Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Nanotechnology ; 35(41)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38991513

RESUMO

Among the experimental realization of fault-tolerant topological circuits are interconnecting nanowires with minimal disorder. Out-of-plane indium antimonide (InSb) nanowire networks formed by merging are potential candidates. Yet, their growth requires a foreign material stem usually made of InP-InAs. This stem imposes limitations, which include restricting the size of the nanowire network, inducing disorder through grain boundaries and impurity incorporation. Here, we omit the stem allowing for the growth of stemless InSb nanowire networks on an InP substrate. To enable the growth without the stem, we show that a preconditioning step using arsine (AsH3) is required before InSb growth. High-yield of stemless nanowire growth is achieved by patterning the substrate with a selective-area mask with nanohole cavities, containing restricted gold droplets from which nanowires originate. Interestingly, these nanowires are bent, posing challenges for the synthesis of interconnecting nanowire networks due to merging failure. We attribute this bending to the non-homogeneous incorporation of arsenic impurities in the InSb nanowires and the interposed lattice-mismatch. By tuning the growth parameters, we can mitigate the bending, yielding large and single crystalline InSb nanowire networks and nanoflakes. The improved size and crystal quality of these nanostructures broaden the potential of this technique for fabricating advanced quantum devices.

2.
Molecules ; 29(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38930890

RESUMO

InBi is a topological nodal line semimetal with strong spin-orbit coupling. It is epitaxially compatible with III-V semiconductors and, hence, an attractive material for topological spintronics. However, growth by molecular beam epitaxy (MBE) is challenging owing to the low melting point of InBi and the tendency to form droplets. We investigate approaches for epitaxial growth of InBi films on InSb(001) substrates using MBE and periodic supply epitaxy (PSE). It was not possible to achieve planar, stoichiometric InBi heteroepitaxy using MBE growth over the parameter space explored. However, pseudomorphic growth of ultra-thin InBi(001) layers could be achieved by PSE on InSb(001). A remarkable change to the in-plane epitaxial orientation is observed.

3.
J Phys Condens Matter ; 36(38)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38815611

RESUMO

InSb, a narrow-band III-V semiconductor, is known for its small bandgap, small electron effective mass, high electron mobility, large effectiveg-factor, and strong spin-orbit interactions. These unique properties make InSb interesting for both industrial applications and quantum information processing. In this paper, we provide a review of recent progress in quantum transport research on InSb quantum well devices. With advancements in the growth of high-quality heterostructures and micro/nano fabrication, quantum transport experiments have been conducted on low-dimensional systems based on InSb quantum wells. Furthermore, ambipolar operations have been achieved in undoped InSb quantum wells, allowing for a systematic study of the band structure and quantum properties of p-type narrow-band semiconductors. Additionally, we introduce the latest research on InAsSb quantum wells as a continuation of exploring physics in semiconductors with even narrower bandgaps.

4.
Small ; : e2400967, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38751056

RESUMO

Pure magnesium anode used in rechargeable magnesium batteries (RMB) exhibits high theoretical capacity but has been challenged by the passivation issue with conventional electrolytes. Alloy-type anodes have the potential to surpass this issue and have attracted increasing attention. However, the kinetic performance and stabilities of conventional alloy anodes are still constrained. In this study, the InSb-10%C anode is synthesized by a two-step high-energy ball milling process. The InSb-10%C anode exhibits a remarkably high capacity of up to 448 mA h g-1, significantly improved cycle performance (234 mA h g-1 at 100 cycles) and rate performance (168 mA h g-1 at 500 mA g-1). The above-mentioned superior performance of the InSb-10%C anode for RMBs is attributed to the cellular graphitized amorphous carbon composite structure (CGA) which effectively refines the particle size and restricts the volume expansion. Additionally, the reduced surface electron density of InSb combined with the high conductivity resulting from graphitization enhances the Mg2+ diffusion performance. Notably, the InSb-10%C anode demonstrates good compatibility with conventional halogen-free salt ether-based electrolytes in the full battery configuration.

5.
Nanotechnology ; 35(25)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38467064

RESUMO

Semiconductor nanowire (NW) quantum devices offer a promising path for the pursuit and investigation of topologically-protected quantum states, and superconducting and spin-based qubits that can be controlled using electric fields. Theoretical investigations into the impact of disorder on the attainment of dependable topological states in semiconducting nanowires with large spin-orbit coupling andg-factor highlight the critical need for improvements in both growth processes and nanofabrication techniques. In this work, we used a hybrid lithography tool for both the high-resolution thermal scanning probe lithography and high-throughput direct laser writing of quantum devices based on thin InSb nanowires with contact spacing of 200 nm. Electrical characterization demonstrates quasi-ballistic transport. The methodology outlined in this study has the potential to reduce the impact of disorder caused by fabrication processes in quantum devices based on 1D semiconductors.

6.
ACS Nano ; 18(6): 5113-5121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38305195

RESUMO

Colloidal quantum dot (CQD) technology is considered the main contender toward a low-cost high-performance optoelectronic technology platform for applications in the short-wave infrared (SWIR) to enable 3D imaging, LIDAR night vision, etc. in the consumer electronics and automotive markets. In order to unleash the full potential of this technology, there is a need for a material that is environmentally friendly, thus RoHS compliant, and possesses adequate optoelectronic properties to deliver high-performance devices. InSb CQDs hold great potential in view of their RoHS-compliant nature and─in principle─facile access to the SWIR. However, to date progress in realizing high-performance optoelectronic devices, including photodetectors (PDs), has been limited. Here, we have developed a synthesis method for producing size-tunable InSb CQDs with distinct excitonic peaks spanning a wide range from 900 to 1750 nm. To passivate the surface defects and enhance the photoluminescence (PL) efficiency of InSb CQDs, we further designed an InSb/InP core-shell structure. By employing the InSb/InP core-shell CQDs in a photodiode device stack, we report on robust InSb CQD SWIR photodetectors that exhibit an external quantum efficiency (EQE) of 25% at 1240 nm, a wide linear dynamic range exceeding 128 dB, a photoresponse time of 70 ns, and a specific detectivity of 4.4 × 1011 jones.

7.
Small ; : e2306535, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38063843

RESUMO

Colloidal quantum dots (CQDs) are emerging materials for short-wave infrared (SWIR, ≈1100-3000 nm) photodetectors, which are technologically important for a broad array of applications. Unfortunately, the most developed SWIR CQD systems are Pb and Hg chalcogenides; their toxicity and regulated compositions limit their applications. InSb CQD system is a potential environmentally friendly alternative, whose bandgap in theory, is tunable via quantum confinement across the SWIR spectrum. However, InSb CQDs are difficult to exploit, due to their complex syntheses and uncommon reactive precursors, which greatly hinder their application and study. Here, a one-pot synthesis strategy is reported using commercially available precursors to synthesize-under standard colloidal synthesis conditions-high-quality, size-tunable InSb CQDs. With this strategy, the large Bohr exciton radius of InSb can be exploited for tuning the bandgap of the CQDs over a wide range of wavelengths (≈1250-1860 nm) across the SWIR region. Furthermore, by changing the surface ligands of the CQDs from oleic acid (OA) to 1-dodecanthiol (DDT), a ≈20-fold lengthening in the excited-state lifetime, efficient carrier multiplication, and slower carrier annihilation are observed. The work opens a wide range of SWIR applications to a promising class of Pb- and Hg-free CQDs.

8.
Discov Nano ; 18(1): 100, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37566175

RESUMO

The attainment of dynamic tunability in spectrally selective optical absorption has been a longstanding objective in modern optics. Typically, Fabry-Perot resonators comprising metal and semiconductor thin films have been employed for spectrally selective light absorption. In such resonators, the resonance wavelength can be altered via structural modifications. The research has progressed further with the advent of specialized patterning of thin films and the utilization of metasurfaces. Nonetheless, achieving dynamic tuning of the absorption wavelength without altering the geometry of the thin film or without resorting to lithographic fabrication still poses a challenge. In this study, the incorporation of a metal-oxide-semiconductor (MOS) architecture into the Fabry-Perot nanocavity is shown to yield dynamic spectral tuning in a perfect narrowband light absorber within the visible range. Such spectral tuning is achieved using n-type-doped indium antimonide and n-type-doped indium arsenide as semiconductors in a MOS-type structure. These semiconductors offer significant tuning of their optical properties via electrically induced carrier accumulation. The planar structure of the absorber models presented facilitates simple thin-film fabrication. With judicious material selection and appropriate bias voltage, a spectral shift of 47 nm can be achieved within the visible range, thus producing a discernible color change.

9.
Nano Lett ; 23(8): 3189-3195, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37027539

RESUMO

Structural moiré superstructures arising from two competing lattices may lead to unexpected electronic behavior. Sb is predicted to show thickness-dependent topological properties, providing potential applications for low-energy-consuming electronic devices. Here we successfully synthesize ultrathin Sb films on semi-insulating InSb(111)A. Despite the covalent nature of the substrate, which has dangling bonds on the surface, we prove by scanning transmission electron microscopy that the first layer of Sb atoms grows in an unstrained manner. Rather than compensating for the lattice mismatch of -6.4% by structural modifications, the Sb films form a pronounced moiré pattern as we evidence by scanning tunneling microscopy. Our model calculations assign the moiré pattern to a periodic surface corrugation. In agreement with theoretical predictions, irrespective of the moiré modulation, the topological surface state known on a thick Sb film is experimentally confirmed to persist down to small film thicknesses, and the Dirac point shifts toward lower binding energies with a decrease in Sb thickness.

10.
J Appl Crystallogr ; 56(Pt 2): 381-390, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37032969

RESUMO

Micropillar compression is a method of choice to understand mechanics at small scale. It is mainly studied with electron microscopy or white-beam micro-Laue X-ray diffraction. The aim of the present article is to show the possibilities of the use of diffraction with a coherent X-ray beam. InSb micropillars in epitaxy with their pedestals (i.e. their support) are studied in situ during compression. Firstly, an experiment using a collimated beam matching the pillar size allows determination of when the sample enters the plastic regime, independently of small defects induced by experimental artefacts. A second experiment deals with scanning X-ray diffraction maps with a nano-focused beam; despite the coherence of the beam, the contributions from the pedestal and from the micropillar in the diffraction patterns can be separated, making possible a spatially resolved study of the plastic strain fields. A quantitative measurement of the elastic strain field is nevertheless hampered by the fact that the pillar diffracts at the same angles as the pedestal. Finally, no image reconstructions were possible in these experiments, either in situ due to a blurring of the fringes during loading or post-mortem because the defect density after yielding was too high. However, it is shown how to determine the elastic bending of the pillar in the elastic regime. Bending angles of around 0.3° are found, and a method to estimate the sample's radius of curvature is suggested.

11.
ACS Appl Mater Interfaces ; 15(12): 16288-16298, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36940162

RESUMO

Majorana zero modes, with prospective applications in topological quantum computing, are expected to arise in superconductor/semiconductor interfaces, such as ß-Sn and InSb. However, proximity to the superconductor may also adversely affect the semiconductor's local properties. A tunnel barrier inserted at the interface could resolve this issue. We assess the wide band gap semiconductor, CdTe, as a candidate material to mediate the coupling at the lattice-matched interface between α-Sn and InSb. To this end, we use density functional theory (DFT) with Hubbard U corrections, whose values are machine-learned via Bayesian optimization (BO) [ npj Computational Materials 2020, 6, 180]. The results of DFT+U(BO) are validated against angle resolved photoemission spectroscopy (ARPES) experiments for α-Sn and CdTe. For CdTe, the z-unfolding method [ Advanced Quantum Technologies 2022, 5, 2100033] is used to resolve the contributions of different kz values to the ARPES. We then study the band offsets and the penetration depth of metal-induced gap states (MIGS) in bilayer interfaces of InSb/α-Sn, InSb/CdTe, and CdTe/α-Sn, as well as in trilayer interfaces of InSb/CdTe/α-Sn with increasing thickness of CdTe. We find that 16 atomic layers (3.5 nm) of CdTe can serve as a tunnel barrier, effectively shielding the InSb from MIGS from the α-Sn. This may guide the choice of dimensions of the CdTe barrier to mediate the coupling in semiconductor-superconductor devices in future Majorana zero modes experiments.

12.
ACS Appl Mater Interfaces ; 15(6): 8624-8635, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36724387

RESUMO

Incorporating an intentional strain compensating InSb interface (IF) layer in InAs/GaSb type-II superlattices (T2SLs) enhances device performance. But there is a lack of studies that correlate this approach's optical and structural quality, so the mechanisms by which this improvement is achieved remain unclear. One critical issue in increasing the performance of InAs/GaSb T2SLs arises from the lattice mismatch between InAs and GaSb, leading to interfacial strain in the structure. Not only that but also, since each side of the InAs/GaSb heterosystem does not have common atoms, there is a possibility of atomic intermixing at the IFs. To address such issues, an intentional InSb interfacial layer is commonly introduced at the InAs-on-GaSb and GaSb-on-InAs IFs to compensate for the strain and the chemical mismatches. In this report, we investigate InAs/GaSb T2SLs with (Sample A) and without (Sample B) InSb IF layers emitting in the mid-wavelength infrared (MWIR) through photoluminescence (PL) and band structure simulations. The PL studies indicate that the maximum PL intensity of Sample A is 1.6 times stronger than that of Sample B. This could be attributed to the effect of migration-enhanced epitaxy (MEE) growth mode. Band structure simulations understand the impact of atomic intermixing and segregation at T2SL IFs on the bandgap energy and PL intensity. It is observed that atomic intermixing at the IFs changes the bandgap energy and significantly affects the wave function overlap and the optical property of the samples. Transmission electron microscopy (TEM) measurements reveal that the T2SL IFs in Sample A are very rough compared to sharp IFs in Sample B, indicating a high possibility of atomic intermixing and segregation. Based on these results, it is believed that high-quality heterostructure could be achieved by controlling the IFs to enhance its structural and compositional homogeneities and the optical properties of the T2SLs.

13.
Adv Mater ; 35(14): e2208952, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36683327

RESUMO

Optical carrier incubation can effectively alter the electron transport properties of semiconductors; thus, optical switching of the plasmonic response of the semiconductor enables the ultrafast manipulation of the light at the nanoscale. Semiconductor nanostructures are promising platforms in on-chip high-speed plasmonic devices, owing to their high photoinduced electron injection efficiency at sub-picosecond and compatibility with contemporary semiconductor technologies. The pure single crystalline InSb nanowires are promising plasmonic materials in the mid-infrared region due to their high electron mobility and small electron effective mass. Here, the pump-probe nanoscopy is utilized to investigate the pump fluence dependency and the dynamics of the non-equilibrium plasmons in the InSb nanowires. The InSb plasmon is successfully switched by injecting the photoinduced electrons and the practical tuning of the plasmon frequency to one octave is shown by increasing the pump fluence from 0 to 90 µJ cm-2 . The density of the photoinduced electrons in InSb nanowires is 18.8 × 1018  cm-3 with pump fluence as low as 90 µJ cm-2 . The high electron mobility of the InSb supports the low-loss plasmon with a damping rate of ≈200 cm-1 . The InSb nanowires' excellent plasmonic properties ensure that they are a promising platform for upcoming high-speed mid-infrared plasmonic materials for informatic devices.

14.
Nano Lett ; 22(21): 8502-8508, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36285780

RESUMO

We report nonreciprocal dissipation-less transport in single ballistic InSb nanoflag Josephson junctions. Applying an in-plane magnetic field, we observe an inequality in supercurrent for the two opposite current propagation directions. Thus, these devices can work as Josephson diodes, with dissipation-less current flowing in only one direction. For small fields, the supercurrent asymmetry increases linearly with external field, and then it saturates as the Zeeman energy becomes relevant, before it finally decreases to zero at higher fields. The effect is maximum when the in-plane field is perpendicular to the current vector, which identifies Rashba spin-orbit coupling as the main symmetry-breaking mechanism. While a variation in carrier concentration in these high-quality InSb nanoflags does not significantly influence the supercurrent asymmetry, it is instead strongly suppressed by an increase in temperature. Our experimental findings are consistent with a model for ballistic short junctions and show that the diode effect is intrinsic to this material.

15.
Sensors (Basel) ; 22(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35890941

RESUMO

The ability to precisely measure magnetic fields under extreme operating conditions is becoming increasingly important as a result of the advent of modern diagnostics for future magnetic-confinement fusion devices. These conditions are recognized as strong neutron radiation and high temperatures (up to 350 °C). We report on the first experimental comparison of the impact of neutron radiation on graphene and indium antimonide thin films. For this purpose, a 2D-material-based structure was fabricated in the form of hydrogen-intercalated quasi-free-standing graphene on semi-insulating high-purity on-axis 4H-SiC(0001), passivated with an Al2O3 layer. InSb-based thin films, donor doped to varying degrees, were deposited on a monocrystalline gallium arsenide or a polycrystalline ceramic substrate. The thin films were covered with a SiO2 insulating layer. All samples were exposed to a fast-neutron fluence of ≈7×1017 cm-2. The results have shown that the graphene sheet is only moderately affected by neutron radiation compared to the InSb-based structures. The low structural damage allowed the graphene/SiC system to retain its electrical properties and excellent sensitivity to magnetic fields. However, InSb-based structures proved to have significantly more post-irradiation self-healing capabilities when subject to proper temperature treatment. This property has been tested depending on the doping level and type of the substrate.

16.
Proc Natl Acad Sci U S A ; 119(31): e2120028119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35878027

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of pancreatic ß-cells. One of the earliest aspects of this process is the development of autoantibodies and T cells directed at an epitope in the B-chain of insulin (insB:9-23). Analysis of microbial protein sequences with homology to the insB:9-23 sequence revealed 17 peptides showing >50% identity to insB:9-23. Of these 17 peptides, the hprt4-18 peptide, found in the normal human gut commensal Parabacteroides distasonis, activated both human T cell clones from T1D patients and T cell hybridomas from nonobese diabetic (NOD) mice specific to insB:9-23. Immunization of NOD mice with P. distasonis insB:9-23 peptide mimic or insB:9-23 peptide verified immune cross-reactivity. Colonization of female NOD mice with P. distasonis accelerated the development of T1D, increasing macrophages, dendritic cells, and destructive CD8+ T cells, while decreasing FoxP3+ regulatory T cells. Western blot analysis identified P. distasonis-reacting antibodies in sera of NOD mice colonized with P. distasonis and human T1D patients. Furthermore, adoptive transfer of splenocytes from P. distasonis-treated mice to NOD/SCID mice enhanced disease phenotype in the recipients. Finally, analysis of human children gut microbiome data from a longitudinal DIABIMMUNE study revealed that seroconversion rates (i.e., the proportion of individuals developing two or more autoantibodies) were consistently higher in children whose microbiome harbored sequences capable of producing the hprt4-18 peptide compared to individuals who did not harbor it. Taken together, these data demonstrate the potential role of a gut microbiota-derived insB:9-23-mimic peptide as a molecular trigger of T1D pathogenesis.


Assuntos
Diabetes Mellitus Tipo 1 , Microbioma Gastrointestinal , Mimetismo Molecular , Peptídeos , Animais , Autoanticorpos/imunologia , Bacteroidetes , Linfócitos T CD8-Positivos , Criança , Diabetes Mellitus Tipo 1/patologia , Feminino , Humanos , Insulina/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Peptídeos/química
17.
Nanomaterials (Basel) ; 12(12)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35745371

RESUMO

Herein, we demonstrate a facile technique for the fabrication of one-dimensional indium antimonide (InSb) nanowires using anodic aluminium oxide (AAO) template-assisted vacuum die-casting method. The filling mechanism of the vacuum die-casting process is investigated on varying AAO pore structures through different electrolytes. It is found that the anodizing electrolytes play a vital role in nanowire growth and structure formation. The as-obtained InSb nanowires from the dissolution process show a degree of high crystallinity, homogeneity, and uniformity throughout their structure. The TEM and XRD results elucidated the InSb zinc-blende crystal structure and preferential orientation along the c-axis direction. The thermoelectric characteristics of InSb nanowires were measured with a four-electrode system, and their resistivity, Seebeck coefficient, power factor, thermal conductivity, and ZT have been evaluated. Further, surface-modified nanowires using the reactive-ion etching technique showed a 50% increase in thermoelectric performance.

18.
Nanotechnology ; 33(32)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35504264

RESUMO

Semiconductor InSb nanosheet/hexagonal boron nitride (hBN)/graphite trilayers are fabricated, and single- and double-gate devices made from the trilayers are realized and characterized. The InSb nanosheets employed in the trilayer devices are epitaxially grown, free-standing, zincblende crystals and are in micrometer lateral sizes. The hBN and graphite flakes are obtained by exfoliation. Each trilayer is made by successively stacking an InSb nanosheet on an hBN flake and on a graphite flake using a home-made alignment stacking/transfer setup. The fabricated single- and double-gate devices are characterized by electrical and/or magnetotransport measurements. In all these devices, the graphite and hBN flakes are employed as the bottom gates and the gate dielectrics. The measurements of a fabricated single bottom-gate field-effect device show that the InSb nanosheet in the device has an electron field-effect mobility of âˆ¼7300 cm2V-1s-1and a low gate hysteresis of âˆ¼0.05 V at 1.9 K. The measurements of a double-gate Hall-bar device show that both the top and the bottom gate exhibit strong capacitive couplings to the InSb nanosheet channel and can thus tune the nanosheet channel conduction effectively. The electron Hall mobility in the InSb nanosheet of the Hall-bar device is extracted to be larger than 1.1 × 104cm2V-1s-1at a sheet electron density of âˆ¼6.1 × 1011cm-2and 1.9 K and, thus, the device exhibits well-defined Shubnikov-de Haas oscillations.

19.
Nanomaterials (Basel) ; 12(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35407207

RESUMO

InSb nanoflags are grown by chemical beam epitaxy in regular arrays on top of Au-catalyzed InP nanowires synthesized on patterned SiO2/InP(111)B substrates. Two-dimensional geometry of the nanoflags is achieved by stopping the substrate rotation in the step of the InSb growth. Evolution of the nanoflag length, thickness and width with the growth time is studied for different pitches (distances in one of the two directions of the substrate plane). A model is presented which explains the observed non-linear time dependence of the nanoflag length, saturation of their thickness and gradual increase in the width by the shadowing effect for re-emitted Sb flux. These results might be useful for morphological control of InSb and other III-V nanoflags grown in regular arrays.

20.
Adv Sci (Weinh) ; 9(12): e2105722, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35182039

RESUMO

Indium antimonide (InSb) nanowires are used as building blocks for quantum devices because of their unique properties, that is, strong spin-orbit interaction and large Landé g-factor. Integrating InSb nanowires with other materials could potentially unfold novel devices with distinctive functionality. A prominent example is the combination of InSb nanowires with superconductors for the emerging topological particles research. Here, the combination of the II-VI cadmium telluride (CdTe) with the III-V InSb in the form of core-shell (InSb-CdTe) nanowires is investigated and potential applications based on the electronic structure of the InSb-CdTe interface and the epitaxy of CdTe on the InSb nanowires are explored. The electronic structure of the InSb-CdTe interface using density functional theory is determined and a type-I band alignment is extracted with a small conduction band offset ( ⩽0.3 eV). These results indicate the potential application of these shells for surface passivation or as tunnel barriers in combination with superconductors. In terms of structural quality, it is demonstrated that the lattice-matched CdTe can be grown epitaxially on the InSb nanowires without interfacial strain or defects. These shells do not introduce disorder to the InSb nanowires as indicated by the comparable field-effect mobility measured for both uncapped and CdTe-capped nanowires.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA