Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int Heart J ; 64(4): 732-740, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37518354

RESUMO

To investigate the possible effect of FoxO on coxsackievirus B3 (CVB3) -induced cardiomyocyte inflammation and apoptosis via modulation of the TLR4/NF-κB signaling pathway.Viral myocarditis (VMC) models were establied via CVB3 infection both in vivo and in vitro. Western blotting was adopted to detect FoxO1 and TLR4 expressions in myocardial tissues and cells. Cardiomyocytes of suckling mouse were divided into the control, CVB3, CVB3 + pcDNA, CVB3 + pcDNA-FoxO1, CVB3 + TLR4 siRNA, and CVB3 + pcDNA-FoxO1 + TLR4 siRNA groups. Flow cytometry was employed to evaluate cell apoptosis. The expressions of inflammatory factors including TNF-α, IL-1ß, and IL-6 were detected via quantitative reverse transcriptase polymerase chain reaction and enzyme-linked immunosorbent assay. Then, TLR4/NF-κB pathway-related proteins were determined via Western blotting.VMC mice had increased FoxO1 and TLR4 expressions in myocardial tissues. Cardiomyocytes with CVB3 infection also had upregulated protein expressions of p-FoxO1/FoxO1 and TLR4. Compared with those in the control group, the cardiomyocytes in the CVB3 group were increased in LDH and CK-MB levels, cell apoptosis rate and inflammatory factors (TNF-α, IL-1ß and IL-6), as well as protein expressions of TLR4 and p-p65/p65. Compared with those in the CVB3 group, the cardiomyocytes in the CVB3 + pcDNA-FoxO1 group were further upregulated whereas those in the CVB3 +TLR4 siRNA group were downregulated in the aforementioned indicators. Furthermore, TLR4 siRNA can reverse the effect of pcDNA-FoxO1 on the aggravation of cardiomyocyte injury induced by CVB3 infection.FoxO1 can upregulate the TLR4/NF-κB signaling pathway to promote cardiomyocyte apoptosis and inflammatory injury in CVB3-induced VMC.


Assuntos
Infecções por Coxsackievirus , Miocardite , Camundongos , Animais , Miocardite/metabolismo , Miócitos Cardíacos/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Receptor 4 Toll-Like/metabolismo , Inflamação/metabolismo , Transdução de Sinais , Apoptose , Infecções por Coxsackievirus/metabolismo , RNA Interferente Pequeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA