Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.287
Filtrar
1.
Neuroradiology ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230715

RESUMO

PURPOSE: This review highlights the importance of functional connectivity in pediatric neuroscience, focusing on its role in understanding neurodevelopment and potential applications in clinical practice. It discusses various techniques for analyzing brain connectivity and their implications for clinical interventions in neurodevelopmental disorders. METHODS: The principles and applications of independent component analysis and seed-based connectivity analysis in pediatric brain studies are outlined. Additionally, the use of graph analysis to enhance understanding of network organization and topology is reviewed, providing a comprehensive overview of connectivity methods across developmental stages, from fetuses to adolescents. RESULTS: Findings from the reviewed studies reveal that functional connectivity research has uncovered significant insights into the early formation of brain circuits in fetuses and neonates, particularly the prenatal origins of cognitive and sensory systems. Longitudinal research across childhood and adolescence demonstrates dynamic changes in brain connectivity, identifying critical periods of development and maturation that are essential for understanding neurodevelopmental trajectories and disorders. CONCLUSION: Functional connectivity methods are crucial for advancing pediatric neuroscience. Techniques such as independent component analysis, seed-based connectivity analysis, and graph analysis offer valuable perspectives on brain development, creating new opportunities for early diagnosis and targeted interventions in neurodevelopmental disorders, thereby paving the way for personalized therapeutic strategies.

2.
World Neurosurg ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39243971

RESUMO

BACKGROUND: Dynamic functional network connectivity (dFNC) captures temporal variations in functional connectivity during MRI acquisition. However, the neural mechanisms driving dFNC alterations in the brain networks of patients with Acute incomplete cervical cord injury (AICCI) remain unclear. METHODS: This study included 16 AICCI patients and 16 healthy controls (HC). Initially, Independent Component Analysis (ICA) was employed to extract whole-brain independent components (ICs) from resting-state functional MRI (rs-fMRI) data. Subsequently, a sliding time window approach, combined with k-means clustering, was used to estimate dFNC states for each participant. Finally, a correlation analysis was conducted to examine the association between sensorimotor dysfunction scores in AICCI patients and the temporal characteristics of dFNC. RESULT: ICA was employed to extract 26 whole-brain ICs. Subsequent dynamic analysis identified four distinct connectivity states across the entire cohort. Notably, AICCI patients demonstrated a significant preference for State 3 compared to HC, as evidenced by a higher frequency and longer duration spent in this state. Conversely, State 4 exhibited a reduced frequency and shorter dwell time in AICCI patients. Moreover, correlation analysis revealed a positive association between sensorimotor dysfunction and both the mean dwell time and the fractional of time spent in State 3. CONCLUSIONS: Patients with AICCI demonstrate abnormal connectivity within dFNC states, and the temporal characteristics of dFNC are associated with sensorimotor dysfunction scores. These findings highlight the potential of dFNC as a sensitive biomarker for detecting network functional changes in AICCI patients, providing valuable insights into the dynamic alterations in brain connectivity related to sensorimotor dysfunction in this population.

3.
Front Neurosci ; 18: 1429084, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39247050

RESUMO

Background: Thyroid-associated ophthalmopathy (TAO) is a prevalent autoimmune disease characterized by ocular symptoms like eyelid retraction and exophthalmos. Prior neuroimaging studies have revealed structural and functional brain abnormalities in TAO patients, along with central nervous system symptoms such as cognitive deficits. Nonetheless, the changes in the static and dynamic functional network connectivity of the brain in TAO patients are currently unknown. This study delved into the modifications in static functional network connectivity (sFNC) and dynamic functional network connectivity (dFNC) among thyroid-associated ophthalmopathy patients using independent component analysis (ICA). Methods: Thirty-two patients diagnosed with thyroid-associated ophthalmopathy and 30 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging (rs-fMRI) scanning. ICA method was utilized to extract the sFNC and dFNC changes of both groups. Results: In comparison to the HC group, the TAO group exhibited significantly increased intra-network functional connectivity (FC) in the right inferior temporal gyrus of the executive control network (ECN) and the visual network (VN), along with significantly decreased intra-network FC in the dorsal attentional network (DAN), the default mode network (DMN), and the left middle cingulum of the ECN. On the other hand, FNC analysis revealed substantially reduced connectivity intra- VN and inter- cerebellum network (CN) and high-level cognitive networks (DAN, DMN, and ECN) in the TAO group compared to the HC group. Regarding dFNC, TAO patients displayed abnormal connectivity across all five states, characterized by notably reduced intra-VN connectivity and CN connectivity with high-level cognitive networks (DAN, DMN, and ECN), alongside compensatory increased connectivity between DMN and low-level perceptual networks (VN and basal ganglia network). No significant differences were observed between the two groups for the three dynamic temporal metrics. Furthermore, excluding the classification outcomes of FC within VN (with an accuracy of 51.61% and area under the curve of 0.35208), the FC-based support vector machine (SVM) model demonstrated improved performance in distinguishing between TAO and HC, achieving accuracies ranging from 69.35 to 77.42% and areas under the curve from 0.68229 to 0.81667. The FNC-based SVM classification yielded an accuracy of 61.29% and an area under the curve of 0.57292. Conclusion: In summary, our study revealed that significant alterations in the visual network and high-level cognitive networks. These discoveries contribute to our understanding of the neural mechanisms in individuals with TAO, offering a valuable target for exploring future central nervous system changes in thyroid-associated eye diseases.

4.
Cogn Neurodyn ; 18(4): 1549-1561, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39104702

RESUMO

Juvenile myoclonic epilepsy (JME) is associated with brain dysconnectivity in the default mode network (DMN). Most previous studies of patients with JME have assessed static functional connectivity in terms of the temporal correlation of signal intensity among different brain regions. However, more recent studies have shown that the directionality of brain information flow has a more significant regional impact on patients' brains than previously assumed in the present study. Here, we introduced an empirical approach incorporating independent component analysis (ICA) and spectral dynamic causal modeling (spDCM) analysis to study the variation in effective connectivity in DMN in JME patients. We began by collecting resting-state functional magnetic resonance imaging (rs-fMRI) data from 37 patients and 37 matched controls. Then, we selected 8 key nodes within the DMN using ICA; finally, the key nodes were analyzed for effective connectivity using spDCM to explore the information flow and detect patient abnormalities. This study found that compared with normal subjects, patients with JME showed significant changes in the effective connectivity among the precuneus, hippocampus, and lingual gyrus (p < 0.05 with false discovery rate (FDR) correction) with most of the effective connections being strengthened. In addition, previous studies have found that the self-connection of normal subjects' nodes showed strong inhibition, but the self-connection inhibition of the anterior cingulate cortex and lingual gyrus of the patient was decreased in this experiment (p < 0.05 with FDR correction); as the activity in these areas decreased, the nodes connected to them all appeared abnormal. We believe that the changes in the effective connectivity of nodes within the DMN are accompanied by changes in information transmission that lead to changes in brain function and impaired cognitive and executive function in patients with JME. Overall, our findings extended the dysconnectivity hypothesis in JME from static to dynamic causal and demonstrated that aberrant effective connectivity may underlie abnormal brain function in JME patients at early phase of illness, contributing to the understanding of the pathogenesis of JME. Supplementary Information: The online version contains supplementary material available at 10.1007/s11571-023-09994-4.

5.
CNS Neurosci Ther ; 30(8): e14904, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39107947

RESUMO

AIMS: Although static abnormalities of functional brain networks have been observed in patients with social anxiety disorder (SAD), the brain connectome dynamics at the macroscale network level remain obscure. We therefore used a multivariate data-driven method to search for dynamic functional network connectivity (dFNC) alterations in SAD. METHODS: We conducted spatial independent component analysis, and used a sliding-window approach with a k-means clustering algorithm, to characterize the recurring states of brain resting-state networks; then state transition metrics and FNC strength in the different states were compared between SAD patients and healthy controls (HC), and the relationship to SAD clinical characteristics was explored. RESULTS: Four distinct recurring states were identified. Compared with HC, SAD patients demonstrated higher fractional windows and mean dwelling time in the highest-frequency State 3, representing "widely weaker" FNC, but lower in States 2 and 4, representing "locally stronger" and "widely stronger" FNC, respectively. In State 1, representing "widely moderate" FNC, SAD patients showed decreased FNC mainly between the default mode network and the attention and perceptual networks. Some aberrant dFNC signatures correlated with illness duration. CONCLUSION: These aberrant patterns of brain functional synchronization dynamics among large-scale resting-state networks may provide new insights into the neuro-functional underpinnings of SAD.


Assuntos
Encéfalo , Conectoma , Imageamento por Ressonância Magnética , Rede Nervosa , Fobia Social , Humanos , Masculino , Feminino , Adulto , Fobia Social/fisiopatologia , Fobia Social/diagnóstico por imagem , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Adulto Jovem
6.
Sci Total Environ ; 951: 175667, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39168329

RESUMO

The Heihe River Basin, located in the northeastern part of the Qinghai-Tibetan Plateau, is part of the perennial permafrost belt of the Qilian Mountains. Recent observations indicate ongoing permafrost degradation in this region. This study utilizes data from 255 observations provided by Sentinel-1 satellites, MODIS Land Surface Temperature, SMAP-L4 soil moisture data, GNSS measurements, and in situ measurement. We introduced Variational Bayesian independent Component Analysis (VB-ICA) in multi-temporal Interferometric Synthetic Aperture Radar (MT-InSAR) processing to investigate the spatial-temporal characteristics of surface deformation and permafrost active layer thickness (ALT) variations. The analysis demonstrates strong agreement with borehole data and offers improvements over traditional methodologies. The maximum value of ALT in the basin is found to be 5.7 m. VB-ICA effectively delineates seasonal deformations related to the freeze-thaw cycles, with a peak seasonal deformation amplitude of 60 mm. Moreover, the seasonal permafrost's lower boundary reaches an elevation of 3700 m, revealing that permafrost is experiencing widespread degradation and associated soil erosion in the high elevation region of The Heihe River Basin. The paper also explores the efficacy of reference point selection and baseline network establishment for employing the InSAR method in monitoring freeze-thaw deformations. The study underscores the InSAR method's adaptability and its importance for interpreting permafrost deformation and related parameters.

7.
Neuroscience ; 558: 11-21, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39154845

RESUMO

Primary angle-closure glaucoma (PACG) is a severe and irreversible blinding eye disease characterized by progressive retinal ganglion cell death. However, prior research has predominantly focused on static brain activity changes, neglecting the exploration of how PACG impacts the dynamic characteristics of functional brain networks. This study enrolled forty-four patients diagnosed with PACG and forty-four age, gender, and education level-matched healthy controls (HCs). The study employed Independent Component Analysis (ICA) techniques to extract resting-state networks (RSNs) from resting-state functional magnetic resonance imaging (rs-fMRI) data. Subsequently, the RSNs was utilized as the basis for examining and comparing the functional connectivity variations within and between the two groups of resting-state networks. To further explore, a combination of sliding time window and k-means cluster analyses identified seven stable and repetitive dynamic functional network connectivity (dFNC) states. This approach facilitated the comparison of dynamic functional network connectivity and temporal metrics between PACG patients and HCs for each state. Subsequently, a support vector machine (SVM) model leveraging functional connectivity (FC) and FNC was applied to differentiate PACG patients from HCs. Our study underscores the presence of modified functional connectivity within large-scale brain networks and abnormalities in dynamic temporal metrics among PACG patients. By elucidating the impact of changes in large-scale brain networks on disease evolution, researchers may enhance the development of targeted therapies and interventions to preserve vision and cognitive function in PACG.


Assuntos
Encéfalo , Glaucoma de Ângulo Fechado , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Rede Nervosa , Humanos , Glaucoma de Ângulo Fechado/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética/métodos , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Idoso , Máquina de Vetores de Suporte , Adulto
8.
Schizophr Bull ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39212653

RESUMO

BACKGROUND AND HYPOTHESIS: Altered functional connectivity (FC) has been frequently reported in psychosis. Studying FC and its time-varying patterns in early-stage psychosis allows the investigation of the neural mechanisms of this disorder without the confounding effects of drug treatment or illness-related factors. STUDY DESIGN: We employed resting-state functional magnetic resonance imaging (rs-fMRI) to explore FC in individuals with early psychosis (EP), who also underwent clinical and neuropsychological assessments. 96 EP and 56 demographically matched healthy controls (HC) from the Human Connectome Project for Early Psychosis database were included. Multivariate analyses using spatial group independent component analysis were used to compute static FC and dynamic functional network connectivity (dFNC). Partial correlations between FC measures and clinical and cognitive variables were performed to test brain-behavior associations. STUDY RESULTS: Compared to HC, EP showed higher static FC in the striatum and temporal, frontal, and parietal cortex, as well as lower FC in the frontal, parietal, and occipital gyrus. We found a negative correlation in EP between cognitive function and FC in the right striatum FC (pFWE = 0.009). All dFNC parameters, including dynamism and fluidity measures, were altered in EP, and positive symptoms were negatively correlated with the meta-state changes and the total distance (pFWE = 0.040 and pFWE = 0.049). CONCLUSIONS: Our findings support the view that psychosis is characterized from the early stages by complex alterations in intrinsic static and dynamic FC, that may ultimately result in positive symptoms and cognitive deficits.

9.
bioRxiv ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39131299

RESUMO

Mental illnesses extract a high personal and societal cost, and thus explorations of the links between mental illness and functional connectivity in the brain are critical. Investigating major mental illnesses, believed to arise from disruptions in sophisticated neural connections, allows us to comprehend how these neural network disruptions may be linked to altered cognition, emotional regulation, and social interactions. Although neuroimaging has opened new avenues to explore neural alterations linked to mental illnesses, the field still requires precise and sensitive methodologies to inspect these neural substrates of various psychological disorders. In this study, we employ a hierarchical methodology to derive double functionally independent primitives (dFIPs) from resting state functional magnetic resonance neuroimaging data (rs-fMRI). These dFIPs encapsulate canonical overlapping patterns of functional network connectivity (FNC) within the brain. Our investigation focuses on the examination of how combinations of these dFIPs relate to different mental disorder diagnoses. The central aim is to unravel the complex patterns of FNC that correspond to the diverse manifestations of mental illnesses. To achieve this objective, we used a large brain imaging dataset from multiple sites, comprising 5805 total individuals diagnosed with schizophrenia (SCZ), autism spectrum disorder (ASD), bipolar disorder (BPD), major depressive disorder (MDD), and controls. The key revelations of our study unveil distinct patterns associated with each mental disorder through the combination of dFIPs. Notably, certain individual dFIPs exhibit disorder-specific characteristics, while others demonstrate commonalities across disorders. This approach offers a novel, data-driven synthesis of intricate neuroimaging data, thereby illuminating the functional changes intertwined with various mental illnesses. Our results show distinct signatures associated with psychiatric disorders, revealing unique connectivity patterns such as heightened cerebellar connectivity in SCZ and sensory domain hyperconnectivity in ASD, both contrasted with reduced cerebellar-subcortical connectivity. Utilizing the dFIP concept, we pinpoint specific functional connections that differentiate healthy controls from individuals with mental illness, underscoring its utility in identifying neurobiological markers. In summary, our findings delineate how dFIPs serve as unique fingerprints for different mental disorders.

10.
Pediatr Radiol ; 54(10): 1738-1747, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39134864

RESUMO

BACKGROUND: Functional magnetic resonance imaging (fMRI) studies have revealed extensive functional reorganization in patients with sensorineural hearing loss (SNHL). However, almost no study focuses on the dynamic functional connectivity after hearing loss. OBJECTIVE: This study aimed to investigate dynamic functional connectivity changes in children with profound bilateral congenital SNHL under the age of 3 years. MATERIALS AND METHODS: Thirty-two children with profound bilateral congenital SNHL and 24 children with normal hearing were recruited for the present study. Independent component analysis identified 18 independent components composing five resting-state networks. A sliding window approach was used to acquire dynamic functional matrices. Three states were identified using the k-means algorithm. Then, the differences in temporal properties and the variance of network efficiency between groups were compared. RESULTS: The children with SNHL showed longer mean dwell time and decreased functional connectivity between the auditory network and sensorimotor network in state 3 (P < 0.05), which was characterized by relatively stronger functional connectivity between high-order resting-state networks and motion and perception networks. There was no difference in the variance of network efficiency. CONCLUSIONS: These results indicated the functional reorganization due to hearing loss. This study also provided new perspectives for understanding the state-dependent connectivity patterns in children with SNHL.


Assuntos
Perda Auditiva Neurossensorial , Imageamento por Ressonância Magnética , Humanos , Perda Auditiva Neurossensorial/congênito , Perda Auditiva Neurossensorial/diagnóstico por imagem , Perda Auditiva Neurossensorial/fisiopatologia , Masculino , Feminino , Imageamento por Ressonância Magnética/métodos , Pré-Escolar , Lactente , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Estudos de Casos e Controles
11.
Artigo em Inglês | MEDLINE | ID: mdl-39156762

RESUMO

Although Digital Subtraction Angiography (DSA) is the most important imaging for visualizing cerebrovascular anatomy, its interpretation by clinicians remains difficult. This is particularly true when treating arteriovenous malformations (AVMs), where entangled vasculature connecting arteries and veins needs to be carefully identified. The presented method aims to enhance DSA image series by highlighting critical information via automatic classification of vessels using a combination of two learning models: An unsupervised machine learning method based on Independent Component Analysis that decomposes the phases of flow and a convolutional neural network that automatically delineates the vessels in image space. The proposed method was tested on clinical DSA images series and demonstrated efficient differentiation between arteries and veins that provides a viable solution to enhance visualizations for clinical use.

12.
Front Neuroergon ; 5: 1358660, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38989056

RESUMO

Introduction: To understand brain function in natural real-world settings, it is crucial to acquire brain activity data in noisy environments with diverse artifacts. Electroencephalography (EEG), while susceptible to environmental and physiological artifacts, can be cleaned using advanced signal processing techniques like Artifact Subspace Reconstruction (ASR) and Independent Component Analysis (ICA). This study aims to demonstrate that ASR and ICA can effectively extract brain activity from the substantial artifacts occurring while skateboarding on a half-pipe ramp. Methods: A dual-task paradigm was used, where subjects were presented with auditory stimuli during skateboarding and rest conditions. The effectiveness of ASR and ICA in cleaning artifacts was evaluated using a support vector machine to classify the presence or absence of a sound stimulus in single-trial EEG data. The study evaluated the effectiveness of ASR and ICA in artifact cleaning using five different pipelines: (1) Minimal cleaning (bandpass filtering), (2) ASR only, (3) ICA only, (4) ICA followed by ASR (ICAASR), and (5) ASR preceding ICA (ASRICA). Three skateboarders participated in the experiment. Results: Results showed that all ICA-containing pipelines, especially ASRICA (69%, 68%, 63%), outperformed minimal cleaning (55%, 52%, 50%) in single-trial classification during skateboarding. The ASRICA pipeline performed significantly better than other pipelines containing ICA for two of the three subjects, with no other pipeline performing better than ASRICA. The superior performance of ASRICA likely results from ASR removing non-stationary artifacts, enhancing ICA decomposition. Evidenced by ASRICA identifying more brain components via ICLabel than ICA alone or ICAASR for all subjects. For the rest condition, with fewer artifacts, the ASRICA pipeline (71%, 82%, 75%) showed slight improvement over minimal cleaning (73%, 70%, 72%), performing significantly better for two subjects. Discussion: This study demonstrates that ASRICA can effectively clean artifacts to extract single-trial brain activity during skateboarding. These findings affirm the feasibility of recording brain activity during physically demanding tasks involving substantial body movement, laying the groundwork for future research into the neural processes governing complex and coordinated body movements.

13.
Artigo em Inglês | MEDLINE | ID: mdl-39044022

RESUMO

Dynamic functional network connectivity (dFNC) is an expansion of static FNC (sFNC) that reflects connectivity variations among brain networks. This study aimed to investigate changes in sFNC and dFNC strength and temporal properties in individuals with subthreshold depression (StD). Forty-two individuals with subthreshold depression and 38 healthy controls (HCs) were included in this study. Group independent component analysis (GICA) was used to determine target resting-state networks, namely, executive control network (ECN), default mode network (DMN), sensorimotor network (SMN) and dorsal attentional network (DAN). Sliding window and k-means clustering analyses were used to identify dFNC patterns and temporal properties in each subject. We compared sFNC and dFNC differences between the StD and HCs groups. Relationships between changes in FNC strength, temporal properties, and neurophysiological score were evaluated by Spearman's correlation analysis. The sFNC analysis revealed decreased FNC strength in StD individuals, including the DMN-CEN, DMN-SMN, SMN-CEN, and SMN-DAN. In the dFNC analysis, 4 reoccurring FNC patterns were identified. Compared to HCs, individuals with StD had increased mean dwell time and fraction time in a weakly connected state (state 4), which is associated with self-focused thinking status. In addition, the StD group demonstrated decreased dFNC strength between the DMN-DAN in state 2. sFNC strength (DMN-ECN) and temporal properties were correlated with HAMD-17 score in StD individuals (all p < 0.01). Our study provides new evidence on aberrant time-varying brain activity and large-scale network interaction disruptions in StD individuals, which may provide novel insight to better understand the underlying neuropathological mechanisms.

14.
Neurotrauma Rep ; 5(1): 617-627, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39036426

RESUMO

Traumatic brain injury (TBI), a significant global health issue, is affecting ∼69 million annually. To better understand TBI's impact on brain function and assess the efficacy of treatments, this study uses a novel temporal-spatial cross-group approach with a porcine model, integrating resting-state functional magnetic resonance imaging (rs-fMRI) for temporal and arterial spin labeling for spatial information. Our research used 18 four-week-old pigs divided into three groups: TBI treated with saline (SLN, n = 6), TBI treated with fecal microbial transplant (FMT, n = 6), and a sham group (sham, n = 6) with only craniectomy surgery as the baseline. By applying machine learning techniques-specifically, independent component analysis and sparse dictionary learning-across seven identified resting-state networks, we assessed the temporal and spatial correlations indicative of treatment efficacy. Both temporal and spatial analyses revealed a consistent increase of correlation between the FMT and sham groups in the executive control and salience networks. Our results are further evidenced by a simulation study designed to mimic the progression of TBI severity through the introduction of variable Gaussian noise to an independent rs-fMRI dataset. The results demonstrate a decreasing temporal correlation between the sham and TBI groups with increasing injury severity, consistent with the experimental results. This study underscores the effectiveness of the methodology in evaluating post-TBI treatments such as the FMT. By presenting comprehensive experimental and simulated data, our research contributes significantly to the field and opens new paths for future investigations into TBI treatment evaluations.

15.
Technol Health Care ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39031413

RESUMO

BACKGROUND: Autism Spectrum Disorder (ASD) is a condition with social interaction, communication, and behavioral difficulties. Diagnostic methods mostly rely on subjective evaluations and can lack objectivity. In this research Machine learning (ML) and deep learning (DL) techniques are used to enhance ASD classification. OBJECTIVE: This study focuses on improving ASD and TD classification accuracy with a minimal number of EEG channels. ML and DL models are used with EEG data, including Mu Rhythm from the Sensory Motor Cortex (SMC) for classification. METHODS: Non-linear features in time and frequency domains are extracted and ML models are applied for classification. The EEG 1D data is transformed into images using Independent Component Analysis-Second Order Blind Identification (ICA-SOBI), Spectrogram, and Continuous Wavelet Transform (CWT). RESULTS: Stacking Classifier employed with non-linear features yields precision, recall, F1-score, and accuracy rates of 78%, 79%, 78%, and 78% respectively. Including entropy and fuzzy entropy features further improves accuracy to 81.4%. In addition, DL models, employing SOBI, CWT, and spectrogram plots, achieve precision, recall, F1-score, and accuracy of 75%, 75%, 74%, and 75% respectively. The hybrid model, which combined deep learning features from spectrogram and CWT with machine learning, exhibits prominent improvement, attained precision, recall, F1-score, and accuracy of 94%, 94%, 94%, and 94% respectively. Incorporating entropy and fuzzy entropy features further improved the accuracy to 96.9%. CONCLUSIONS: This study underscores the potential of ML and DL techniques in improving the classification of ASD and TD individuals, particularly when utilizing a minimal set of EEG channels.

16.
Front Psychiatry ; 15: 1423008, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962058

RESUMO

Introduction: Chronic schizophrenia has a course of 5 years or more and has a widespread abnormalities in brain functional connectivity. This study aimed to find characteristic functional and structural changes in a long illness duration chronic schizophrenia (10 years or more). Methods: Thirty-six patients with a long illness duration chronic schizophrenia and 38 healthy controls were analyzed by independent component analysis of brain network functional connectivity. Correlation analysis with clinical duration was performed on six resting state networks: auditory network, default mode network, dorsal attention network, fronto-parietal network, somatomotor network, and visual network. Results: The differences in the resting state network between the two groups revealed that patients exhibited enhanced inter-network connections between default mode network and multiple brain networks, while the inter-network connections between somatomotor network, default mode network and visual network were reduced. In patients, functional connectivity of Cuneus_L was negatively correlated with illness duration. Furthermore, receiver operating characteristic curve of functional connectivity showed that changes in Thalamus_L, Rectus_L, Frontal_Mid_R, and Cerebelum_9_L may indicate a longer illness duration chronic schizophrenia. Discussion: In our study, we also confirmed that the course of disease is significantly associated with specific brain regions, and the changes in specific brain regions may indicate that chronic schizophrenia has a course of 10 years or more.

17.
Entropy (Basel) ; 26(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39056908

RESUMO

Over the past decade and a half, dynamic functional imaging has revealed low-dimensional brain connectivity measures, identified potential common human spatial connectivity states, tracked the transition patterns of these states, and demonstrated meaningful transition alterations in disorders and over the course of development. Recently, researchers have begun to analyze these data from the perspective of dynamic systems and information theory in the hopes of understanding how these dynamics support less easily quantified processes, such as information processing, cortical hierarchy, and consciousness. Little attention has been paid to the effects of psychiatric disease on these measures, however. We begin to rectify this by examining the complexity of subject trajectories in state space through the lens of information theory. Specifically, we identify a basis for the dynamic functional connectivity state space and track subject trajectories through this space over the course of the scan. The dynamic complexity of these trajectories is assessed along each dimension of the proposed basis space. Using these estimates, we demonstrate that schizophrenia patients display substantially simpler trajectories than demographically matched healthy controls and that this drop in complexity concentrates along specific dimensions. We also demonstrate that entropy generation in at least one of these dimensions is linked to cognitive performance. Overall, the results suggest great value in applying dynamic systems theory to problems of neuroimaging and reveal a substantial drop in the complexity of schizophrenia patients' brain function.

18.
Bioengineering (Basel) ; 11(7)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39061789

RESUMO

(1) Background: The electroencephalogram (EEG) is frequently corrupted by ocular artifacts such as saccades and blinks. Methods for correcting these artifacts include independent component analysis (ICA) and recursive-least-squares (RLS) adaptive filtering (-AF). Here, we introduce a new method, AFFiNE, that applies Bayesian adaptive regression spline (BARS) fitting to the adaptive filter's reference noise input to address the known limitations of both ICA and RLS-AF, and then compare the performance of all three methods. (2) Methods: Artifact-corrected P300 morphologies, topographies, and measurements were compared between the three methods, and to known truth conditions, where possible, using real and simulated blink-corrupted event-related potential (ERP) datasets. (3) Results: In both simulated and real datasets, AFFiNE was successful at removing the blink artifact while preserving the underlying P300 signal in all situations where RLS-AF failed. Compared to ICA, AFFiNE resulted in either a practically or an observably comparable error. (4) Conclusions: AFFiNE is an ocular artifact correction technique that is implementable in online analyses; it can adapt to being non-stationarity and is independent of channel density and recording duration. AFFiNE can be utilized for the removal of blink artifacts in situations where ICA may not be practically or theoretically useful.

19.
Theriogenology ; 227: 112-119, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39053287

RESUMO

Gonadotropin releasing hormone (GnRH) synthesis and secretion regulates seasonal fertility. In the brain, the distribution of GnRH-positive neurons is diffuse, hindering efforts to monitor variations in its cellular and tissue levels. Here, we aim at assessing GnRH immunoreactivity in nuclei responsible for seasonal fertility regulation (SFR) within the posterior, anterior, and preoptic areas of the basal hypothalamus during estrous in ewes. We detected reaction products in the ventromedial basal hypothalamus in neurons, nerve fibers, non-neuronal immunoreactive bodies, and diffuse interstitial areas. Immunoreactivity correlated with the distribution of the main SFR nuclei in the arcuate, retrochiasmatic, periventricular, medial preoptic, supraoptic, and preoptic areas. By independent component analysis density segmentation and by interferential contrast, we identified GnRH non-neuronal positive bodies as microglial cells encapsulated within a dense halo of reaction products. These GnRH-positive microglial cells were distributed in patches and rows throughout the basal ventromedial hypothalamus, suggesting their role in paracrine or juxtacrine signaling. Moreover, as shown by ionized calcium-binding adaptor molecule 1 (IBA1) immunocytochemistry, the distribution of GnRH reaction products overlapped with the microglial dense reactive zones. Therefore, our findings support the assertion that a combined densitometric analysis of GnRH and IBA1 immunocytochemistry enables activity mapping for monitoring seasonal changes following experimental interventions.


Assuntos
Hormônio Liberador de Gonadotropina , Imuno-Histoquímica , Animais , Hormônio Liberador de Gonadotropina/metabolismo , Feminino , Ovinos/fisiologia , Estações do Ano , Proteínas de Ligação ao Cálcio/metabolismo , Hipotálamo/metabolismo
20.
Brain Commun ; 6(4): fcae234, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39077376

RESUMO

In multiple sclerosis clinical trials, MRI outcome measures are typically extracted at a whole-brain level, but pathology is not homogeneous across the brain and so whole-brain measures may overlook regional treatment effects. Data-driven methods, such as independent component analysis, have shown promise in identifying regional disease effects but can only be computed at a group level and cannot be applied prospectively. The aim of this work was to develop a technique to extract longitudinal independent component analysis network-based measures of co-varying grey matter volumes, derived from T1-weighted volumetric MRI, in individual study participants, and assess their association with disability progression and treatment effects in clinical trials. We used longitudinal MRI and clinical data from 5089 participants (22 045 visits) with multiple sclerosis from eight clinical trials. We included people with relapsing-remitting, primary and secondary progressive multiple sclerosis. We used data from five negative clinical trials (2764 participants, 13 222 visits) to extract the independent component analysis-based measures. We then trained and cross-validated a least absolute shrinkage and selection operator regression model (which can be applied prospectively to previously unseen data) to predict the independent component analysis measures from the same regional MRI volume measures and applied it to data from three positive clinical trials (2325 participants, 8823 visits). We used nested mixed-effect models to determine how networks differ across multiple sclerosis phenotypes are associated with disability progression and to test sensitivity to treatment effects. We found 17 consistent patterns of co-varying regional volumes. In the training cohort, volume loss was faster in four networks in people with secondary progressive compared with relapsing-remitting multiple sclerosis and three networks with primary progressive multiple sclerosis. Volume changes were faster in secondary compared with primary progressive multiple sclerosis in four networks. In the combined positive trials cohort, eight independent component analysis networks and whole-brain grey matter volume measures showed treatment effects, and the magnitude of treatment-placebo differences in the network-based measures was consistently greater than with whole-brain grey matter volume measures. Longitudinal network-based analysis of grey matter volume changes is feasible using clinical trial data, showing differences cross-sectionally and longitudinally between multiple sclerosis phenotypes, associated with disability progression, and treatment effects. Future work is required to understand the pathological mechanisms underlying these regional changes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA