Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Fish Shellfish Immunol ; 152: 109773, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39019124

RESUMO

Fish nocardiosis is a chronic disease mainly caused by Nocardia seriolae, which occurs in a variety of economically cultured freshwater and marine fish. Studies have shown that DNA vaccine is an effective treatment to protect fish from bacterial infection. In our previous experiment, an in vivo-induced gene of N. seriolae, encoding phosphoketolase (PK) family protein, was identified by in vivo-induced antigen technology. In the present study, the antigenic gene encoding PK family protein was analyzed by bioinformatics and further inserted into the eukaryotic expression vector pcDNA3.1-myc-his-A for DNA vaccine development. The immunological effects of pcDNA-PK DNA vaccine were assessed in hybrid snakehead (Channa maculata ♀ × Channa argus ♂), showing induction in several serum enzyme activity parameters (including LZM, SOD, ACP and AKP), increasing in specific-antibody IgM levels, as well as up-regulation in six immune-related genes (CD4, CD8α, TNFα, IL-1ß, MHCIα and MHCIIα). Moreover, an immune-protection with a relative survival rate was provided at 53.82 % following artificial challenge with N. seriolae in vaccinated fish in comparison to the control group. In summary, these results indicate that pcDNA-PK DNA vaccine could boost strong immune responses in hybrid snakehead and show preferably protective efficacy against N. seriolae, which may be applied in aquaculture to control fish nocardiosis.


Assuntos
Vacinas Bacterianas , Doenças dos Peixes , Nocardiose , Nocardia , Vacinas de DNA , Animais , Nocardia/imunologia , Nocardiose/veterinária , Nocardiose/imunologia , Nocardiose/prevenção & controle , Doenças dos Peixes/imunologia , Doenças dos Peixes/prevenção & controle , Vacinas de DNA/imunologia , Vacinas Bacterianas/imunologia , Aldeído Liases/genética , Aldeído Liases/imunologia , Peixes/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética
2.
Fish Shellfish Immunol ; 147: 109410, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38309489

RESUMO

Nocardia seriolae has been identified as the causative agent of fish nocardiosis, resulting in serious economic losses in aquaculture. With an aim to screen potential candidates for vaccine development against N. seriolae, the in vivo-induced genes of N. seriolae in hybrid snakehead (Channa maculate ♀ × Channa argus ♂) model were profiled via in vivo-induced antigen technology (IVIAT) in the present study, and 6 in vivo-induced genes were identified as follows: IS701 family transposase (is701), membrane protein insertase YidC (yidC), ergothioneine biosynthesis glutamate-cysteine ligase (egtA), molybdopterin respectively-dependent oxidoreductase (mol), phosphoketolase family protein (Ppl), hypothetical protein 6747 (hp6747). Additionally, the yidC was inserted into eukaryotic expression vector pcDNA3.1-myc-his-A to construct a DNA vaccine named as pcDNA-YidC to evaluate immunoprotection in hybrid snakehead after artificial challenge with N. serioale. Results showed that the transcription of yidC was detected in spleen, trunk kidney, muscle and liver in vaccinated fish, suggesting that this antigenic gene can be recombinantly expressed in fish. Meanwhile, indexes of humoral immunity were evaluated in the vaccinated fish through assessing specific-antibody IgM and serum enzyme activities, including lysozyme (LZM), superoxide dismutase (SOD), acid phosphatase (ACP) and alkaline phosphatase (AKP). Quantitative real-time PCR analysis indicated that pcDNA-YidC DNA vaccine could notably enhance the expression of immune-related genes (CD4、CD8α、MHCIIα、TNFα、IL-1ß and MHCIα) in 4 tissues (spleen, trunk kidney, muscle and liver) of the vaccinated fish. Finally, an immuno-protection with a relative survival rate of 65.71 % was displayed in vaccinated fish in comparison to the control groups. Taken together, these results indicate that pcDNA-YidC DNA vaccine could boost strong immune responses in hybrid snakehead and show preferably protective efficacy against N. seriolae, indicating that IVIAT is a helpful strategy to screen the highly immunogenic antigens for vaccine development against fish nocardiosis.


Assuntos
Doenças dos Peixes , Nocardiose , Nocardia , Vacinas de DNA , Animais , Peixes
4.
Microb Pathog ; 79: 31-40, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25595678

RESUMO

Infection with Streptococcus equi ssp. zooepidemicus (Streptococcus zooepidemicus, SEZ) can cause septicemia, meningitis, and mastitis in domesticated species. Identification of this organism's virulence factors is an effective way of clarifying its pathogenic mechanism. We employed in vivo-induced antigen technology (IVIAT) to find bacterial genes that were only expressed or upregulated in an infected host (IVI genes). Convalescent-phase sera from pigs infected with SEZ were pooled, adsorbed against in vitro antigens, and used to screen SEZ genomic expression libraries. This analysis identified 43 genes as IVI genes. Six of these 43 genes were verified via real-time PCR. Following the analysis, we were able to assign a putative function to 36 of the 43 proteins. These proteins included those involved in virulence and adaptation; formation of intermediary products; gene replication, transcription and expression; energy metabolism; transport and also various proteins of unknown function. The relationship between sagD gene and bacterial virulence was confirmed. This study provides new molecular data for the study of streptococcal disease in swine and is important for identifying the pathogenic mechanisms of SEZ.


Assuntos
Perfilação da Expressão Gênica , Genes Bacterianos , Interações Hospedeiro-Patógeno , Infecções Estreptocócicas/veterinária , Streptococcus equi/crescimento & desenvolvimento , Fatores de Virulência/biossíntese , Animais , Infecções Estreptocócicas/microbiologia , Streptococcus equi/genética , Suínos , Fatores de Virulência/genética
5.
Biochim Biophys Acta ; 1830(11): 5229-35, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23850640

RESUMO

BACKGROUND: Campylobacter jejuni is an important food-borne and zoonotic pathogen with a worldwide distribution. Humans and chickens are hosts of this pathogen. At present, there is no ideal vaccine for controlling human campylobacteriosis or the carriage of C. jejuni by chickens. Bacterial in vivo-induced antigens are useful as potential vaccine candidates and biomarkers of virulence. METHODS: In this study, we developed a novel systematic immunoproteomics approach to identify in vivo-induced antigens among the total cell proteins of C. jejuni using pre-adsorbed sera from patients infected with C. jejuni. RESULTS: Overall, 14 immunoreactive spots were probed on a PVDF membrane using pre-adsorbed human sera against C. jejuni. Then, we excised these protein spots from a duplicate gel and identified using MALDI-TOF MS. In total, 14 in vivo-induced antigens were identified using PMF and BLAST analysis. The identified proteins include CadF (CadF-1 and CadF-2), CheW, TufB, DnaK, MetK, LpxB, HslU, DmsA, PorA, ProS, CJBH_0976, CSU_0396 and hypothetical protein cje135_05017. Real-time RT-PCR was performed on 9 genes to compare their expression levels in vivo and in vitro. The data showed that 8 of the 9 analyzed genes were significantly upregulated in vivo relative to in vitro. CONCLUSION: We successfully developed a novel immunoproteomics method for identifying in vivo-induced Campylobacter jejuni antigens by using pre-adsorbed sera from infected patients. GENERAL SIGNIFICANCE: This new analysis method may prove to be useful for identifying in vivo-induced antigens within any host infected by bacteria and will contribute to the development of new subunit vaccines.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Infecções por Campylobacter/imunologia , Campylobacter jejuni/imunologia , Soros Imunes/imunologia , Ensaio Imunorradiométrico/métodos , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vacinas Bacterianas/genética , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/metabolismo , Infecções por Campylobacter/genética , Infecções por Campylobacter/metabolismo , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Soros Imunes/genética , Soros Imunes/metabolismo , Pessoa de Meia-Idade , Regulação para Cima
6.
Microb Pathog ; 63: 8-15, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23747686

RESUMO

Streptococcus suis (S. suis) serotype 2 usually cause infection in swine. Recently, two large-scale outbreaks in China with severe streptococcal toxic shock syndrome (STSS) and high mortality raised worldwide concern to human S. suis infection. To reveal the molecular pathogenesis of S. suis 2 during human infection, in-vivo induced antigen technology (IVIAT) was applied to identify the in-vivo induced genes (ivi genes) of S. suis 05ZYH33. The ivi genes are specifically expressed or up-regulated in-vivo and always associated with the in-vivo survival and pathogenicity of pathogens. In present study, convalescent sera from S. suis 05ZYH33 infected patients were pooled and fully adsorbed with in-vitro grown S. suis 05ZYH33 and Escherichia coli BL21 (DE3). Genomic expression library of 05ZYH33 was repeatedly screened with colony immunoblot assay using adsorbed sera. Finally, 19 genes were assessed as ivi genes of 05ZYH33. Fifteen of 19 genes encode proteins with biological functions in substance transport and metabolism, cell structure biogenesis, cell cycle control, replication, translation and other functions. The 4 remaining genes encode proteins with unknown functions. Of the 19 ivi genes, five (SSU05_0247, 0437, 1577, 1664 and 2144) encode proteins with no immunoreactivity to control sera from healthy individuals never exposed to 05ZYH33. The successful identification of ivi genes not only sheds light on understanding the pathogenesis of S. suis 05ZYH33 during its human infection, but also provides potential targets for the developments of new vaccines, therapeutic drugs and diagnostic reagents against human S. suis infection.


Assuntos
Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Perfilação da Expressão Gênica , Infecções Estreptocócicas/microbiologia , Streptococcus suis/genética , Anticorpos Antibacterianos , Proteínas de Bactérias/imunologia , Humanos , Immunoblotting/métodos
7.
Evid Based Complement Alternat Med ; 6(3): 283-95, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18955246

RESUMO

Lyme disease (LD) is the most common tick-borne disease in the northern hemisphere, producing a wide range of disabling effects on multiple human targets, including the skin, the nervous system, the joints and the heart. Insufficient clinical diagnostic methods, the necessity for prompt antibiotic treatment along with the pervasive nature of infection impel the development and establishment of new clinical diagnostic tools with increased accuracy, sensitivity and specificity. The goal of this article is 4-fold: (i) to detail LD infection and pathology, (ii) to review prevalent diagnostic methods, emphasizing inherent problems, (iii) to introduce the usage of in vivo induced antigen technology (IVIAT) in clinical diagnostics and (iv) to underscore the relevance of a novel comprehensive LD diagnostic approach to practitioners of Complementary and Alternative Medicine (CAM). Utilization of this analytical method will increase the accuracy of the diagnostic process and abridge the time to treatment, with antibiotics, herbal medicines and nutritional supplements, resulting in improved quality of care and disease prognosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA