RESUMO
AIM: Colorectal cancer (CRC) is a common malignancy in the gastrointestinal tract. The main objective of this study is to explore the potential mechanisms of E74-like factor 4 (ELF4) in CRC progression, providing a novel therapeutic target for CRC treatment. METHODS: CRC cells and normal control cells were cultured. Levels of ELF4/long non-coding RNA integrin subunit beta 8 antisense RNA 1 (LncRNA ITGB8-AS1)/claudin-23 (CLDN23) were detected by real-time quantitative polymerase chain reaction or Western blot assay. ELF4 siRNA, ITGB8-AS1 pcDNA3.1, or CLDN23 siRNA were transfected into cells. Cell proliferation, migration, and invasion were evaluated. The enrichment of ELF4 on the ITGB8-AS1 promoter was detected. Dual-luciferase assay was employed to assess the binding between ELF4 and the ITGB8-AS1 promoter. RNA pull-down and RNA immunoprecipitation assays were conducted to investigate the binding between ITGB8-AS1 and enhancer of zeste homolog 2 (EZH2). The binding of EZH2 and histone H3 lysine 27 trimethylation (H3K27me3) to the CLDN23 promoter was detected. RESULTS: ELF4 and ITGB8-AS1 were upregulated in CRC cells, while CLDN23 was downregulated. Knockdown of ELF4 inhibited cell proliferation, invasion, and migration. Mechanistically, ELF4 transcriptionally activated ITGB8-AS1 and promoted the binding between ITGB8-AS1 and EZH2. EZH2 catalyzed H3K27me3 modification on the CLDN23 promoter, leading to decreased CLDN23 expression. Overexpression of ITGB8-AS1 or downregulation of CLDN23 could reduce the inhibitory effects of silencing ELF4 on CRC cell proliferation, migration, and invasion. CONCLUSION: ELF4 accelerates CRC progression through the ITGB8-AS1/CLDN23 axis, providing new therapeutic targets for CRC.
RESUMO
BACKGROUND: The dysfunction of human vascular smooth cells (hVSMCs) is significantly connected to the development of intracranial aneurysms (IAs). By suppressing the activity of microRNAs (miRNAs), circular RNAs (circRNAs) participate in IA pathogenesis. Nevertheless, the role of hsa_circ_0008571 in IAs remains unclear. METHODS: circRNA sequencing was used to identify circRNAs from human IA tissues. To determine the function of circ_0008571, Transwell, wound healing, and cell proliferation assays were conducted. To identify the target of circ_0008571, the analyses of CircInteractome and TargetScan, as well as the luciferase assay were carried out. Furthermore, circ_0008571 knockdown and over-expression were performed to investigate its functions in IA development and the underlying molecular mechanisms. RESULTS: Both hsa_circ_0008571 and Integrin beta 8 (ITGB8) were downregulated, while miR-145-5p transcription was elevated in the aneurysm wall of IAs patients compared to superficial temporal artery tissues. In vitro, cell migration and growth were dramatically suppressed after hsa_circ_0008571 overexpression. Mechanistically, has_circ_0008571 could suppress miR-145-5p activity by direct sponging. Moreover, we found that ITGB8 expression and the activation of the TGF-ß-mediated signaling pathway were significantly enhanced. CONCLUSION: The hsa_circ_0008571-miR-145-5p-ITGB8 axis plays an essential role in IA progression.
Assuntos
Proliferação de Células , Aneurisma Intracraniano , MicroRNAs , Músculo Liso Vascular , Miócitos de Músculo Liso , RNA Circular , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Aneurisma Intracraniano/genética , Aneurisma Intracraniano/patologia , Aneurisma Intracraniano/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Proliferação de Células/genética , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Movimento Celular/genética , Fenótipo , Masculino , Feminino , Pessoa de Meia-Idade , Células Cultivadas , Cadeias beta de IntegrinasRESUMO
1. The extracellular matrix (ECM) constitutes the basal lamina and the area between follicular cells. Remodelling the ECM is believed to be a key event in follicular development, especially during selection, and plays an important role in cell migration, survival, and steroidogenesis. miR-199-3p is differentially expressed in the goose granulosa layer during follicular selection and is reported to play a primary role in inhibiting cell migration and invasion. Nevertheless, the effect of miR-199-3p on ovarian follicles and its role in follicular cellular migration is not understood.2. In this study, qRT-PCR assays revealed that miR-199-3p was differentially expressed in the granulosa layer from goose ovarian follicles before and after follicular selection. Additionally, miR-199-3p overexpression in cultured granulosa cells (GCs) from goose pre-hierarchical follicles significantly suppressed cell viability and migration. It elevated the concentration of progesterone and the expression of key progesterone production genes. Furthermore, miR-199-3p overexpression in the GCs of goose pre-hierarchical follicles inhibited the expression of ECM-related genes (ITGB8, MMP9 and MMP15) yet promoted the expression of another two ECM-related genes (COL4A1 and LAMA1). Finally, dual-fluorescence reporter experiments on 293T cells established the direct targeting of ECM gene ITGB8 by miR-199-3p.3. In conclusion, miR-199-3p may participate in granulosa cell migration, viability, and steroidogenesis in goose ovarian follicles before selection by modulating ITGB8 and other ECM-related genes.
Assuntos
MicroRNAs , Progesterona , Feminino , Animais , Progesterona/metabolismo , Gansos/genética , Gansos/metabolismo , Galinhas/genética , Folículo Ovariano/fisiologia , Células da Granulosa/fisiologia , Matriz Extracelular/metabolismo , Movimento Celular , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de CélulasRESUMO
The effect of platelet-rich plasma on nerve regeneration remains controversial. In this study, we established a rabbit model of sciatic nerve small-gap defects with preserved epineurium and then filled the gaps with platelet-rich plasma. Twenty-eight rabbits were divided into the following groups (7 rabbits/group): model, low-concentration PRP (2.5-3.5-fold concentration of whole blood platelets), medium-concentration PRP (4.5-6.5-fold concentration of whole blood platelets), and high-concentration PRP (7.5-8.5-fold concentration of whole blood platelets). Electrophysiological and histomorphometrical assessments and proteomics analysis were used to evaluate regeneration of the sciatic nerve. Our results showed that platelet-rich plasma containing 4.5-6.5- and 7.5-8.5-fold concentrations of whole blood platelets promoted repair of sciatic nerve injury. Proteomics analysis was performed to investigate the possible mechanism by which platelet-rich plasma promoted nerve regeneration. Proteomics analysis showed that after sciatic nerve injury, platelet-rich plasma increased the expression of integrin subunit ß-8 (ITGB8), which participates in angiogenesis, and differentially expressed proteins were mainly enriched in focal adhesion pathways. Additionally, two key proteins, ribosomal protein S27a (RSP27a) and ubiquilin 1 (UBQLN1), which were selected after protein-protein interaction analysis, are involved in the regulation of ubiquitin levels in vivo. These data suggest that platelet-rich plasma promotes peripheral nerve regeneration after sciatic nerve injury by affecting angiogenesis and intracellular ubiquitin levels.
RESUMO
BACKGROUND: Circular RNAs (circRNAs) are regarded as vital regulatory factors in various cancers. However, the biological functions of circDNER in the paclitaxel (PTX) resistance of lung cancer remain largely unexplored. METHODS: Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to analyze circDNER, miR-139-5p, and ITGB8. Cell proliferation was assessed via colony formation and MTT assays. Cell apoptosis was evaluated by flow cytometry. Western blot was performed to assess protein expression. The targeted interaction among circDNER, miR-139-5p, and ITGB8 were validated using dual-luciferase reporter or RNA immunoprecipitation assays. RESULTS: Inhibition of circDNER reduced IC50 of PTX, inhibited cell proliferation, invasion and migration, as well as promoted cell apoptosis in PTX-resistant lung cancer cells. Mechanistically, circDNER sponged miR-139-5p to upregulate ITGB8 expression. Overexpression of miR-139-5p reversed the biological functions mediated by circDNER in PTX-resistant lung cancer cells. MiR-139-5p overexpression suppressed PTX resistance and malignant behaviors of PTX-resistant lung cancer cells, with ITGB8 elevation rescued the impacts. Moreover, we demonstrated that circDNER was upregulated in plasma exosomes from lung cancer patients. The plasma exosomes derived from these patients are the key factors enhancing the migration and invasion potential of lung cancer cells. CONCLUSION: The circDNER mediated miR-139-5p/ITGB8 axis suppresses lung cancer progression. Our findings suggest that circDNER might act as a potential prognostic biomarker and therapeutic target for lung cancer treatment.
Assuntos
Neoplasias Pulmonares , MicroRNAs , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , RNA Circular/genéticaRESUMO
Long non-coding RNAs (lncRNAs) play critical roles in tumorigenesis and progression of colorectal cancer (CRC). However, functions of most lncRNAs in CRC and their molecular mechanisms remain uncharacterized. Here we found that lncRNA ITGB8-AS1 was highly expressed in CRC. Knockdown of ITGB8-AS1 suppressed cell proliferation, colony formation, and tumor growth in CRC, suggesting oncogenic roles of ITGB8-AS1. Transcriptomic analysis followed by KEGG analysis revealed that focal adhesion signaling was the most significantly enriched pathway for genes positively regulated by ITGB8-AS1. Consistently, knockdown of ITGB8-AS1 attenuated the phosphorylation of SRC, ERK, and p38 MAPK. Mechanistically, ITGB8-AS1 could sponge miR-33b-5p and let-7c-5p/let-7d-5p to regulate the expression of integrin family genes ITGA3 and ITGB3, respectively, in the cytosol of cells. Targeting ITGB8-AS1 using antisense oligonucleotide (ASO) markedly reduced cell proliferation and tumor growth in CRC, indicating the therapeutic potential of ITGB8-AS1 in CRC. Furthermore, ITGB8-AS1 was easily detected in plasma of CRC patients, which was positively correlated with differentiation and TNM stage, as well as plasma levels of ITGA3 and ITGB3. In conclusion, ITGB8-AS1 functions as a competing endogenous RNA (ceRNA) to regulate cell proliferation and tumor growth of CRC via regulating focal adhesion signaling. Targeting ITGB8-AS1 is effective in suppressing CRC cell growth and tumor growth. Elevated plasma levels of ITGB8-AS1 were detected in advanced-stage CRC. Thus, ITGB8-AS1 could serve as a potential therapeutic target and circulating biomarker in CRC.
Assuntos
Neoplasias Colorretais , MicroRNAs , RNA Longo não Codificante , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Adesões Focais/genética , Adesões Focais/metabolismo , Adesões Focais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Cadeias beta de Integrinas , Integrinas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismoRESUMO
Long noncoding RNA (lncRNA) highly upregulated in liver cancer (HULC) has been reported to be implicated in chemoresistance. However, the potential mechanism of HULC in paclitaxel (PTX)-resistant ovarian cancer (OC) remains undefined. The expression of RNAs and proteins was measured by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and Western blot assay. The PTX resistance and apoptotic rate were assessed via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry, respectively. Furthermore, the interaction between miR-137 and HULC or integrin beta-8 (ITGB8) was predicted by miRcode and starBase v2.0 and then verified by dual luciferase reporter and RNA pull-down assays. In addition, the xenograft mice model was established to explore the effects of HULC in vivo. HULC was significantly upregulated and miR-137 was downregulated in PTX-resistant OC tissues and cells. Also, the HULC depletion suppressed tumor growth and PTX resistance in PTX-treated mice. miR-137 was verified as a target of HULC and directly targeted ITGB8. And HULC knockdown downregulated ITGB8 expression by targeting miR-137. miR-137 inhibitor or ITGB8 overexpression mitigated the suppressive impacts of HULC knockdown on PTX resistance. Collectively, HULC modulated ITGB8 expression to promote PTX resistance of OC by sponging miR-137.
RESUMO
BACKGROUND: Glioma is the most frequent, highly aggressive primary intracranial malignant tumor. Circular RNA (circRNA) circ_0037655 has been reported to be a vital regulator in glioma. The different functional mechanism behind circ_0037655 was investigated in the current study. METHODS: The expression of circ_0037655, microRNA-1229-3p (miR-1229-3p) and integrin beta-8 (ITGB8) was detected via the quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Cellular research was performed via colony formation assay for cell proliferation, flow cytometry for cell cycle and cell apoptosis, scratch assay for cell migration, as well as transwell assay for cell migration and invasion. Western blot was used for detection of ITGB8 protein and epithelial-mesenchymal transition (EMT) process. Dual-luciferase reporter assay was implemented for the binding analysis of potential targets. In vivo assay was administered via xenograft in mice. RESULTS: Upregulation of circ_0037655 was affirmed in glioma samples and cells. Tumor formation and metastasis of glioma were inhibited after circ_0037655 was downregulated. miR-1229-3p acted as a target of circ_0037655, and its upregulation was responsible for the function of si-circ_0037655 in glioma cells. miR-1229-3p functioned as a tumor inhibitor in glioma progression by targeting ITGB8. circ_0037655 modulated the ITGB8 expression by targeting miR-1229-3p. In vivo knockdown of circ_0037655 also suppressed glioma tumorigenesis by acting on the miR-1229-3p/ITGB8 axis. CONCLUSION: This study showed that downregulation of the expression of circ_0037655 could inhibit glioma progression by acting on the miR-1229-3p/ITGB8 axis. The specific circ_0037655/miR-1229-3p/ITGB8 axis was disclosed in glioma research.
RESUMO
Circular RNAs (circRNAs) have been reported to exert vital roles in the tumorigenesis of non-small cell lung cancer (NSCLC). The study aimed to probe the function of circ_0017956 in NSCLC development. The expression of circ_0017956, microRNA (miR)-515-5p and integrin subunit beta 8 (ITGB8) was gauged by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. The proliferation detection was conducted employing Cell Counting Kit-8 (CCK-8) and colony formation assays. Transwell assay was performed to determine cell migratory and invasive abilities. Western blot was implemented for the measurement of related proteins. The targeted interactions among circ_0017956, miR-515-5p and ITGB8 were affirmed by dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay and RNA pull-down assay. The role of circ_0017956 in NSCLC tumor growth in vivo was studied by xenograft mice model. Circ_0017956 and ITGB8 abundances were overtly raised whereas miR-515-5p was low expressed in NSCLC tissues and cells. Circ_0017956 knockdown caused inhibitory effects on the proliferative and metastasizing capacities of NSCLC cells. Mechanistically, circ_0017956 could sponge miR-515-5p, and circ_0017956 depletion blocked NSCLC cell malignant behaviors by increasing miR-515-5p expression. Furthermore, miR-515-5p targeted ITGB8 and ITGB8 overexpression also neutralized the miR-515-5p-triggered inhibition effects on NSCLC cell progression. Moreover, circ_0017956 could regulate ITGB8 expression through sponging miR-515-5p. In addition, circ_0017956 knockdown repressed NSCLC tumorigenesis by targeting miR-515-5p/ITGB8 axis in vivo. Circ_0017956 could promote NSCLC carcinogenesis at least partly through sponging miR-515-5p and upregulating ITGB8 level, providing a novel theoretical basis for NSCLC treatment.
RESUMO
The heterogeneity of lung adenocarcinoma is driven by key mutations in oncogenes. To determine the gene expression, single nucleotide polymorphisms, and co-mutations participating in the initiation and progression of lung adenocarcinoma, we comprehensively analyzed the data of 491 patients from The Cancer Genome Atlas. Using log-rank and Kruskal-Wallis analysis, Oncoprint, Kaplan-Meier survival plots, and a nomogram, we found that EGFRL858R with co-mutation TP53 was significant prognostic determinant versus that with co-wild TP53 (hazard ratio, 2.77, P = 0.012). Further gene co-expression network and functional enrichment analysis indicated that co-mutation of EGFRL858R/TP53 increases the expression of COMP and ITGB8, which are involved in extracellular matrix organization and cell surface receptor signaling pathways, thus contributing to poor prognosis in lung adenocarcinoma. Validation was performed using three GEO profiles along with colony formation and CCK-8 assays for proliferation, transwell and wound-healing for migration in transfected H1299 and A549 cell lines. To the best of our knowledge, these results are the first to indicate that patients harboring the co-mutation of EGFRL858R/TP53 show increased expression of COMP and ITGB8, which participate in extracellular matrix dysfunction and can be used as prognostic biomarkers in patients with lung adenocarcinoma.
RESUMO
BACKGROUND: Integrins play a crucial role in the regulation process of cell proliferation, migration, differentiation, tumor invasion and metastasis. ITGA11, ITGB4 and ITGB8 are three encoding genes of integrins family. Accumulative evidences have proved that abnormal expression of ITGA11, ITGB4 and ITGB8 are a common phenomenon in different malignances. However, their expression patterns and prognostic roles for patients with non-small cell lung cancer (NSCLC) have not been completely illustrated. METHODS: We investigated the expression patterns and prognostic values of ITGA11, ITGB4 and ITGB8 in patients with NSCLC through using a series of databases and various datasets, including ONCOMINE, GEPIA, HPA, TCGA and GEO datasets. RESULTS: We found that the expression levels of ITGA11 and ITGB4 were significantly upregulated in both LUAD and LUSC, while ITGB8 was obviously upregulated in LUSC. Additionally, higher expression level of ITGB4 revealed a worse OS in LUAD. CONCLUSION: Our findings suggested that ITGA11 and ITGB4 might have the potential ability to act as diagnostic biomarkers for both LUAD and LUSC, while ITGB8 might serve as diagnostic biomarker for LUSC. Furthermore, ITGB4 could serve as a potential prognostic biomarker for LUAD.
RESUMO
Background: Α few genetic variants are associated with the outcome after traumatic brain injury (TBI). Integrins are glycoprotein receptors that play an important role in the integrity of microvasculature of the brain. Objective: To examine the role of integrin-AV (ITGAV) and integrin-B8 (ITGB8) tag single nucleotide polymorphisms (SNPs) on the outcome of patients with TBI. Methods: 363 participants were included and genotyped for 11 SNPs for ITGAV and 11 for ITGB8 gene. SNPs were tested for associations with the 6-month outcome after TBI, the presence of a hemorrhagic event after TBI, and the initial TBI severity after adjustment for TBI's main predictors. Results: The ITGAV rs3911239 CC and rs7596996 GG genotypes were associated with an unfavorable outcome after TBI, compared to the TT and AA genotypes, respectively. The ITGB8 rs10239099 CC and rs3757727 CC genotypes were associated with increased risk of any cerebral hemorrhagic event after TBI compared to GG and TT respectively. The ITGAV rs7589470 and rs7565633 were associated with the TBI's initial severity. Conclusions: ITGAV gene SNPs may be implicated in the outcome after TBI, as well as in the initial TBI severity, and also of ITGB8 gene SNPs in the risk of hemorrhagic event after a TBI.
Assuntos
Lesões Encefálicas Traumáticas/genética , Hemorragia Cerebral/genética , Genótipo , Integrina alfaV/genética , Cadeias beta de Integrinas/genética , Polimorfismo de Nucleotídeo Único , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Lesões Encefálicas Traumáticas/complicações , Hemorragia Cerebral/etiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
Circular RNAs (circRNA) are endogenous noncoding RNAs and play important roles in cancer; however, the roles of circRNAs in colon cancer are far from clear. The circRNA expression profile in colon cancer tissues was analyzed by microarray. The data from microarray showed that there were 198 upregulated and 136 downregulated circRNAs in colon cancer tissues. Among the top 10 upregulated circRNAs, hsa_circ_0055625 (circ_0055625) was confirmed to be significantly upregulated in colon cancer tissues. Further analysis demonstrated that circ_0055625 might get involved in the pathogenesis of colon cancer by functioning as miRNA sponges and performed bioinformatics analysis of the predicted circ_0055625/miR-106b-5p (miR-106b)/ITGB8 network. Moreover, we found that circ_0055625 expression was associated with pathological TNM stage and metastasis. These data indicated that circ_0055625/miR-106b/ITGB8 played a role in promoting tumor growth and metastasis, which suggested that circ_0055625 was a potential biomarker of colon cancer.
Assuntos
Neoplasias do Colo/patologia , Perfilação da Expressão Gênica/métodos , Cadeias beta de Integrinas/genética , Cadeias beta de Integrinas/metabolismo , MicroRNAs/genética , RNA Circular/genética , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HT29 , Humanos , Pessoa de Meia-Idade , Metástase Neoplásica , Estadiamento de Neoplasias , Análise de Sequência com Séries de OligonucleotídeosRESUMO
This study aimed to evaluate the effects of miR-93 on the growth and invasiveness of prostate cancer (PC) cells (PCCs). Real-time PCR was carried out to detect the expression of miR-93 in the PC tissues and cell lines. The adjacent normal tissues served as controls. For in vitro experiments, methyl thiazolyl tetrazolium, clone formation, tumor cell invasion assays, and western blot analysis (WBA) were performed to confirm the variations in the proliferation and invasiveness of PCCs, prior and subsequent to transfection with an miR-93 antisense oligonucleotide (ASO), which blocks miR-93 binding to its target. Furthermore, the effect of miR-93 on the proliferation of PCCs was examined. Finally, the expression levels of the target genes of miR-93 were determined by WBA. miR-93 expression was higher in PC tissues than in the adjacent normal tissues, and a reduction in the miR-93 level remarkably inhibited the proliferation and invasiveness of PCCs. Moreover, miR-93 enhanced the expression of its target genes TGFΒR2, ITGB8, and LATS2. The results of this study suggest that miR-93 may promote the proliferation and invasion of PCCs by upregulating its target genes TGFBR2, ITGB8, and LATS2.
RESUMO
Background: Y-box binding protein 1 (YB1) is a multifunctional protein involved in many processes related to cancer progression and metastasis. Methods: In this study, we constructed YB1 knockdown stable renal cell carcinoma (RCC) cell line 786-0. The gene expression profile of 786-0 was performed by DNA microarray analysis to identify genes that were regulated by YB1. Real-time PCR and western blotting were used to test the genes and proteins expression. Transforming growth factor-ß (TGF-ß) activity was detected by dual-luciferase reporter assay. Cell adhesion assay was used to determine RCC cell adhesion ability. Results: Pathway analysis revealed that YB1 knockdown influenced cell adhesion molecules (CAMs). We further verified four genes (CLDN4, NRXN3, ITGB8, and VCAN) related to CAMs by real-time PCR, and confirmed that YB1 regulated the expression of ITGB8 in RCC. Functional assays demonstrated that knockdown of YB1 significantly inhibited the cell adhesion of 786-0 cells in vitro. In addition, YB1 affected TGF-ß activation. Conclusion: Our study demonstrated that YB1 modulated the adhesion ability of renal cell carcinoma cells by regulating ITGB8 and TGF-ß.
Assuntos
Carcinoma de Células Renais/patologia , Adesão Celular , Neoplasias Renais/patologia , Proteína 1 de Ligação a Y-Box/fisiologia , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Renais/metabolismo , Fator de Crescimento Transformador beta/metabolismoRESUMO
In the present study, we identified a novel circular RNA (circRNA), hsa_circ_0046701, in glioma cells. We measured the expression of hsa_circ_0046701 using qRT-PCR in glioma tissues and cell lines, and explored its functions using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, colony formation, and Transwell assays. Luciferase reporter assays were performed to validate the correlation between microRNA miR-142-3p and hsa_circ_0046701 or integrin subunit beta 8 (ITGB8). The results showed that hsa_circ_0046701 was significantly upregulated in glioma tissues and cell lines, and knockdown of hsa_circ_0046701 inhibited cell proliferation and invasion. Luciferase reporter assays indicated that hsa_circ_0046701 functions as a sponge for miR-142-3p and regulates the expression of ITGB8. Subsequently, functional assays revealed that silencing of hsa_circ_0046701 could upregulate miR-142-3p, resulting in downregulation of ITGB8. The results demonstrated that the hsa_circ_0046701/miR-142-3p/ITGB8 axis might play critical regulatory roles in the pathogenesis and development of glioma.
Assuntos
Neoplasias Encefálicas/genética , Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/patologia , Cadeias beta de Integrinas/genética , MicroRNAs/genética , RNA/genética , Sequência de Bases , Neoplasias Encefálicas/patologia , Carcinogênese/patologia , Linhagem Celular Tumoral , Regulação para Baixo/genética , Técnicas de Silenciamento de Genes , Humanos , Cadeias beta de Integrinas/metabolismo , MicroRNAs/metabolismo , Invasividade Neoplásica , Oncogenes , RNA/metabolismo , RNA Circular , Regulação para Cima/genéticaRESUMO
MicroRNAs (miRNAs) are widely up-regulated or down-regulated in a variety of tumors, including lung cancer, liver cancer, and colorectal cancer (CRC). Furthermore, miRNAs can function as tumor suppressors or proto-oncogenes by controlling the growth and metastasis of cancer cells. In the present study, we found a significant increase in miR19b-3p levels in CRC compared to tumor tissue and revealed the role of miR19b-3p in CRC growth and metastasis. The exogenous overexpression of miR19b-3p induced the proliferation, migration, and invasion of CRC cells in vitro. In addition, the nude mouse xenograft model showed that miR19b-3p overexpression promoted CRC growth and lung metastasis in vivo, whereas silencing miR19b-3p showed opposite results. Mechanistic studies have shown that the integrin beta-8 (ITGB8) transcript is one of the direct targets of miR19b-3p, and the expression of ITGB8 in CRC specimens was positively correlated with miR19b-3p. Finally, ectopic expression of ITGB8 rescued cell proliferation and invasion, which was inhibited by down-regulation of miR19b-3p. In addition, knockdown of ITGB8 neutralized the effects of miR19b-3p overexpression on cell growth and metastasis in CRC cells. Together, these results suggest that the miR19b-3p/ITGB8 axis plays an important role in the growth and metastasis of CRC.
RESUMO
Excessive transforming growth factor (TGF)-ß is associated with pro-fibrotic responses in lung disease, yet it also plays essential roles in tissue homeostasis and autoimmunity. Therefore, selective inhibition of excessive and aberrant integrin-mediated TGF-ß activation via targeting the α-v family of integrins is being pursued as a therapeutic strategy for chronic lung diseases, to mitigate any potential safety concerns with global TGF-ß inhibition. In this work, we reveal a novel mechanism of inhibiting TGF-ß activation utilized by an αvß8 targeting antibody, 37E1B5. This antibody blocks TGF-ß activation while not inhibiting cell adhesion. We show that an N-linked complex-type Fab glycan in H-CDR2 of 37E1B5 is directly involved in the inhibition of latent TGF-ß activation. Removal of the Fab N-glycosylation site by single amino acid substitution, or removal of N-linked glycans by enzymatic digestion, drastically reduced the antibody's ability to inhibit latency-associated peptide (LAP) and αvß8 association, and TGF-ß activation in an αvß8-mediated TGF-ß signaling reporter assay. Our results indicate a non-competitive, allosteric inhibition of 37E1B5 on αvß8-mediated TGF-ß activation. This unique, H-CDR2 glycan-mediated mechanism may account for the potent but tolerable TGF-b activation inhibition and lack of an effect on cellular adhesion by the antibody.
Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Regiões Determinantes de Complementaridade/química , Integrinas/antagonistas & inibidores , Fator de Crescimento Transformador beta/antagonistas & inibidores , Animais , Anticorpos Monoclonais/farmacocinética , Regiões Determinantes de Complementaridade/imunologia , Glicosilação , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Camundongos , Polissacarídeos/química , Processamento de Proteína Pós-TraducionalRESUMO
BACKGROUND: Hypoplastic right heart syndrome (HRHS) is a rare congenital defect characterized by underdevelopment of the right heart structures commonly accompanied by an atrial septal defect. Familial HRHS reports suggest genetic factor involvement. We examined the role of copy number variants (CNVs) in HRHS. METHODS: We genotyped 32 HRHS cases identified from all New York State live births (1998-2005) using Illumina HumanOmni2.5 microarrays. CNVs were called with PennCNV and prioritized if they were ≥20 Kb, contained ≥10 SNPs and had minimal overlap with CNVs from in-house controls, the Database of Genomic Variants, HapMap3, and Childrens Hospital of Philadelphia database. RESULTS: We identified 28 CNVs in 17 cases; several encompassed genes important for right heart development. One case had a 2p16-2p23 duplication spanning LBH, a limb and heart development transcription factor. Lbh mis-expression results in right ventricular hypoplasia and pulmonary valve defects. This duplication also encompassed SOS1, a factor associated with pulmonary valve stenosis in Noonan syndrome. Sos1-/- mice display thin and poorly trabeculated ventricles. In another case, we identified a 1.5 Mb deletion associated with Williams-Beuren syndrome, a disorder that includes valvular malformations. A third case had a 24 Kb deletion upstream of the TGFß ligand ITGB8. Embryos genetically null for Itgb8, and its intracellular interactant Band 4.1B, display lethal cardiac phenotypes. CONCLUSION: To our knowledge, this is the first study of CNVs in HRHS. We identified several rare CNVs that overlap genes related to right ventricular wall and valve development, suggesting that genetics plays a role in HRHS and providing clues for further investigation. Birth Defects Research 109:16-26, 2017. © 2016 Wiley Periodicals, Inc.
Assuntos
Cardiopatias Congênitas/etiologia , Cardiopatias Congênitas/genética , Ventrículos do Coração/anormalidades , Criança , Pré-Escolar , Hibridização Genômica Comparativa/métodos , Variações do Número de Cópias de DNA/genética , Bases de Dados de Ácidos Nucleicos , Feminino , Genótipo , Cardiopatias Congênitas/metabolismo , Ventrículos do Coração/metabolismo , Humanos , Lactente , Cadeias beta de Integrinas/genética , Masculino , New York , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Fenótipo , Philadelphia , Polimorfismo de Nucleotídeo Único/genética , Deleção de Sequência/genética , Síndrome de Williams/genéticaRESUMO
Α limited number of genetic variants have been linked to the development of intracerebral hemorrhage (ICH). Ιntegrin AV and/or B8-deficient mice were found to develop ICH. The present candidate gene association study was designed to investigate possible influence of integrin AV (ITGAV) and integrin B8 (ITGB8) gene region polymorphisms on the risk of ICH. 1015 participants (250 Greek and 193 Polish patients with primary ICH and 250 Greek and 322 Polish controls) were included in the study. Using logistic regression analyses, 11 tag single nucleotide polymorphisms (SNPs) for ITGAV and 11 for ITGB8 gene were tested for associations with ICH risk, lobar ICH risk and non-lobar ICH after adjustment for age, gender, history of hypertension and country of origin. Linear regression models were used to test the effect of tag SNPs on the ICH age of onset. Correction for multiple comparisons was carried out. The rs7565633 tag SNP of the ITGAV gene was independently associated with the risk of lobar ICH in the codominant model of inheritance [odds ratio (95 % confidence interval (CI)) 0.56 (0.36-0.86), p = 0.0013]. Furthermore, heterozygous individuals of the rs10251386 and the rs10239099 of the ITGB8 gene had significantly lower age of ICH onset compared to the wild-type genotypes [regression coefficient (b) -3.884 (95 % CI -6.519, -1.249), p = 0.0039 and b = -4.502 (95 % CI -7.159, -1.845), p = 0.0009, respectively]. The present study provides preliminary indication for an influence of ITGAV gene tag SNP in the development of lobar ICH and of ITGB8 gene variants in the age of ICH onset.