Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39178609

RESUMO

Dolutegravir (DLG) has become a distinctive first-line antiretroviral therapy for the treatment of HIV in most countries due to its affordability, high efficacy, and low drug-drug interactions. However, the evaluation of genotoxic impurities (GTIs) in DLG and their toxicity assessment has not been explored thoroughly. Thus, in this study, a simple, fast, and selective analytical methodology was developed for the identification and determination of 7 GTIs in the comprehensive, explicit route of synthesis for the dolutegravir sodium (DLG-Na) drug. A facile, fast ultrasonication-assisted liquid-liquid extraction procedure was adapted to isolate the GTIs in DLG-Na and then analyzed using the gas chromatography (GC)-electron impact (EI)/mass spectrometer (MS) quantification (using selective ion monitoring mode) technique. This EI-GC/MS method was validated as per the current requirements of ICH Q2 (R1) guidelines. Under optimal method conditions, excellent linearities were achieved with R between 0.9959 and 0.9995, and high sensitivity was obtained in terms of detection limits (LOD) between 0.15 to 0.63 µg/g, and quantification limits (LOQ) between 0.45 to 1.66 µg/g for the seven GTIs in DLG. The obtained recoveries ranged from 98.2 to 104.3 % at LOQ, 15 µg/g, and 18 µg/g concentration levels (maximum daily dose of 100 mg). This developed and validated method is rapid, easy to adopt, specific, sensitive, and accurate in estimating the seven GTIs in a relatively complex sodium matrix of the DLG-Na drug moiety. As a method application, two different manufactured samples of DLG-Na drug substances were analyzed for the fate of the GTIs and drug safety for the intended dosage applications. Moreover, an in-silico QSAR toxicity prediction assessment was carried out to prove scientifically the potential GTI nature of each impurity from the alerting functional groups.


Assuntos
Contaminação de Medicamentos , Cromatografia Gasosa-Espectrometria de Massas , Compostos Heterocíclicos com 3 Anéis , Limite de Detecção , Oxazinas , Piperazinas , Piridonas , Compostos Heterocíclicos com 3 Anéis/química , Compostos Heterocíclicos com 3 Anéis/análise , Piperazinas/química , Piperazinas/análise , Piridonas/química , Piridonas/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Oxazinas/química , Reprodutibilidade dos Testes , Modelos Lineares , Mutagênicos/análise , Fármacos Anti-HIV/análise , Fármacos Anti-HIV/química , Extração Líquido-Líquido/métodos , Sonicação/métodos , Simulação por Computador , Humanos
2.
Pharmaceutics ; 16(8)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39204397

RESUMO

Candida tropicalis is regarded as an opportunistic pathogen, causing diseases ranging from superficial infections to life-threatening disseminated infections. The ability of this yeast to form biofilms and develop resistance to antifungals represents a significant therapeutic challenge. Herein, the effect of geraniol (GER), alone and combined with fluconazole (FLZ), was evaluated in the planktonic and sessile cells of azole-resistant C. tropicalis. GER showed a time-dependent fungicidal effect on the planktonic cells, impairing the cell membrane integrity. Additionally, GER inhibited the rhodamine 6G efflux, and the molecular docking analyzes supported the binding affinity of GER to the C. tropicalis Cdr1 protein. GER exhibited a synergism with FLZ against the planktonic and sessile cells, inhibiting the adhesion of the yeast cells and the viability of the 48-h biofilms formed on abiotic surfaces. C. tropicalis biofilms treated with GER, alone or combined with FLZ, displayed morphological and ultrastructural alterations, including a decrease in the stacking layers and the presence of wilted cells. Moreover, neither GER alone nor combined with FLZ caused toxicity, and both treatments prolonged the survival of the Galleria mellonella larvae infected with azole-resistant C. tropicalis. These findings indicate that the combination of GER and FLZ may be a promising strategy to control azole-resistant C. tropicalis infections.

3.
Food Chem Toxicol ; 190: 114785, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38849047

RESUMO

In drug discovery, metabolite profiling unveils biotransformation pathways and potential toxicant formation, guiding selection of candidates with optimal pharmacokinetics and safety profiles. Tazemetostat (TAZ) is employed in treating locally advanced or metastatic epithelioid sarcoma. Identification of drug metabolites are of significant importance in improving safety, efficacy and reduced toxicity of drugs. The current study aimed to investigate the comprehensive metabolic fate of TAZ using different in vivo (rat) and in vitro (RLM, HLM, HS9) models. For in vivo studies, drug was orally administered to Sprague-Dawley rats with subsequent analysis of plasma, feces and urine samples. A total of 21 new metabolites were detected across various matrices and were separated on Phenomenex kinetex C18 (2.5 µm; 150 × 4.6 mm) column using acetonitrile and 0.1% formic acid in water as mobile phase. LC-QTOF-MS/MS and NMR techniques were employed to identify and characterize the metabolites from extracted samples. The major metabolic routes found in biotransformation of TAZ were hydroxylation, N-dealkylation, N-oxidation, hydrogenation, hydrolysis and N-acetylation. In silico toxicity revealed potential immunotoxicity for TAZ and few of its metabolites. This research article is the first time to discuss the complete metabolite profiling including identification and characterization of TAZ metabolites as well as its biotransformation mechanism.


Assuntos
Cromatografia Líquida , Espectrometria de Massas em Tandem , Animais , Humanos , Masculino , Ratos , Biotransformação , Fezes/química , Hidroxilação , Microssomos Hepáticos/metabolismo , Ratos Sprague-Dawley
4.
Eur J Oral Sci ; 132(3): e12987, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38616404

RESUMO

Resin-based three-dimensional (3D) printing finds extensive application in the field of dentistry. Although studies of cytotoxicity, mechanical and physical properties have been conducted for newly released 3D printing resins such as Crowntec (Saremco), Temporary Crown Resin (Formlabs) and Crown & Bridge (Nextdent), the resistance of these materials to esterases in saliva has not been demonstrated at the molecular level. Therefore, in this study, the binding affinities and stability of these new 3D printing resins to the catalytic sites of esterases were investigated using molecular docking and molecular mechanics with Poisson-Bolzmann and surface area solvation (MM/PBSA) methods after active pocket screening. Toxicity predictions of the materials were also performed using ProTox-II and Toxtree servers. The materials were analyzed for mutagenicity, cytotoxicity, and carcinogenicity, and LD50 values were predicted from their molecular structures. The results indicated that out of the three novel 3D printing materials, Nexdent exhibited reduced binding affinity to esterases, indicating enhanced resistance to enzymatic degradation and possessing a superior toxicity profile.


Assuntos
Simulação de Acoplamento Molecular , Impressão Tridimensional , Humanos , Esterases/metabolismo , Esterases/química , Animais , Teste de Materiais , Materiais Dentários/química
5.
Bioorg Med Chem ; 102: 117671, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38452407

RESUMO

The search for novel anticancer drugs is essential to expand treatment options, overcome drug resistance, reduce toxicity, promote innovation, and tackle the economic impact. The importance of these studies lies in their contribution to advancing cancer research and enhancing patient outcomes in the battle against cancer. Here, we developed new asymmetric hybrids containing two different naphthoquinones linked by a 1,2,3-1H-triazole nucleus, which are potential new drugs for cancer treatment. The antitumor activity of the novel compounds was tested using the breast cancer cell lines MCF-7 and MDA-MB-231, using the non-cancer cell line MCF10A as control. Our results showed that two out of twenty-two substances tested presented potential antitumor activity against the breast cancer cell lines. These potential drugs, named here 12g and 12h were effective in reducing cell viability and promoting cell death of the tumor cell lines, exhibiting minimal effects on the control cell line. The mechanism of action of the novel drugs was assessed revealing that both drugs increased reactive oxygen species production with consequent activation of the AMPK pathway. Therefore, we concluded that 12g and 12h are novel AMPK activators presenting selective antitumor effects.


Assuntos
Antineoplásicos , Neoplasias da Mama , Naftoquinonas , Humanos , Feminino , Células MCF-7 , Espécies Reativas de Oxigênio/metabolismo , Triazóis/farmacologia , Naftoquinonas/farmacologia , Proteínas Quinases Ativadas por AMP , Proliferação de Células , Apoptose , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Ensaios de Seleção de Medicamentos Antitumorais
6.
Life (Basel) ; 13(11)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-38004275

RESUMO

Juncus acutus, acknowledged through its indigenous nomenclature "samar", is part of the Juncaceae taxonomic lineage, bearing considerable import as a botanical reservoir harboring conceivable therapeutic attributes. Its historical precedence in traditional curative methodologies for the alleviation of infections and inflammatory conditions is notable. In the purview of Eastern traditional medicine, Juncus species seeds find application for their remedial efficacy in addressing diarrhea, while the botanical fruits are subjected to infusion processes targeting the attenuation of symptoms associated with cold manifestations. The primary objective of this study was to unravel the phytochemical composition of distinct constituents within J. acutus, specifically leaves (JALE) and roots (JARE), originating from the indigenous expanse of the Nador region in northeastern Morocco. The extraction of plant constituents was executed utilizing an ethanol-based extraction protocol. The subsequent elucidation of chemical constituents embedded within the extracts was accomplished employing analytical techniques based on high-performance liquid chromatography (HPLC). For the purpose of in vitro antioxidant evaluation, a dual approach was adopted, encompassing the radical scavenging technique employing 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the total antioxidant capacity (TAC) assay. The acquired empirical data showcase substantial radical scavenging efficacy and pronounced relative antioxidant activity. Specifically, the DPPH and TAC methods yielded values of 483.45 ± 4.07 µg/mL and 54.59 ± 2.44 µg of ascorbic acid (AA)/mL, respectively, for the leaf extracts. Correspondingly, the root extracts demonstrated values of 297.03 ± 43.3 µg/mL and 65.615 ± 0.54 µg of AA/mL for the DPPH and TAC methods. In the realm of antimicrobial evaluation, the assessment of effects was undertaken through the agar well diffusion technique. The minimum inhibitory concentration, minimum bactericidal concentration, and minimum fungicidal concentration were determined for each extract. The inhibitory influence of the ethanol extracts was observed across bacterial strains including Staphylococcus aureus, Micrococcus luteus, and Pseudomonas aeruginosa, with the notable exception of Escherichia coli. However, fungal strains such as Candida glabrata and Rhodotorula glutinis exhibited comparatively lower resistance, whereas Aspergillus niger and Penicillium digitatum exhibited heightened resistance, evincing negligible antifungal activity. An anticipatory computational assessment of pharmacokinetic parameters was conducted, complemented by the application of the Pro-tox II web tool to delineate the potential toxicity profile of compounds intrinsic to the studied extracts. The culmination of these endeavors underpins the conceivable prospects of the investigated extracts as promising candidates for oral medicinal applications.

7.
J Cell Biochem ; 124(11): 1734-1748, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37796142

RESUMO

The pathogenic complexity of Alzheimer's disease (AD) demands the development of multitarget-directed agents aiming at improving actual pharmacotherapy. Based on the cholinergic hypothesis and considering the well-established role of butyrylcholinesterase (BuChE) in advanced stages of AD, the chemical structure of the acetylcholinesterase (AChE) inhibitor drug donepezil (1) was rationally modified for the design of new N-benzyl-piperidine derivatives (4a-d) as potential multitarget-direct AChE and BuChE inhibitors. The designed analogues were further studied through the integration of in silico and in vitro methods. ADMET predictions showed that 4a-d are anticipated to be orally bioavailable, able to cross the blood-brain barrier and be retained in the brain, and to have low toxicity. Computational docking and molecular dynamics indicated the formation of favorable complexes between 4a-d and both cholinesterases. Derivative 4a presented the lowest binding free energy estimation due to interaction with key residues from both target enzymes (-36.69 ± 4.47 and -32.23 ± 3.99 kcal/mol with AChE and BuChE, respectively). The in vitro enzymatic assay demonstrated that 4a was the most potent inhibitor of AChE (IC50 2.08 ± 0.16 µM) and BuChE (IC50 7.41 ± 0.44 µM), corroborating the in silico results and highlighting 4a as a novel multitarget-directed AChE/BuChE inhibitor.


Assuntos
Doença de Alzheimer , Butirilcolinesterase , Humanos , Butirilcolinesterase/metabolismo , Butirilcolinesterase/uso terapêutico , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/uso terapêutico , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular
8.
Food Res Int ; 173(Pt 1): 113365, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803662

RESUMO

Photolytic transformation of aspartame - a widely used artificial sweetener - under the simulated sunlight was studied for the first time. The experiments were conducted in pH range of 2.5 - 7.0 and in eight soft drinks available in the market. The highest degradation rate in the tested buffered solutions was observed under the neutral pH conditions. Irradiation of the soft drinks resulted in significantly (up to tenfold) faster degradation of aspartame, regardless of its initial concentration in the beverage. Such considerable acceleration of decomposition, not reported for aspartame so far, was ascribed to influence of the co-occurring ingredients, which can act as the photosensitizers. These findings indicate that some formulations may be particularly unfavorable in the context of aspartame photostability. Qualitative analysis of the studied processes revealed formation of six phototransformation products including three previously not described. In silico estimation of toxicity showed that some of the identified photoproducts, including the novel phenolic derivatives, may be more harmful than the parent compound. Taking into account relatively extensive formation of those products in the soft drinks, such finding may be particularly important from the food safety point of view.


Assuntos
Aspartame , Edulcorantes , Aspartame/análise , Edulcorantes/toxicidade , Edulcorantes/análise , Bebidas Gaseificadas/análise , Bebidas/análise
9.
J Pharm Biomed Anal ; 236: 115687, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37657178

RESUMO

Vorinostat is the first USFDA-approved HDAC inhibitor for the treatment of cutaneous t-cell lymphoma. Vorinostat was exposed to ICH-recommended hydrolytic (acid, base, and neutral), oxidative, thermal, and photolytic stress conditions to understand the degradation behaviour. A Stability indicating LC method was developed and validated for separating and identifying forced degradation products. Under different stress conditions, six degradants were identified and characterized by LC-HRMS, MS/MS, and hydrogen-deuterium exchange mass studies. Vorinostat was found to be highly susceptible to the acidic and basic environment. In contrast, the drug substance was stable in the solid state under thermal and photolytic conditions whereas, it was found moderately stable when photolytic stress was provided to dissolved state of Vorinostat in acetonitrile-water. The degradants were identified as 7-amino-N-phenylheptanamide, 8-hydrazineyl-8-oxo-N-phenyloctanamide, 8-oxo-8-(phenylamino)octanoic acid, 8-oxo-8-(2-(7-oxo-7-(phenylamino)heptyl)hydrazineyl)-N-phenyloctanamide, 8,8'-(1-hydroxyhydrazine-1,2-diyl)bis(8-oxo-N-phenyloctanamide), and N1-((8-oxo-8-(phenylamino)octanoyl)oxy)-N8-phenyloctanediamide. The mechanistic explanation for the formation of each degradant in stability conditions has also been derived. The major degradants were also isolated/synthesized and characterized through 1H NMR for preparing impurity standards. Additionally, in-silico toxicity of the degradants was predicted in comparison to the drug, to identify whether any degradant has any specific type of toxicity and requires special focus to set specification limits during formulation development. The predicted toxicity indicated that the degradants have similar safety profile as that of the drug and specification can be set as per general impurity guideline.

10.
Sci Total Environ ; 904: 167320, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37748613

RESUMO

The increased use of agrochemicals raises concerns about environmental, animal, and mainly human toxicology. The development of New Approach Methodologies (NAMs) for toxicological risk assessment including new in vitro tests and in silico protocols is encouraged. Although agrochemical mutagenicity testing is well established, a complementary alternative approach may contribute to increasing reliability, with the consequent reduction of false-positive results that lead to unnecessary use of animals in follow-up in vivo testing. Additionally, it is unreasonable to underestimate the phototoxic effects of an accidental dermal exposure to agrochemicals during agricultural work or domestic application in the absence of adequate personal protection equipment, especially in terms of photomutagenicity. In this scenario, we addressed the integration of in vitro and in silico techniques as NAMs to assess the mutagenic and phototoxic potential of agrochemicals. In the present study we used the yno1 S. cerevisiae strain as a biomodel for in vitro assessment of agrochemical mutagenicity, both in the absence and in the presence of simulated sunlight. In parallel, in silico predictions were performed using a combination of expert rule-based and statistical-based models to assess gene mutations and phototoxicity. None of the tested agrochemicals showed mutagenic potential in the two proposed approaches. The Gly and 2,4D herbicides were photomutagenic in the in vitro yeast test despite the negative in silico prediction of phototoxicity. Herein, we demonstrated a novel experimental approach combining both in silico and in vitro experiments to address the complementary investigation of the phototoxicity and (photo)mutagenicity of agrochemicals. These findings shed light on the importance of investigating and reconsidering the photosafety assessment of these products, using not only photocytotoxicity assays but also photomutagenicity assays, which should be encouraged.


Assuntos
Mutagênicos , Saccharomyces cerevisiae , Humanos , Animais , Agroquímicos/toxicidade , Reprodutibilidade dos Testes , Medição de Risco , Técnicas In Vitro
11.
Biomed Chromatogr ; 37(11): e5730, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37651995

RESUMO

Halcinonide is a topical corticosteroid approved by the US Food and Drug Administration (FDA), known for its anti-inflammatory and antipruritic properties. The therapeutic benefits of halcinonide have rendered it an effective treatment regimen for various dermatological conditions such as psoriasis, dermatitis, and eczema. However, stability of the drug substance is a prerequisite in determining the therapeutic efficacy and plays a crucial role during formulation development and long-term storage. As corticosteroids are highly susceptible to degradation, the current study aims to expose halcinonide to different stress conditions and understand its stability behavior. An HPLC method was developed for the separation of halcinonide and its degradation products. Separation was accomplished in gradient mode using an Eclipse Plus C18 column (250 × 4.5 mm, 5 µm) with ammonium formate (10 mM, pH 6.5) and acetonitrile as the mobile phases. LC-Q-TOF/MS/MS studies were conducted on halcinonide, which led to the identification of degraded products using optimized mass parameters. A potential mechanistic degradation pathway for halcinonide, along with the major identified degradation products has been established. The chromatographic method that was developed has been validated in compliance with the Q2(R1) guideline of the International Council for Harmonization. ProTox-II was used to perform in silico toxicity studies in order to evaluate the toxicity potential of both halcinonide and the identified degradation products.

12.
Curr Opin Struct Biol ; 80: 102588, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37028096

RESUMO

With the availability of public databases that store compound-target/compound-toxicity information, and Traditional Chinese medicine (TCM) databases, in silico approaches are used in toxicity studies of TCM herbal medicine. Here, three in silico approaches for toxicity studies were reviewed, which include machine learning, network toxicology and molecular docking. For each method, its application and implementation e.g., single classifier vs. multiple classifier, single compound vs. multiple compounds, validation vs. screening, were explored. While these methods provide data-driven toxicity prediction that is validated in vitro and/or in vivo, it is still limited to single compound analysis. In addition, these methods are limited to several types of toxicity, with hepatotoxicity being the most dominant. Future studies involving the testing of combination of compounds on the front end i.e., to generate data for in silico modeling, and back end i.e., validate findings from prediction models will advance the in silico toxicity modeling of TCM compounds.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/toxicidade , Simulação de Acoplamento Molecular , Simulação por Computador , Aprendizado de Máquina
13.
BMC Complement Med Ther ; 23(1): 30, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732775

RESUMO

BACKGROUND: The aerial part of Ocimum lamiifolium is commonly used in Ethiopian traditional medicine. Although this plant is mostly used in traditional medicine, its safety profile has not been documented yet. The aim of this study was to assess the sub-chronic toxicity of O. lamiifolium aqueous extract in rats and to determine the toxicity profile of GC-MS identified bioactive compounds obtained from essential oil of O. lamiifolium using in silico toxicity methods. METHODS: Eighty rats (40 male and 40 female) were randomly assigned to four groups of ten rats per sex/group. For 90 days, Groups I-III received 200, 400, and 600 mg/kg bw of aqueous extract of O. lamiifolium, respectively. Distilled water was given to Group IV (control). Clinical observations, food intake, and rat weight were all recorded during the experiment. In addition, several biochemical parameters, organ weight, and histology of the liver and kidney were all evaluated. For the in-silico toxicity study, GC-MS identified bioactive compounds in O. lamiifolium essential oil were obtained from published articles. The compounds two-dimensional structures were constructed using Chemdraw. The two-dimensional structures were converted into a simplified molecular input line entry system (SMILES) using the Swiss ADMET web tool. Furthermore, the toxicity parameters were predicted using the ProTox II server. RESULTS: The administration of an aqueous extract of O. lamiifolium leaves significantly (p < 0.05) reduced the test animals' food intake and body weight gain. In the high dose (600 mg/kg bw) treated group, the serum alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase levels were significantly increased (p < 0.05). In female rats given 600 mg/kg bw of O. lamiifolium, the levels of serum urea were also increased. In addition, rats given 600 mg/kg bw had significantly lower blood glucose levels than the control group (p < 0.05). Doses up to 400 mg/kg bw didn't bring a significant change to the histology of the liver. However, in the high dose (600 mg/kg bw) treated group, some female rats' livers showed mild sinusoidal and central vein dilatation, as well as parenchymal necrosis. our findings showed that all compounds derived from the essential oil of O. lamiifolium showed no mutagenicity or cytotoxicity. However, 30% of the compounds tested were hepatotoxic, 20% carcinogenic, and 20% immunotoxin. CONCLUSION: Our findings showed that oral administration of O. lamiifoliums aqueous extract up to a dose of 400 mg/kg bw is not toxic. However, high-dose (600 mg/kg bw) significantly affected the food consumption and weight gain of the experimental rats and the serum concentration of some liver and kidney enzymes were also significantly increased. Additionally, a considerable proportion of the tested compounds were predicted to be hepatotoxic, carcinogenic and immunotoxin. Furthermore, before employing O. lamiifolium preparations as drugs, a chronic toxicity research on the essential oil as well as its components that exhibited toxicity in the in-silico toxicity study is needed. Finally, use high doses of O. lamiifolium leaves with caution.


Assuntos
Imunotoxinas , Ocimum , Animais , Ratos , Imunotoxinas/farmacologia , Rim , Fígado , Ocimum/química , Extratos Vegetais/farmacologia
14.
Molecules ; 28(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36771009

RESUMO

Spiking neural networks are biologically inspired machine learning algorithms attracting researchers' attention for their applicability to alternative energy-efficient hardware other than traditional computers. In the current work, spiking neural networks have been tested in a quantitative structure-activity analysis targeting the toxicity of molecules. Multiple public-domain databases of compounds have been evaluated with spiking neural networks, achieving accuracies compatible with high-quality frameworks presented in the previous literature. The numerical experiments also included an analysis of hyperparameters and tested the spiking neural networks on molecular fingerprints of different lengths. Proposing alternatives to traditional software and hardware for time- and resource-consuming tasks, such as those found in chemoinformatics, may open the door to new research and improvements in the field.


Assuntos
Algoritmos , Redes Neurais de Computação , Software , Computadores , Aprendizado de Máquina
15.
J Pharm Biomed Anal ; 227: 115280, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36773542

RESUMO

The degradation profile of ponatinib was established during the present study by exposing it to various stress conditions. In-silico degradation pattern of ponatinib was outlined by using Zeneth software. Five degradation impurities were formed during the stress testing of ponatinib. High performance liquid chromatographic method was developed to separate these degradation impurities which includes ammonium acetate of pH 4.75 (A) and methanol (B) as mobile phase in gradient elution mode and Waters Reliant C18 (4.6 × 250 mm, 5 µm) column as stationary phase. Optimised flow rate, injection volume and detection wavelength of the HPLC method were 1.0 mL/min, 10 µL and 254 nm, respectively. Chemical structures of degradation impurities were proposed by high resolution mass spectrometry further, major degradation products were isolated, enriched and investigated thoroughly with the aid of nuclear magnetic resonance spectroscopy studies. The degradation impurities were identified as 4-aminophthalaldehyde (DP 1), 4-((4-methylpiperazin-1-yl)methyl)- 3-(trifluoromethyl) benzenamine (DP 2), 3-(2-(imidazo[1,2-b]pyridazin-3-yl)acetyl)- 4-methylbenzoic acid (DP 3), 3-(2-(imidazo[1,2-b]pyridazin-3-yl)ethynyl)- 4-methylbenzoic acid (DP 4) and N-oxide impurity (DP 5) which are new and were not reported in the literature till date. Additionally, toxicity and mutagenicity profiles of ponatinib and its degradation impurities were predicted in-silico by using DEREK and SARAH software. This whole study gives meaningful insights about chemical stability of ponatinib which is useful in its drug development lifecycle.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Espectroscopia de Ressonância Magnética/métodos , Estabilidade de Medicamentos
16.
Sci Total Environ ; 861: 160701, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36481145

RESUMO

Numerous agrochemicals, including pesticides and herbicides, are applied in modern agriculture, resulting in concerns for the ecosystem and human safety as humans are easily exposed to these compounds. Many agrochemicals, and their transformation products or metabolites, have shown toxicity in in vitro and in vivo studies. However, given the rapid development of novel agrochemicals, for many there is no information about their effects nor about metabolic transformations when ingested by humans. Tracing biomarkers may be the best method for assessing the impacts of agrochemicals. A combination of in vitro metabolism study and suspect screening of human samples (e.g., urine, blood) can be utilized to efficiently find biomarkers for agrochemical exposure. In the work reported here, we determined the in vitro metabolic profiling of six prioritized pesticides and synergists, namely boscalid, carbendazim, piperonyl butoxide, spiroxamine, dimethomorph and fludioxonil, in human liver microsomes. 17 major metabolites were structurally elucidated by high resolution mass spectrometry (HRMS). Major metabolic transformation processes (e.g., hydroxylation, demethylation and oxidation) were proposed for each pesticide. Individual in silico toxicity assessments showed that some metabolites had the same or even enhanced toxicity compared to parent compounds. Information about these metabolites obtained from HRMS was used for suspect screening in human activities related samples. Carbendazim and a metabolite of fludioxonil were identified in wastewater and laboratory urine samples, respectively. Our findings provide concrete evidence for the use of in vitro metabolites as biomarkers in biomonitoring studies of potential exposure to toxic chemicals.


Assuntos
Agroquímicos , Praguicidas , Humanos , Agroquímicos/toxicidade , Ecossistema , Praguicidas/toxicidade , Biomarcadores
17.
Sci Total Environ ; 860: 160448, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36442634

RESUMO

1-Ethoxy-2,3-difluoro-4-(trans-4-propylcyclohexyl)benzene (EDPrB) is a typical fluorinated liquid-crystal monomer (LCM). LCMs contaminants are becoming increasingly concerning due to their potential persistence, bioaccumulation, toxicity, and broad prevalence in environmental and human samples. However, LCM metabolism is poorly understood. Herein, by introducing selected EDPrB into the appropriate liver microsomes in vitro, we examined the metabolic pathways of LCM in humans, rats, pigs, Cyprinus carpio, crucian carp, and Channa argus. A total of 20 species-dependent metabolites were identified and structurally elucidated by gas and liquid chromatography-high resolution mass spectrometry for the first time. Dealkylation, H-abstraction, and hydroxylation reactions are the primary metabolic pathways. Half of these in vitro metabolites were found in the urine, serum, and fecal samples of Sprague-Dawley rats exposed to EDPrB. Toxicity predictions indicate that 17 metabolites can be classified as toxic. According to the Ecological Structure Activity Relationships (ECOSAR), a number of metabolites exhibit equivalent or greater aquatic toxicity to that of EDPrB. Toxicity Estimation Software Tool (T.E.S.T.) predicts that some metabolites exhibit developmental toxicity and mutagenicity in rats. These findings suggest that biotransformation should be particularly emphasized, and more toxicological and monitoring studies should be performed to assess the ecological and human safety of LCMs.


Assuntos
Benzeno , Carpas , Ratos , Humanos , Animais , Suínos , Ratos Sprague-Dawley , Benzeno/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Microssomos Hepáticos/metabolismo
18.
Chem Biodivers ; 19(12): e202200662, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36261320

RESUMO

The inhibition of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) protein could be a promising treatment for breast cancer. In this regard, docking studies were accomplished on various functionalized organic molecules. Among them, several derivatives of quinazolin-4(1H)-one exhibited anti-breast cancer activity and satisfied the drug likeliness properties. Further, the in vitro inhibitory studies by a series of 2-(2-phenoxyquinolin-3-yl)-2,3-dihydroquinazolin-4(1H)-one molecules showed strong anti-cancer activity than the currently available drug, wortmannin. The MTT cytotoxicity assay was used to predict the anti-proliferative activity of these drugs against MCF-7 cancer cells by inhibiting the PIK3CA protein. The dose-dependent analysis showed a striking decrease in cancer cell viability at 24 h with inhibitory concentrations (IC50 ) of 3b, 3c, 3d, 3f and 3m are 15±1, 17±1, 8±1, 10±1 and 60±1 (nanomoles), respectively. This is the first report in the literature on the inhibition of PIK3CA protein by quinazolinone derivatives that can be used in the treatment of cancer. Quinazolinone analogs have the potential to be safe and economically feasible scaffolds if they are produced using a chemical technique that is both straightforward and amenable to modification. From the cancer research perspective, this study can eventually offer better care for cancer patients.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Relação Estrutura-Atividade , Proliferação de Células , Simulação de Acoplamento Molecular , Antineoplásicos/química , Quinazolinonas , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Relação Dose-Resposta a Droga
19.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077464

RESUMO

Potential drug toxicities and drug interactions of redundant compounds of plant complexes may cause unexpected clinical responses or even severe adverse events. On the other hand, super-additivity of drug interactions between natural products and synthetic drugs may be utilized to gain better performance in disease management. Although without enough datasets for prediction model training, based on the SwissSimilarity and PubChem platforms, for the first time, a feasible workflow of prediction of both toxicity and drug interaction of plant complexes was built in this study. The optimal similarity score threshold for toxicity prediction of this system is 0.6171, based on an analysis of 20 different herbal medicines. From the PubChem database, 31 different sections of toxicity information such as "Acute Effects", "NIOSH Toxicity Data", "Interactions", "Hepatotoxicity", "Carcinogenicity", "Symptoms", and "Human Toxicity Values" sections have been retrieved, with dozens of active compounds predicted to exert potential toxicities. In Spatholobus suberectus Dunn (SSD), there are 9 out of 24 active compounds predicted to play synergistic effects on cancer management with various drugs or factors. The synergism between SSD, luteolin and docetaxel in the management of triple-negative breast cancer was proved by the combination index assay, synergy score detection assay, and xenograft model.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Fabaceae , Plantas Medicinais , Neoplasias de Mama Triplo Negativas , Mineração de Dados , Bases de Dados Factuais , Humanos
20.
J Pharm Biomed Anal ; 220: 114974, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-35963020

RESUMO

A simple and facile functional group-specific multilateral derivatization cum extraction method coupled with GC-MS based analytical methodology has been developed for the rapid identification and determination of five potential genotoxic impurities (GTIs), including epichlorohydrin, hydrazine, phenylhydrazine, 3-chloro-1,2-propanediol and 1-(2-chloroethoxy)- 2-methoxybenzene in the carvedilol phosphate (CRV-P) drug active pharmaceutical ingredient (API). A generic synthetic route has been explored to apply the current investigation to the majority of the market available synthetic routes for the carvedilol process. Five significant GTIs were identified, and their toxicity was examined using in-silico model. The pharmacokinetic and pharmacodynamic properties of the impurities were compared with the drug molecule to evince the associated risk of impurities during therapeutic action. Furthermore, a quantitative comparison has been made for each impurity with the drug molecule for their ADMET properties, and the potential nature of the impurities has been thoroughly assessed. The developed method encompasses simple derivatization cum extraction-oriented GC-MS method for the reported GTIs, which was also validated as per current ICH guidelines. The obtained LOD and LOQ for the method were between 0.06 ~ 0.61 µg/g and 0.17 ~ 1.8 µg/g, respectively, and the r2 values (0.994 ~ 0.997) show that the method is very sensitive and linear over a wide range (LOQ to 120 % of the target concentration). The percentage recoveries and relative standard deviation obtained were between 85.3 and 109.5 and 0.1-4.7, respectively, showing fit for purpose. Moreover, method precision, intermediate precision, and robustness of the method have also been successfully demonstrated. Thus, this method could be directly engaged as the quality forecasting tool for the marketed drug samples aimed at the estimation of the reported GTIs at trace level.


Assuntos
Contaminação de Medicamentos , alfa-Cloridrina , Carvedilol , Dano ao DNA , Epicloroidrina , Cromatografia Gasosa-Espectrometria de Massas/métodos , Hidrazinas , Preparações Farmacêuticas , Fenil-Hidrazinas , Fosfatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA