Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Adv Sci (Weinh) ; : e2404272, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953411

RESUMO

The phenomenon of flexoelectricity, wherein mechanical deformation induces alterations in the electron configuration of metal oxides, has emerged as a promising avenue for regulating electron transport. Leveraging this mechanism, stress sensing can be optimized through precise modulation of electron transport. In this study, the electron transport in 2D ultra-smooth In2O3 crystals is modulated via flexoelectricity. By subjecting cubic In2O3 (c-In2O3) crystals to significant strain gradients using an atomic force microscope (AFM) tip, the crystal symmetry is broken, resulting in the separation of positive and negative charge centers. Upon applying nano-scale stress up to 100 nN, the output voltage and power values reach their maximum, e.g. 2.2 mV and 0.2 pW, respectively. The flexoelectric coefficient and flexocoupling coefficient of c-In2O3 are determined as ≈0.49 nC m-1 and 0.4 V, respectively. More importantly, the sensitivity of the nano-stress sensor upon c-In2O3 flexoelectric effect reaches 20 nN, which is four to six orders smaller than that fabricated with other low dimensional materials based on the piezoresistive, capacitive, and piezoelectric effect. Such a deformation-induced polarization modulates the band structure of c-In2O3, significantly reducing the Schottky barrier height (SBH), thereby regulating its electron transport. This finding highlights the potential of flexoelectricity in enabling high-performance nano-stress sensing through precise control of electron transport.

2.
Nanotechnology ; 35(37)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38876085

RESUMO

This study introduces a novel heteroleptic indium complex, which incorporates an amidinate ligand, serving as a high-temperature atomic layer deposition (ALD) precursor. The most stable structure was determined using density functional theory and synthesized, demonstrating thermal stability up to 375 °C. We fabricated indium oxide thin-film transistors (In2O3TFTs) prepared with DBADMI precursor using ALD in wide range of window processing temperature of 200 °C, 300 °C, and 350 °C with an ozone (O3) as the source. The growth per cycle of ALD ranged from 0.06 to 0.1 nm cycle-1at different deposition temperatures. X-ray diffraction and transmission electron microscopy were employed to analyze the crystalline structure as it relates to the deposition temperature. At a relatively low deposition temperature of 200 °C, an amorphous morphology was observed, while at 300 °C and 350 °C, crystalline structures were evident. Additionally, x-ray photoelectron spectroscopy analysis was conducted to identify the In-O and OH-related products in the film. The OH-related product was found to be as low as 1% with an increase the deposition temperature. Furthermore, we evaluated In2O3TFTs and observed an increase in field-effect mobility, with minimal change in the threshold voltage (Vth), at 200 °C, 300 °C, and 350 °C. Consequently, the DBADMI precursor, given its stability at highdeposition temperatures, is ideal for producing high-quality films and stable crystalline phases, with wide processing temperature range makeing it suitable for various applications.

3.
Fundam Res ; 4(3): 635-641, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38933190

RESUMO

Constructing structure-function relationships is critical for the rational design and development of efficient catalysts for CO2 electroreduction reaction (CO2RR). In2O3 is well-known for its specific ability to produce formic acid. However, how the crystal phase and surface affect the CO2RR activity is still unclear, making it difficult to further improve the intrinsic activity and screen for the most active structure. In this work, cubic and hexagonal In2O3 with different stable surfaces ((111) and (110) for cubic, (120) and (104) for hexagonal) are investigated for CO2RR. Theoretical results demonstrate that the adsorption of reactants on cubic In2O3 is stronger than that on hexagonal In2O3, with the cubic (111) surface being the most active for CO2RR. In experiments, synthesized cubic In2O3 nanosheets with predominantly exposed (111) surfaces exhibited a high HCOO- Faradaic efficiency (87.5%) and HCOO- current density (-16.7 mA cm-2) at -0.9 V vs RHE. In addition, an aqueous Zn-CO2 battery based on a cubic In2O3 cathode was assembled. Our work correlates the phases and surfaces with the CO2RR activity, and provides a fundamental understanding of the structure-function relationship of In2O3, thereby contributing to further improvements in its CO2RR activity. Moreover, the results provide a principle for the directional preparation of materials with optimal phases and surfaces for efficient electrocatalysis.

4.
ACS Appl Mater Interfaces ; 16(26): 33461-33474, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38888106

RESUMO

The synthesis, physicochemical, and functional properties of composite solids resulting from the surface spread of oxidized indium species onto nanoplatelets of anatase were investigated. Both the size and the interaction between the indium- and titanium-containing components control the functional properties. In the reduction of CO2 to CO, the best samples have an indium content between ca. 2 and 5 mol % and showed an excess rate over the photo and thermo-alone processes above 33% and an energy efficiency of 1.3%. Subnanometric (monomeric and dimeric) indium species present relatively weak thermal catalytic response but strong thermo-photo promotion of the activity. A gradual change in functional properties was observed with the growth of the indium content of the solids, leading to a progressive increase of thermal activity but lower thermo-photo promotion. The study provides a well-defined structure-activity relationship rationalizing the dual thermo-photo properties of the catalysts and establishes a guide for the development of highly active and stable composite solids for the elimination and valorization of CO2.

5.
ACS Nano ; 18(23): 15130-15138, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38804707

RESUMO

Narrow gaps between plasmon-supporting materials can confine infrared electromagnetic energy at the nanoscale, thus enabling applications in areas such as optical sensing. However, in nanoparticle dimers, the nature of the transition between touching (zero gap) and nearly nontouching (nonzero gap ≲15 nm) regimes is still a subject of debate. Here, we observe both singular and nonsingular transitions in infrared plasmons confined to dimers of fluorine-doped indium oxide nanocubes when moving from touching to nontouching configurations depending on the dimensionality of the contact region. Through spatially resolved electron energy-loss spectroscopy, we find a continuous spectral evolution of the lowest-order plasmon mode across the transition for finite touching areas, in excellent agreement with the simulations. This behavior challenges the widely accepted idea that a singular transition always emerges in the near-touching regime of plasmonic particle dimers. The apparent contradiction is resolved by theoretically examining different types of gap morphologies, revealing that the presence of a finite touching area renders the transition nonsingular, while one-dimensional and point-like contacts produce a singular behavior in which the lowest-order dipolar mode in the touching configuration, characterized by a net induced charge in each of the particles, becomes unphysical as soon as they are separated. Our results provide valuable insights into the nature of dimer plasmons in highly doped semiconductors.

6.
Small ; : e2401567, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733220

RESUMO

Lithium-sulfur (Li-S) battery is identified as an ideal candidate for next-generation energy storage systems in consideration of its high theoretical energy density and abundant sulfur resources. However, the shuttling behavior of soluble polysulfides (LiPSs) and their sluggish reaction kinetics severely limit the practical application of the current Li-S battery. In this work, a series of In2O3 nanocubes with different oxygen vacancy concentrations are designed and prepared via a facile self-template method. The introduced oxygen vacancy on In2O3 can effectively rearrange the charge distribution and enhance sulfiphilic property. Moreover, the In2O3 with high oxygen vacancy concentration (H-In2O3) can slightly slow down the solid-liquid conversion process and significantly accelerate the liquid-solid conversion process, thus reducing the accumulation of LiPSs in electrolyte and inhibiting the shuttle effect. Contributed by the unique selective catalytic capability, the prepared H-In2O3 exhibits excellent electrochemical performance when used as sulfur host. For instance, a high reversible capacity of 609 mAh g-1 is obtained with only 0.044% capacity decay per cycle over 1000 cycles at 1.0 C. This work presents a typical example for designing advanced sulfur hosts, which is crucial for the commercialization of Li-S battery.

7.
ACS Appl Mater Interfaces ; 16(15): 19167-19174, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38569197

RESUMO

Ultraviolet photodetectors (UV PDs) have attracted significant attention due to their wide range of applications, such as underwater communication, biological analysis, and early fire warning systems. Indium oxide (In2O3) is a candidate for developing high-performance photoelectrochemical (PEC)-type UV PDs owing to its high UV absorption and good stability. However, the self-powered photoresponse of the previously reported In2O3-based PEC UV PDs is unsatisfactory. In this work, high-performance self-powered PEC UV PDs were constructed by using an In2O3 nanocube film (NCF) as a photoanode. In2O3 NCF photoanodes were synthesized on FTO by using hydrothermal methods with a calcining process. The influence of the electrolyte concentration, bias potential, and irradiation light on the photoresponse properties was systematically studied. In2O3 NCF PEC UV PDs exhibit outstanding self-powered photoresponses to 365 nm UV light with a high responsivity of 44.43 mA/W and fast response speed (20/30 ms) under zero bias potential, these results are superior to those of previously reported In2O3-based PEC UV PDs. The improved self-powered photoresponse is attributed to the higher photogenerated carrier separation efficiency and faster charge transport of the in-situ grown In2O3 NCF. In addition, these PDs exhibit excellent multicycle stability, maintaining the photocurrent at 98.69% of the initial value after 700 optical switching cycles. Therefore, our results prove the great promise of In2O3 in self-powered PEC UV PDs.

8.
Small ; : e2400561, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639024

RESUMO

Thermochemical water-splitting cycles are technically feasible for hydrogen production from water. However, the ultrahigh operation temperature and low efficiency seriously restrict their practical application. Herein, one-step and one-pot thermocatalytic water-splitting process is reported at water boiling condition catalyzed by single atomic Pt on defective In2O3. Water splitting into hydrogen is verified by D2O isotopic experiment, with an optimized hydrogen production rate of 36.4 mmol·h-1·g-1 as calculated on Pt active sites. It is revealed that three-centered Pt1In2 surrounding oxygen vacancy as catalytic ensembles promote the dissociation of the adsorbed water into H, which transfers to singlet atomic Pt sites for H2 production. Remaining OH groups on adjacent In sites from Pt1In2 ensembles undergoes O─O bonding, hyperoxide formation and diminishing via triethylamine oxidation, water re-adsorption for completing the catalytic cycle. Current work represents an isothermal and continuous thermocatalytic water splitting under mild condition, which can re-awaken the research interest to produce H2 from water using low-grade heat and competes with photocatalytic, electrolytic, and photoelectric reactions.

9.
Nano Lett ; 24(19): 5737-5745, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38686670

RESUMO

Tungsten oxide (WO3) doped indium oxide (IWO) field-effect transistors (FET), synthesized using atomic layer deposition (ALD) for three-dimensional integration and back-end-of-line (BEOL) compatibility, are demonstrated. Low-concentration (1∼4 W atom %) WO3-doping in In2O3 films is achieved by adjusting cycle ratios of the indium and tungsten precursors with the oxidant coreactant. Such doping suppresses oxygen deficiency from In2O2.5 to In2O3 stoichiometry with only 1 atom % W, allowing devices to turn off stably and enhancing threshold voltage stability. The ALD IWO FETs exhibit superior performance, including a low subthreshold slope of 67 mV/decade and negligible hysteresis. Strong tunability of the threshold voltage (Vth) is achieved through W concentration tuning, with 2 atom % IWO FETs showing an optimized Vth for enhancement-mode and a high drain current. ALD IWO FETs have remarkable stability under bias stress and nearly ideal performance extending to sub-100 nm channel lengths, making them promising candidates for high-performance monolithic 3D integrated devices.

10.
Angew Chem Int Ed Engl ; 63(18): e202402369, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38446496

RESUMO

Solar-energy-driven photoreduction of CO2 is promising in alleviating environment burden, but suffers from low efficiency and over-reliance on sacrificial agents. Herein, rhenium (Re) is atomically dispersed in In2O3 to fabricate a 2Re-In2O3 photocatalyst. In sacrificial-agent-free photoreduction of CO2 with H2O, 2Re-In2O3 shows a long-term stable efficiency which is enhanced by 3.5 times than that of pure In2O3 and is also higher than those on Au-In2O3, Ag-In2O3, Cu-In2O3, Ir-In2O3, Ru-In2O3, Rh-In2O3 and Pt-In2O3 photocatalysts. Moreover, carbon-based product of the photoreduction overturns from CO on pure In2O3 to CH3OH on 2Re-In2O3. Re promotes charge separation, H2O dissociation and CO2 activation, thus enhancing photoreduction efficiency of CO2 on 2Re-In2O3. During the photoreduction, CO is a key intermediate. CO prefers to desorption rather than hydrogenation on pure In2O3, as CO binds to pure In2O3 very weakly. Re strengthens the interaction of CO with 2Re-In2O3 by 5.0 times, thus limiting CO desorption but enhancing CO hydrogenation to CH3OH. This could be the origin for photoreduction product overturn from CO on pure In2O3 to CH3OH on 2Re-In2O3. The present work opens a new way to boost sacrificial-agent-free photoreduction of CO2.

11.
ACS Sens ; 9(5): 2372-2382, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38401047

RESUMO

Rapid and ultrasensitive detection of toxic gases at room temperature is highly desired in health protection but presents grand challenges in the sensing materials reported so far. Here, we present a gas sensor based on novel zero dimensional (0D)/two dimensional (2D) indium oxide (In2O3)/titanium carbide (Ti3C2Tx) Schottky heterostructures with a high surface area and rich oxygen vacancies for parts per billion (ppb) level nitrogen dioxide (NO2) detection at room temperature. The In2O3/Ti3C2Tx gas sensor exhibits a fast response time (4 s), good response (193.45% to 250 ppb NO2), high selectivity, and excellent cycling stability. The rich surface oxygen vacancies play the role of active sites for the adsorption of NO2 molecules, and the Schottky junctions effectively adjust the charge-transfer behavior through the conduction tunnel in the sensing material. Furthermore, In2O3 nanoparticles almost fully cover the Ti3C2Tx nanosheets which can avoid the oxidation of Ti3C2Tx, thus contributing to the good cycling stability of the sensing materials. This work sheds light on the sensing mechanism of heterojunction nanostructures and provides an efficient pathway to construct high-performance gas sensors through the rational design of active sites.


Assuntos
Índio , Dióxido de Nitrogênio , Temperatura , Titânio , Dióxido de Nitrogênio/análise , Dióxido de Nitrogênio/química , Titânio/química , Índio/química , Porosidade
12.
Nanomaterials (Basel) ; 13(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38063692

RESUMO

The growing demand for new energy sources governs the intensive research into CO2 hydrogenation to methanol, a valuable liquid fuel. Recently, indium-based catalysts have shown promise in this reaction, but they are plagued by shortcomings such as structural instability during the reaction and low selectivity. Here, we report a new strategy of controlling the selectivity and stability of bimetallic magnetically recoverable indium-based catalysts deposited onto a solid support. This was accomplished by the introduction of a structural promoter: a branched pyridylphenylene polymer (PPP). The selectivity of methanol formation for this catalyst reached 98.5%, while in the absence of PPP, the catalysts produced a large amount of methane, and the selectivity was about 70.2%. The methanol production rate was higher by a factor of twelve compared to that of a commercial Cu-based catalyst. Along with tuning selectivity, PPP allowed the catalyst to maintain a high stability, enhancing the CO2 sorption capacity and the protection of In against sintering and over-reduction. A careful evaluation of the structure-activity relationships allowed us to balance the catalyst composition with a high level of structural control, providing synergy between the support, magnetic constituent, catalytic species, and the stabilizing polymer layer. We also uncovered the role of each component in the ultimate methanol activity and selectivity.

13.
Artigo em Inglês | MEDLINE | ID: mdl-37877895

RESUMO

Indium oxide (In2O3) is a transparent wide-bandgap semiconductor suitable for use in the back-end-of-line-compatible channel layers of heterogeneous monolithic three-dimensional (M3D) devices. The structural, chemical, and electrical properties of In2O3 films deposited by plasma-enhanced atomic layer deposition (PEALD) were examined using two different liquid-based precursors: (3-(dimethylamino)propyl)-dimethyl indium (DADI) and (N,N-dimethylbutylamine)trimethylindium (DATI). DATI-derived In2O3 films had higher growth per cycle (GPC), superior crystallinity, and low defect density compared with DADI-derived In2O3 films. Density functional theory calculations revealed that the structure of DATI can exhibit less steric hindrance compared with that of DADI, explaining the superior physical and electrical properties of the DATI-derived In2O3 film. DATI-derived In2O3 field-effect transistors (FETs) exhibited unprecedented performance, showcasing a high field-effect mobility of 115.8 cm2/(V s), a threshold voltage of -0.12 V, and a low subthreshold gate swing value of <70 mV/decade. These results were achieved by employing a 10-nm-thick HfO2 gate dielectric layer with an effective oxide thickness of 3.9 nm. Both DADI and DATI-derived In2O3 FET devices exhibited remarkable stability under bias stress conditions due to a high-quality In2O3 channel layer, good gate dielectric/channel interface matching, and a suitable passivation layer. These findings underscore the potential of ALD In2O3 films as promising materials for upper-layer channels in the next generation of M3D devices.

14.
ACS Appl Mater Interfaces ; 15(38): 45367-45377, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37704018

RESUMO

In2O3-based catalysts have shown high activity and selectivity for CO2 hydrogenation to methanol; however, the origin of the high performance of In2O3 is still unclear. To elucidate the initial steps of CO2 hydrogenation over In2O3, we have combined X-ray photoelectron spectroscopy and density functional theory calculations to study the adsorption of CO2 on the In2O3(111) crystalline surface with different terminations, namely, the stoichiometric, reduced, and hydroxylated surface. The combined approach confirms that the reduction of the surface results in the formation of In adatoms and that water dissociates on the surface at room temperature. A comparison of the experimental spectra and the computed core-level shifts (using methanol and formic acid as benchmark molecules) suggests that CO2 adsorbs as a carbonate on all three surface terminations. We find that the adsorption of CO2 is hindered by hydroxyl groups on the hydroxylated surface.

15.
Micromachines (Basel) ; 14(9)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37763848

RESUMO

The influence of the method used for synthesizing ZnO-In2O3 composites (nanopowder mixing, impregnation, and hydrothermal method) on the structure, conductivity, and sensor properties is investigated. With the nanopowder mixing, the size of the parent nanoparticles in the composite remains practically unchanged in the range of 50-100 nm. The impregnation composites consist of 70 nm In2O3 nanoparticles with ZnO nanoclusters < 30 nm in size located on its surface. The nanoparticles in the hydrothermal composites have a narrow size distribution in the range of 10-20 nm. The specific surface of hydrothermal samples is five times higher than that of impregnated samples. The sensor response of the impregnated composite to 1100 ppm H2 is 1.3-1.5 times higher than the response of the mixed composite. Additives of 15-20 and 85 wt.% ZnO to mixed and impregnated composites lead to an increase in the response compared with pure In2O3. In the case of hydrothermal composite, up to 20 wt.% ZnO addition leads to a decrease in response, but 65 wt.% ZnO addition increases response by almost two times compared with pure In2O3. The sensor activity of a hydrothermal composite depends on the phase composition of In2O3. The maximum efficiency is reached for the composite containing cubic In2O3 and the minimum for rhombohedral In2O3. An explanation is provided for the observed effects.

16.
Angew Chem Int Ed Engl ; 62(34): e202301901, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37395563

RESUMO

Construction of a "net-zero-emission" system through CO2 hydrogenation to methanol with solar energy is an eco-friendly way to mitigate the greenhouse effect. Traditional CO2 hydrogenation demands centralized mass production for cost reduction with mass water electrolysis for hydrogen supply. To achieve continuous reaction with intermittent and fluctuating flow of H2 on a small-scale for distributed application scenarios, modulating the catalyst interface environment and chemical adsorption capacity to adapt fluctuating reaction conditions is highly desired. This paper describes a distributed clean CO2 utilization system in which the surface structure of catalysts is carefully regulated. The Ni catalyst with unsaturated electrons loaded on In2 O3 can reduce the dissociation energy of H2 to overcome the slow response of intermittent H2 supply, exhibiting a faster response (12 min) than bare oxide catalysts (42 min). Moreover, the introduction of Ni enhances the sensitivity of the catalyst to hydrogen, yielding a Ni/In2 O3 catalyst with a good performance at lower H2 concentrations with a 15 times adaptability for wider hydrogen fluctuation range than In2 O3 , greatly reducing the negative impact of unstable H2 supplies derived from renewable energies.

17.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123168, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37515886

RESUMO

Surface-enhanced Raman scattering (SERS) has outstanding merits in biochemical molecular analysis, and the development of new SERS substrates is the focus of research. Herein, In2O3 nanoparticles (NPs) were synthesized by a high temperature pyrolysis method with cubic phase and small particle size at 10 nm. The structures and properties of In2O3 NPs were characterized by X-ray powder diffraction (XRD), transmission electron microscope (TEM) and other characterization methods. Additionally, the SERS spectra of In2O3-MBA with the enhancement factor (EF) up to 1.22 × 104 is discussed. The results demonstrate that there is a charge transfer (CT) effect revealed between the adsorbed molecules of 4-mercaptobenzoic acid (4-MBA) and the substrates of In2O3 NPs, and it could be excited by long wavelength energy. Based on the In2O3 NPs, the study is beneficial to develop more potential semiconductor SERS substrates.

18.
Polymers (Basel) ; 15(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37376262

RESUMO

Sequential infiltration synthesis (SIS) is an emerging vapor-phase synthetic route for the preparation of organic-inorganic composites. Previously, we investigated the potential of polyaniline (PANI)-InOx composite thin films prepared using SIS for application in electrochemical energy storage. In this study, we investigated the effects of the number of InOx SIS cycles on the chemical and electrochemical properties of PANI-InOx thin films via combined characterization using X-ray photoelectron spectroscopy, ultraviolet-visible spectroscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, and cyclic voltammetry. The area-specific capacitance values of PANI-InOx samples prepared with 10, 20, 50, and 100 SIS cycles were 1.1, 0.8, 1.4, and 0.96 mF/cm², respectively. Our result shows that the formation of an enlarged PANI-InOx mixed region directly exposed to the electrolyte is key to enhancing the pseudocapacitive properties of the composite films.

19.
Int J Mol Sci ; 24(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175664

RESUMO

The efficient degradation of organic effluent is always desirable when using advanced photocatalysts with enhanced activity under visible light. Nickel-doped indium oxide (Ni-In2O3) is synthesized via a hydrothermal route as well as its composites with reduced graphene oxide (rGO). Facile synthesis and composite formation methods lead to a well-defined morphology of fabricated nanocomposite at low temperatures. The bandgap energy of indium oxide lies in the range of 3.00-4.30 eV. Its high light absorption capacity, high stability, and non-toxicity make it a choice as a photocatalyst that is active under visible light. The transition metal Ni-doping changes the indium oxide's chemical, optical, and physicochemical properties. The Ni-In2O3 and rGO composites improved the charge transport and reduced the charge recombination. The phase analysis of the developed photocatalysts was performed using X-ray diffraction (XRD), and the morphological and structural properties were observed using advanced microscopic techniques (SEM and TEM), while UV-vis and FTIR spectroscopic techniques were used to confirm the structure and optical and chemical properties. The electrochemical properties of the photocatalysts were investigated using cyclic voltammetry (CV), linear sweep voltammetry (LSV), and electrochemical impedance spectroscopy (EIS), and the charge-transfer properties of the obtained photocatalysts and the mechanism of the photocatalytic degradation mechanism of methylene blue, a common dye used in the dyeing industry, were determined.


Assuntos
Poluentes Ambientais , Nanopartículas , Águas Residuárias , Óxidos/química , Luz , Nanopartículas/química
20.
ACS Appl Mater Interfaces ; 15(21): 25838-25848, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37202222

RESUMO

In this work, the ultrathin two-dimensional (2D) indium oxide (InOx) with a large area of more than 100 µm2 and a high degree of uniformity was automatically peeled off from indium by the liquid-metal printing technique. Raman and optical measurements revealed that 2D-InOx has a polycrystalline cubic structure. By altering the printing temperature which affects the crystallinity of 2D-InOx, the mechanism of the existence and disappearance of memristive characteristics was established. The tunable characteristics of the 2D-InOx memristor with reproducible one-order switching was manifest from the electrical measurements. Further adjustable multistate characteristics of the 2D-InOx memristor and its resistance switching mechanism were evaluated. A detailed examination of the memristive process demonstrated the Ca2+ mimic dynamic in 2D-InOx memristors as well as the fundamental principles underlying biological and artificial synapses. These surveys allow us to comprehend a 2D-InOx memristor using the liquid-metal printing technique and could be applied to future neuromorphic applications and in the field of revolutionary 2D material exploration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA