Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 63(2): 279-289, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34865157

RESUMO

Inhibition of Shaker K+ channel activity by external Na+ was previously reported in the melon (Cucumis melo L.) inwardly rectifying K+ channel MIRK and was hypothesized to contribute to salt tolerance. In this study, two inward Shaker K+ channels, CsKAT2 from cucumber (Cucumis sativus) and ClKAT2 from watermelon (Citrullus lanatus), were identified and characterized in Xenopus oocytes. Both channels were inwardly rectifying K+ channels with higher permeability to potassium than other monovalent cations and more active when external pH was acidic. Similarly to MIRK, their activity displayed an inhibition by external Na+, thus suggesting a common feature in Cucurbitaceae (Cucumis spp., Citrullus spp.). CsKAT2 and ClKAT2 are highly expressed in guard cells. After 24 h of plant treatment with 100 mM NaCl, the three KAT2-like genes were significantly downregulated in leaves and guard cells. Reciprocal chimeras were obtained between MIRK and Na+-insensitive AtKAT2 cDNAs. The chimera where the MIRK S5-P-S6 segment was replaced by that from AtKAT2 no longer showed Na+ sensitivity, while the inverse chimera gained Na+ sensitivity. These results provide evidence that the molecular basis of the channel blockage by Na+ is located in the S5-P-S6 region. Comparison of the electrostatic property in the S5-P-S6 region in AtKAT2 and MIRK revealed four key amino acid residues potentially governing Na+ sensitivity.


Assuntos
Tolerância ao Sal , Sódio , Transporte Biológico , Oócitos/metabolismo , Folhas de Planta , Potássio/metabolismo , Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA