Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mini Rev Med Chem ; 22(8): 1131-1151, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34720080

RESUMO

Different biological methods based on bioactivity are available to detect cyanotoxins, including neurotoxicity, immunological interactions, hepatotoxicity, cytotoxicity, and enzymatic activity. The mouse bioassay is the first test employed in laboratory cultures, cell extracts, and water bloom materials to detect toxins. It is also used as a traditional method to estimate the LD50. Concerning the ease of access and low cost, it is the most common method for this purpose. In this method, a sample is injected intraperitoneally into adult mice, and accordingly, they are assayed and monitored for about 24 hours for toxic symptoms. The toxin can be detected using this method from minutes to a few hours; its type, e.g., hepatotoxin, neurotoxin, etc., can also be determined. However, this method is nonspecific, fails to detect low amounts, and cannot distinguish between homologues. Although the mouse bioassay is gradually replaced with new chemical and immunological methods, it is still the main technique to detect the bioactivity and efficacy of cyanotoxins using LD50 determined based on the survival time of animals exposed to the toxin. In addition, some countries oppose animal use in toxicity studies. However, high cost, ethical considerations, low-sensitivity, non-specificity, and prolonged processes persuade researchers to employ chemical and functional analysis techniques. The qualitative and quantitative analyses, as well as high specificity and sensitivity, are among the advantages of cytotoxicity tests to investigate cyanotoxins. The present study aimed at reviewing the results obtained from in vitro and in vivo investigations of the mouse bioassay to detect cyanotoxins, including microcystins, cylindrospermopsin, saxitoxins, etc.


Assuntos
Toxinas de Cianobactérias , Cianobactérias , Animais , Bioensaio/métodos , Cianobactérias/metabolismo , Toxinas de Cianobactérias/toxicidade , Camundongos , Microcistinas/toxicidade
2.
Pathogens ; 9(8)2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806685

RESUMO

Objectives: For a better understanding of the mechanisms involved in biofilm formation, we performed a broad identification and characterization of the strains affecting implants by evaluating the morphology of biofilms formed in vitro in correlation with tests of the strains' antibiotic susceptibility in planktonic form. The ability of the strains to form biofilms in vitro was evaluated by means of colony forming units counting, metabolic activity tests of biofilm cells, and scanning electron microscopy. Methods: A total of 140 strains were isolated from patients with orthopedic implant-related infections during the period of 2015 to 2018. The identification of the isolates was carried out through microbiological cultures and confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Antibiotic susceptibility rates of the isolates were accessed according to EUCAST (European Committee on Antimicrobial Susceptibility Testing). The ability of all isolates to form biofilms in vitro was evaluated by counting the colony forming units, by measuring the metabolic activity of biofilm cells, and by analyzing the morphology of the formed biofilms using scanning electron microscopy. Results: From all the isolates, 41.84% (62 strains) were Staphylococcus epidermidis and 15.60% (22 strains) were Staphylococcus aureus. A significant difference in the capacity of biofilm formation was observed among the isolates. When correlating the biofilm forming capacity of the isolates to their antibiotic susceptibility rates, we observed that not all strains that were classified as resistant were biofilm producers in vitro. In other words, bacteria that are not good biofilm formers can show increased tolerance to multiple antibiotic substances. Conclusion: From 2015 until 2018, Staphylococcus epidermidis was the strain that caused most of the orthopedic implant-related infections in our hospital. Not all strains causing infection in orthopedic implants are able to form biofilms under in vitro conditions. Differences were observed in the number of cells and morphology of the biofilms. In addition, antibiotic resistance is not directly related to the capacity of the strains to form biofilms in vitro. Further studies should consider the use of in vitro culture conditions that better reproduce the joint environment and the growth of biofilms in humans.

3.
EJNMMI Radiopharm Chem ; 5(1): 14, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32542416

RESUMO

BACKGROUND: In vitro experiments using radiolabeled molecules is fundamental for Positron emission tomography (PET) or single photon emission computed tomography (SPECT) tracer development and various metabolic assays, but no consensus on appropriate incubation conditions exists. Specifically, the use of shaking versus non-shaking conditions, cell number to medium volume and the choice of cell plating material may unintentionally influence cellular oxygenation and medium composition. This is problematic when testing the oxygen-dependence of tracers including 18F-fluoro-2-deoxyglucose ([18F]FDG) and hypoxia-selective 2-nitroimidazoles (e.g., 18F-fluoroazomycin-arabinoside, [18F]FAZA) or when doing prolonged experiments. The purpose of this study was to assess the influence of various experimental conditions on tracer retention. METHODS: Tumor cells were seeded in a) Glass or standard Polystyrene Petri dishes or as b) discrete droplets in polystyrene Petri dishes or on 9 mm glass coverslips positioned in glass Petri dishes. When confluent, cells were pre-equilibrated for 2 h to 21%, 0.5% or 0% O2 and [18F] FDG or [18F] FAZA was added, followed by cell harvest and analysis of radioactivity 1 h ([18F]FDG) or 3 h ([18F]FAZA) after. Experiments were conducted with/without orbital shaking. RESULTS: The influence of hypoxia on tracer retention varied widely among cell lines, but shaking-induced convection did not influence uptake. In contrast, hypoxia-driven [18F] FAZA, and to some extent [18F] FDG, retention was much lower in cells grown on polyethylene than glass. Scaling-down the number of cells did not compromise accuracy. CONCLUSIONS: Tracer retention was similar under stagnant and forced convection conditions suggesting that the former approach may be appropriate even when accurate control of oxygen and tracer availability is required. In contrast, conventional plasticware should be used with caution when studying tracers and drugs that are metabolized and retained or activated at low O2 levels. Downscaling of cell number, by reducing the effective growth area, was feasible, without compromising accuracy.

4.
Molecules ; 24(18)2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31546753

RESUMO

The main objective of this study is to develop a novel dual-purpose material based on carbon xerogel microspheres (CXMs) that permits the delayed release of cannabidiol (CBD) and the removal of aflatoxin. The CXMs were prepared by the sol-gel method and functionalized with phosphoric acid (CXMP) and melamine (CXMN). The support and the modified materials were characterized by scanning electronic microscopy (SEM), N2 adsorption at -196 °C, X-ray photoelectron spectroscopy (XPS), and zeta potential. For the loading of the cannabidiol (CBD) in the porous samples, batch-mode adsorption experiments at 25 °C were performed, varying the concentration of CBD. The desorption kinetics was performed at two conditions for simulating the gastric (pH of 2.1) and intestinal (pH of 7.4) conditions at 37 °C based on in vitro CBD release. Posteriorly, the samples obtained after desorption were used to study aflatoxin removal, which was evaluated through adsorption experiments at pH = 7.4 and 37 °C. The adsorption isotherms of CBD showed a type I(b) behavior, with the adsorbed uptake being higher for the support than for the modified materials with P and N. Meanwhile, the desorption kinetics of CBD at gastric conditions indicated release values lower than 8%, and the remaining amount was desorbed at pH = 7.4 in three hours until reaching 100% based on the in vitro experiments. The results for aflatoxin showed total removal in less than 30 min for all the materials evaluated. This study opens a broader landscape in which to develop dual-purpose materials for the delayed release of CBD, improving its bioavailability and allowing aflatoxin removal in gastric conditions.


Assuntos
Aflatoxinas/isolamento & purificação , Canabidiol/farmacologia , Carbono/química , Microesferas , Adsorção , Preparações de Ação Retardada/farmacologia , Cinética , Nitrogênio/química , Eletricidade Estática , Temperatura
5.
Acta Biol Hung ; 65(1): 107-18, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24561899

RESUMO

Medicinal plant extracts of five plants; Adhatoda vasica, Eucalyptus globulus, Lantana camara, Nerium oleander and Ocimum basilicum collected from Cairo, Egypt were evaluated against Fusarium oxysporum f. sp. lycopersici race 3 in vitro conditions using water and certain organic solvents. The results revealed that cold distilled water extracts of O. basilicum and E. globulus were the most effective ones for inhibiting the growth of F. oxysporum f. sp. lycopersici. Butanolic and ethanolic extracts of the tested plants inhibited the pathogen growth to a higher extent than water extracts. Butanolic extract of O. basilicum completely inhibited the growth of F. oxysporum f. sp. lycopersici at concentrations 1.5 and 2.0% (v/v). Butanolic extracts (2.0%) of tested plants had a strong inhibitory effect on hydrolytic enzymes; ß-glucosidase, pectin lyase and protease of F. oxysporum f. sp. lycopersici. This study has confirmed that the application of plant extracts, especially from O. basilicum for controlling F. oxysporum f. sp. lycopersici is environmentally safe, cost effective and does not disturb ecological balance. Investigations are in progress to test the efficacy of O. basilicum extract under in vivo conditions.


Assuntos
Fungicidas Industriais/análise , Fusarium/efeitos dos fármacos , Magnoliopsida/química , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Proteínas Fúngicas/metabolismo , Fusarium/enzimologia , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA