption can cause damage to kidney tissue probably through miRNA-146a targeting IRAK1 and TRAF6 via activation of the NF-κB and TGF-ß pathway. These results provide future lines of research in the identification of theranoMiRNAs related to nandrolone treatment, which can be ameliorated by moderate exercise.


Assuntos
Quinases Associadas a Receptores de Interleucina-1 , MicroRNAs , NF-kappa B , Decanoato de Nandrolona , Condicionamento Físico Animal , Ratos Wistar , Fator 6 Associado a Receptor de TNF , Animais , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Ratos , Fator 6 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Quinases Associadas a Receptores de Interleucina-1/genética , Nandrolona/farmacologia , Nandrolona/efeitos adversos , Transdução de Sinais/efeitos dos fármacos , Rim/metabolismo , Rim/efeitos dos fármacos , Rim/patologia
13.
Br J Pharmacol ; 181(22): 4647-4657, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39137914

RESUMO

BACKGROUND AND PURPOSE: Toll-like receptors 4 (TLR4) and TLR7/TLR8 play an important role in mediating the inflammatory effects of bacterial and viral pathogens. Interleukin-1 receptor-associated kinase 4 (IRAK4) is an important regulator of signalling by toll-like receptor (TLR) and hence is a potential therapeutic target in diseases characterized by increased lung inflammatory signalling. EXPERIMENTAL APPROACH: We used an established murine model of acute lung inflammation, and studied human lung tissue ex vivo, to investigate the effects of inhibiting IRAK4 on lung inflammatory pathways. KEY RESULTS: We show that TLR4 stimulation produces an inflammatory response characterized by neutrophil influx and tumour necrosis factor-α (TNF-α) production in murine lungs and that these responses are markedly reduced in IRAK4 kinase-dead mice. In addition, we characterize a novel selective IRAK4 inhibitor, BI1543673, and show that this compound can reduce lipopolysaccharide (LPS)-induced airway inflammation in wild-type mice. Additionally, BI1543673 reduced inflammatory responses to both TLR4 and TLR7/8 stimulation in human lung tissue studied ex vivo. CONCLUSION AND IMPLICATIONS: These data demonstrate a key role for IRAK4 signalling in lung inflammation and suggest that IRAK4 inhibition has potential utility to treat lung diseases characterized by inflammatory responses driven through TLR4 and TLR7/8.


Assuntos
Quinases Associadas a Receptores de Interleucina-1 , Pulmão , Camundongos Endogâmicos C57BL , Transdução de Sinais , Receptor 4 Toll-Like , Receptor 7 Toll-Like , Receptor 8 Toll-Like , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Animais , Humanos , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/antagonistas & inibidores , Pulmão/metabolismo , Pulmão/imunologia , Pulmão/efeitos dos fármacos , Camundongos , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/metabolismo , Receptor 8 Toll-Like/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Pneumonia/metabolismo , Pneumonia/imunologia , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/antagonistas & inibidores , Camundongos Knockout
14.
Cell Rep ; 43(8): 114570, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39093697

RESUMO

A wide variety of electrophilic derivatives of itaconate, the Kreb's cycle-derived metabolite, are immunomodulatory, yet these derivatives have overlapping and sometimes contradictory activities. Therefore, we generated a genetic system to interrogate the immunomodulatory functions of endogenously produced itaconate in human macrophages. Endogenous itaconate is driven by multiple innate signals restraining inflammatory cytokine production. Endogenous itaconate directly targets cysteine 13 in IRAK4 (disrupting IRAK4 autophosphorylation and activation), drives the degradation of nuclear factor κB, and modulates global ubiquitination patterns. As a result, cells unable to make itaconate overproduce inflammatory cytokines such as tumor necrosis factor alpha (TNFα), interleukin-6 (IL-6), and IL-1ß in response to these innate activators. In contrast, the production of interferon (IFN)ß, downstream of LPS, requires the production of itaconate. These data demonstrate that itaconate is a critical arbiter of inflammatory cytokine production downstream of multiple innate signaling pathways, laying the groundwork for the development of itaconate mimetics for the treatment of autoimmunity.


Assuntos
Citocinas , Imunidade Inata , Macrófagos , Succinatos , Ubiquitinação , Humanos , Succinatos/farmacologia , Succinatos/metabolismo , Ubiquitinação/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Citocinas/metabolismo , Imunidade Inata/efeitos dos fármacos , NF-kappa B/metabolismo , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Células HEK293
15.
Int J Mol Sci ; 25(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39126003

RESUMO

Periapical lesions are common pathologies affecting the alveolar bone, often initiated by intraradicular lesions resulting from microbial exposure to dental pulp. These microorganisms trigger inflammatory and immune responses. When endodontic treatment fails to eliminate the infection, periapical lesions persist, leading to bone loss. The RANK/RANKL/OPG pathway plays a crucial role in both the formation and the destruction of the bone. In this study, the objective was to inhibit the RANK/RANKL pathway in vitro within exposed Thp-1 macrophages to endodontic microorganisms, specifically Enterococcus faecalis, which was isolated from root canals of 20 patients with endodontic secondary/persistent infection, symptomatic and asymptomatic, and utilizing an α-IRAK-4 inhibitor, we introduced endodontic microorganisms and/or lipoteichoic acid from Streptococcus spp. to cellular cultures in a culture plate, containing thp-1 cells and/or PBMC from patients with apical periodontitis. Subsequently, we assessed the percentages of RANK+, RANKL+, and OPG+ cells through flow cytometry and measured the levels of several inflammatory cytokines (IL-1ß, TNF-α, IL-6, IL-8, IL-10, and IL-12p70) in the cellular culture supernatant through a CBA kit and performed analysis by flow cytometry. A significant difference was observed in the percentages of RANK+RANKL+, OPG+ RANKL+ cells in thp-1 cells and PBMCs from patients with apical periodontitis. The findings revealed significant differences in the percentages of the evaluated cells, highlighting the novel role of the IRAK-4 inhibitor in addressing this oral pathology, apical periodontitis, where bone destruction is observed.


Assuntos
Macrófagos , Periodontite Periapical , Ligante RANK , Receptor Ativador de Fator Nuclear kappa-B , Transdução de Sinais , Humanos , Ligante RANK/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Células THP-1 , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Periodontite Periapical/metabolismo , Periodontite Periapical/microbiologia , Periodontite Periapical/patologia , Citocinas/metabolismo , Enterococcus faecalis , Lipopolissacarídeos , Cavidade Pulpar/microbiologia , Cavidade Pulpar/metabolismo , Masculino , Osteoprotegerina/metabolismo , Adulto , Ácidos Teicoicos/farmacologia
16.
Clin Immunol ; 266: 110327, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39053866

RESUMO

This study retrospectively investigated the impact of interleukin-1 receptor-associated kinase-3 (IRAK-3/IRAK-M) silencing by methylation on the likelihood of multiple sclerosis (MS) activity. This cross-sectional study included 90 patients with MS: 45 with active disease (Group 1), 45 in remission (Group 2), and 45 healthy controls. The study included quantitation of IRAK-3 methylation index (MI%), IRAK-3 mRNA, and myeloid differentiation factor88 (MyD88) and assessment of NF-κB activity. IRAK-3 MI% was significantly higher in group 1 compared to group 2, accompanied by lower IRAK-3 mRNA expression, elevated circulating MyD88, and increased NF-κB activity. IRAK-3 MI% correlated negatively with its transcript and positively with MyD88 and NF-κB activity. A logistic regression model was created to predict active demyelination. The C-index was 0.924, which indicates a very strong prediction model. Within the limitations of current work, IRAK-3 methylation level seems to be a promising candidate biomarker for identifying MS patients at risk of relapse.


Assuntos
Quinases Associadas a Receptores de Interleucina-1 , Esclerose Múltipla , Fator 88 de Diferenciação Mieloide , Humanos , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Feminino , Masculino , Adulto , Esclerose Múltipla/genética , Esclerose Múltipla/sangue , Esclerose Múltipla/imunologia , Fator 88 de Diferenciação Mieloide/genética , Pessoa de Meia-Idade , Estudos Transversais , NF-kappa B/metabolismo , NF-kappa B/genética , Recidiva , Estudos Retrospectivos , Metilação de DNA , Biomarcadores/sangue , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Adulto Jovem
17.
Int Immunopharmacol ; 140: 112767, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39083922

RESUMO

The skin acts as a vital barrier, shielding the body from external threats that can trigger dryness, itching, and inflammation. Pilea mongolica, a traditional Chinese medicinal herb, holds promise for various ailments, yet its anti-inflammatory properties remain understudied. This study aimed to explore the potential anti-inflammatory effects of the methanol extract of P. mongolica (MEPM) and its underlying molecular mechanisms and active compounds in LPS-stimulated human keratinocytes. MEPM treatment, at concentrations without cytotoxicity, significantly decreased NO productions and the iNOS, IL-6, IL-1ß, and TNF-α levels in LPS-induced HaCaT cells. Moreover, MEPM suppressed IRAK4 expression and phosphorylation of JNK, ERK, p38, p65, and c-Jun, suggesting that the anti-inflammatory effects of MEPM result from the inhibition of IRAK4/MAPK/NF-κB/AP-1 signaling pathway. Through LC/MS/MS analysis, 30 compounds and 24 compounds were estimated in negative and positive modes, respectively, including various anti-inflammatory compounds, such as corilagin and geraniin. Through HPLC analysis, geraniin was found to be present in MEPM at a concentration of 18.87 mg/g. Similar to MEPM, geraniin reduced iNOS mRNA expression and inhibited NO synthesis. It also decreased mRNA and protein levels of inflammatory cytokines, including IL-6 and TNF-α, and inhibited IRAK4 expression and the phosphorylation of MAPKs, NF-κB, and AP-1 pathways. Therefore, it can be inferred that the anti-inflammatory effects of MEPM are attributable to geraniin. Thus, MEPM and its active compound geraniin are potential candidates for use in natural functional cosmetics.


Assuntos
Anti-Inflamatórios , Glucosídeos , Taninos Hidrolisáveis , Queratinócitos , Lipopolissacarídeos , Extratos Vegetais , Transdução de Sinais , Humanos , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Glucosídeos/farmacologia , Células HaCaT , Taninos Hidrolisáveis/farmacologia , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/imunologia , Metanol/química , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição AP-1/metabolismo
18.
Immunobiology ; 229(5): 152835, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38986278

RESUMO

Podocytes maintain renal filtration integrity when the glomerular filtration barrier (GFB) is integrated. Impairment or attrition of podocytes, leading to compromised GFB permeability, constitutes the primary etiology of proteinuria and is a hallmark pathological feature of diabetic nephropathy (DN). This study centers on Heterogeneous Nuclear Ribonucleoprotein I (HNRNP I), an RNA-binding protein, delineating its role in facilitating DN-induced renal damage by modulating podocyte health. Comparative analyses in renal biopsy specimens from DN patients and high-glucose-challenged podocyte models in vitro revealed a marked downregulation of HNRNP I expression relative to normal renal tissues and podocytes. In vitro assays demonstrated that high-glucose conditions precipitated a significant reduction in podocyte viability and an escalation in markers indicative of apoptosis. Conversely, HNRNP I overexpression was found to restore podocyte viability and attenuate apoptotic indices. IRAK1, a gene encoding a protein integral to inflammatory signaling, was shown to interact with HNRNP I, which promotes IRAK1 degradation. This interaction culminates in suppressing the PI3K/AKT/mTOR signaling pathway, thereby diminishing podocyte apoptosis and mitigating renal damage in DN. This investigation unveils the mechanistic role of HNRNP I in DN for the first time, potentially informing novel therapeutic strategies for DN renal impairment.


Assuntos
Apoptose , Nefropatias Diabéticas , Quinases Associadas a Receptores de Interleucina-1 , Podócitos , Transdução de Sinais , Podócitos/metabolismo , Podócitos/patologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/patologia , Humanos , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Quinases Associadas a Receptores de Interleucina-1/genética , Proteólise , Inflamação , Serina-Treonina Quinases TOR/metabolismo , Glucose/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/genética
19.
Mol Divers ; 28(4): 2289-2300, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38970641

RESUMO

Interleukin-1 receptor-associated kinase 4 (IRAK4) is a crucial serine/threonine protein kinase that belongs to the IRAK family and plays a pivotal role in Toll-like receptor (TLR) and Interleukin-1 receptor (IL-1R) signaling pathways. Due to IRAK4's significant role in immunity, inflammation, and malignancies, it has become an intriguing target for discovering and developing potent small-molecule inhibitors. Consequently, there is a pressing need for rapid and accurate prediction of IRAK4 inhibitor activity. Leveraging a comprehensive dataset encompassing activity data for 1628 IRAK4 inhibitors, we constructed a prediction model using the LightGBM algorithm and molecular fingerprints. This model achieved an R2 of 0.829, an MAE of 0.317, and an RMSE of 0.460 in independent testing. To further validate the model's generalization ability, we tested it on 90 IRAK4 inhibitors collected in 2023. Subsequently, we applied the model to predict the activity of 13,268 compounds with docking scores less than - 9.503 kcal/mol. These compounds were initially screened from a pool of 1.6 million molecules in the chemdiv database through high-throughput molecular docking. Among these, 259 compounds with predicted pIC50 values greater than or equal to 8.00 were identified. We then performed ADMET predictions on these selected compounds. Finally, through a rigorous screening process, we identified 34 compounds that adhere to the four complementary drug-likeness rules, making them promising candidates for further investigation. Additionally, molecular dynamics simulations confirmed the stable binding of the screened compounds to the IRAK4 protein. Overall, this work presents a machine learning model for accurate prediction of IRAK4 inhibitor activity and offers new insights for subsequent structure-guided design of novel IRAK4 inhibitors.


Assuntos
Quinases Associadas a Receptores de Interleucina-1 , Aprendizado de Máquina , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Quinases Associadas a Receptores de Interleucina-1/química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Humanos
20.
Clin Lymphoma Myeloma Leuk ; 24(11): 796-803, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39034203

RESUMO

BACKGROUND: Pacritinib is a JAK2/IRAK1/ACVR1 inhibitor that is approved in the United States for the treatment of patients with myelofibrosis who have a platelet count < 50 × 109/L. Phase 3 clinical studies of pacritinib included patients across a wide range of baseline platelet and hemoglobin levels. PATIENTS AND METHODS: In order to assess the impact of baseline blood counts on pacritinib efficacy, an analysis of efficacy outcomes by baseline platelet and hemoglobin levels was performed using data pooled from 2 Phase 3 studies of pacritinib in patients with MF (PERSIST-1 and PERSIST-2). RESULTS: Of 276 patients evaluable for spleen response, spleen volume reduction occurred consistently across platelet subgroups (< 100 × 109/L or ≥ 100 × 109/L) and hemoglobin subgroups (< 8 g/dL, ≥ 8 to < 10 g/dL, or > 10 g/dL), with no diminution in treatment effect in patients with severe thrombocytopenia or anemia. Among 159 patients evaluable for symptoms response, improvement in total symptom score (TTS) was similar across platelet subgroups. A ≥ 50% improvement of TSS occurred more frequently in patients with baseline hemoglobin < 8 g/dL compared with those with baseline hemoglobin ≥ 8 to < 10 g/dL or > 10 g/dL. Patients with baseline hemoglobin < 8 g/dL also experienced improved hemoglobin sustained over 24 weeks, whereas subgroups with less severe anemia had stable hemoglobin levels over time. Symptom improvement as assessed using the Patient Global Impression of Change instrument was generally consistent across platelet and hemoglobin subgroups. CONCLUSION: Pacritinib demonstrates consistent efficacy in patients with MF regardless of baseline platelet and hemoglobin counts.


Assuntos
Mielofibrose Primária , Baço , Humanos , Mielofibrose Primária/tratamento farmacológico , Mielofibrose Primária/complicações , Masculino , Feminino , Pessoa de Meia-Idade , Baço/patologia , Baço/efeitos dos fármacos , Idoso , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/efeitos adversos , Pirimidinas/uso terapêutico , Pirimidinas/farmacologia , Resultado do Tratamento , Idoso de 80 Anos ou mais , Adulto , Hidrocarbonetos Aromáticos com Pontes/uso terapêutico , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Contagem de Plaquetas , Trombocitopenia/tratamento farmacológico , Trombocitopenia/etiologia , Citopenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA