Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 360
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124729, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38955073

RESUMO

There is an urgent requirement for the development of sensitive and quick sensors to monitor chromium (VI) due to its substantial carcinogenic and mutagenic properties. A coexisting system of coumarin 334 and diphenylcarbazide (C334/DPC) was used in this study as a fluorescent chemosensor to detect Cr(VI) ions. Upon the addition of Cr(VI), a purple chelate complex (Cr(III)-diphenylcarbazone) was produced, which resulted from the quantitative reaction between Cr(VI) ions and diphenylcarbazide (DPC), whereas no interaction between Cr(VI) and coumarin 334 took place. More interestingly, the absorption spectra of purple (Cr(III)-diphenylcarbazone) complex (λmax = 540 nm) were overlapped with emission and excitation spectra of coumarin 334 (λex/em = 453/492), resulting in the efficient quenching of coumarin 334 (C334) via the inner filter effect. Furthermore, the semi-quantitative estimation of Cr(VI) ion concentration may be achieved by visually watching the progressive color transformation of the probe from yellow to red after the addition different concentration of Cr(VI). The calibration plot for determination of Cr(VI) by this method is ranging from 0.048 to 268 µM. DFT calculations were conducted to enrich our understanding about the mechanism of action. This approach demonstrates an excellent selectivity and sensitivity for Cr(VI) including a detection limit of 48 nM. The new sensor was successfully applied to water samples (tap, mineral, and waste waters). The accuracy was confirmed by the atomic absorption spectroscopy.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124805, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39003827

RESUMO

A novel fluorimetric ratiometric probe of green and eco-friendily nitrogen-enriched, oxygen-doped carbon nanodots (Cnanodots) was prepared for the quantitative analysis of mercury(II) (HgII) and nitrofurantoin (Nit) in the environmental sewage. The Cnanodots exhibits dual-emission peaks respectively at 345 and 445 nm under 285 nm excitation, with excitation-independent properties. Unexpectedly, this Cnanodots displays two obvious ratiometric responses to HgII and Nit through decreasing the signal at 345 nm and remaining invariable at 445 nm. Experimental results confirm that the highly sensitive analysis of HgII and Nit are achieved respectively based on matching energy-level electron transfer and inner filter effect mechanisms. The fluorescence (FL) ratiometric intensity of [FL345nm/FL445nm] expresses a good linear relationship with the concentration of HgII in the scope of 0.01-20 µM, while the logarithm of [Log(FL0345nm-FL345nm)] on the quenching degree of the probe by Nit also shows a good linear correlation within the range of 0.01-100 µM. The detection limits were calculated to be 4.14 nM for HgII, and 7.84 nM for Nit. Moreover, recovery experiments of Cnanodots for HgII and Nit sensing in real sewage samples obtained satisfactory results, comfirming the feasibility of practical application.

3.
Mikrochim Acta ; 191(8): 461, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990273

RESUMO

Three phenomena, namely coordination-induced emission (CIE), aggregation-induced emission (AIE), and inner filter effect (IFE), were incorporated into the design of a ratiometric and color tonality-based biosensor. Blue fluorescent Al-based metal-organic frameworks (FMIL-96) were prepared from non-emissive ligand and aluminum ions via CIE. Interestingly, the addition of tetracycline (TC) led to ratiometric detection and color tonality, as the blue emission at 380 nm was quenched (when excited at 350 nm) due to IFE, while the green-yellowish emission at 525 nm was enhanced due to AIE. Based on that, an ultra-sensitive visual-based color tonality mode with smartphone assistance was developed for detection of TC. The sensor exhibited a linear relationship within a broad range of 2.0 to 85.0 µM TC with a detection limit of 68.0 nM. TC in milk samples was quantified with high accuracy and precision. This integration of smartphone and visual fluorescence in solution is accurate, reliable, cost-effective, and time-saving, providing an alternative strategy for the semi-quantitative determination of TC on-site.

4.
Eur J Pharm Biopharm ; 201: 114377, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38955284

RESUMO

Drug product development of therapeutic antibody formulations is still dictated by the risk of protein particle formation during processing or storage, which can lead to loss of potency and potential immunogenic reactions. Since structural perturbations are the main driver for irreversible protein aggregation, the conformational integrity of antibodies should be closely monitored. The present study evaluated the applicability of a plate reader-based high throughput method for Intrinsic Tryptophan Fluorescence Emission (ITFE) spectroscopy to detect protein aggregation due to protein unfolding in high-concentrated therapeutic antibody samples. The impact of fluorophore concentration on the ITFE signal in microplate readers was investigated by analysis of dilution series of two therapeutic antibodies and pure tryptophan. At low antibody concentrations (< 5 mg/mL, equivalent to 0.8 mM tryptophan), the low inner filter effect suggests a quasi-linear relationship between antibody concentration and ITFE intensity. In contrast, the constant ITFE intensity at high protein concentrations (> 40 mg/mL, equivalent to 6.1 mM tryptophan) indicate that ITFE spectroscopy measurements of IgG1 antibodies are feasible in therapeutically relevant concentrations (up to 223 mg/mL). Furthermore, the capability of the method to detect low levels of unfolding (around 1 %) was confirmed by limit of detection (LOD) determination with temperature-stressed antibody samples as degradation standards. Change of fluorescence intensity at the maximum (ΔIaM) was identified as sensitive descriptor for protein degradation, providing the lowest LOD values. The results demonstrate that ITFE spectroscopy performed in a microplate reader is a valuable tool for high-throughput monitoring of protein degradation in therapeutic antibody formulations.


Assuntos
Imunoglobulina G , Espectrometria de Fluorescência , Triptofano , Triptofano/química , Espectrometria de Fluorescência/métodos , Imunoglobulina G/química , Agregados Proteicos , Desdobramento de Proteína , Anticorpos Monoclonais/química , Ensaios de Triagem em Larga Escala/métodos , Soluções
5.
Food Chem ; 458: 140304, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38970961

RESUMO

Protecting human health and ensuring food security require the swift and accurate detection of sulfonamides (SAs) residues in foods. Herein, we proposed an Eu-postfunctionalized bimetallic porphyrin metal-organic framework (PCN-221(Zr/Ce)@Eu-DPA-H4btec) synthesized solvothermally for fluorescence sensing. The PCN-221(Zr/Ce)@Eu-DPA-H4btec fluorescent sensor demonstrated excellent stability and high selectivity to SAs, and the detection limits of sulfamethazine (SM2), sulfamerazine (SMR), and sulfamethoxydiazine (SMD) were as low as 56 nmol/L, 45 nmol/L, and 56 nmol/L, respectively. The PCN-221(Zr/Ce)@Eu-DPA-H4btec fluorescent sensor was successfully applied for the detection of SM2, SMR, and SMD in real pork and milk samples, with satisfactory recoveries (81.2-118.3%) and high precisions (RSDs <8.2, n = 3). Combining the optical properties of the nanohybrids, PCN-221(Zr/Ce)@Eu-DPA-H4btec integrated fluorescent hydrogels were innovatively prepared for visual sensing of SM2, SMR, and SMD. This study provides an uncomplicated and sensitive method for SAs detection in food matrices.

6.
Methods Appl Fluoresc ; 12(4)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38955337

RESUMO

Continuous in-line detection and process monitoring are essential for industrial, analytical, and biomedical applications. Lightweight, highly flexible, and low-cost fiber optics enable the construction of compact and robust hand-held devices forin situchemical and biological species analysis in both industrial and biomedicalin vitro/in vivodetection. Despite the broad range of fiber-optic based applications, we lack a good understanding of the parameters that govern the efficiency of light collection or the sensitivity of detection. Consequently, comparing samples of different optical density and/or geometry becomes challenging and can lead to misinterpretation of results; especially when we lack the approaches necessary to correct the detected signal (spectra) for artifacts such as inner-filter effect or scattering. Hence, in this work, we discuss factors affecting the signal detected by the fiber optic in the bare and lens-coupled flat-tipped configurations that lead to signal/spectral distortions. We also present a simple generic model describing the excitation profile and emission collection efficiency that we verify with experimental data. Understanding the principles governing the signal collected by the fiber will provide rationales for correcting the measured emission spectra and recovering the true emission profile of optically dense samples.

7.
Chemosphere ; 362: 142863, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019172

RESUMO

Tetracycline (TC) is extensively utilized in livestock breeding, aquaculture, and medical industry. TC residues seriously harm food security, the environment, and human health. There is an urgent need to exploit a highly efficient and sensitive testing method to monitor TC residue levels in aquatic environments. In this study, graphitic carbon nitride quantum dots (g-CNQDs) were successfully synthesized by a one-step microwave-assisted method using citric acid and urea as precursors. The as-prepared g-CNQDs with size of 1.25-3.75 nm exhibited bright yellow fluorescence at 523 nm when excited at 397 nm. Interestingly, this characteristic fluorescence emission of g-CNQDs could be selectively and efficiently quenched by TC. Based on this phenomenon, for TC detection was successfully explored and applied in real water samples. Wide linear scope of 7-100 µM, low detection limit (LOD) of 0.48 µM, satisfactory recovery of 97.77%-103.4%, and good relative standard deviation (RSD) of 1.05-5.87% were obtained. Mechanism investigations revealed that the static quenching and the inner filter effect (IFE) were responsible for this fluorescence quenching between g-CNQDs and TC. This work not only provided a facile approach for g-CNQDs synthesis but also constructed a g-CNQDs-based fluorescent sensor platform for the highly sensitive and selective detection of TC in aquatic environments.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124708, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38936210

RESUMO

Copper nanoclusters (FA@CuNCs) emitting blue fluorescence were successfully developed via a one-pot technique. In this method, the copper chloride, folic acid and hydrazine hydrate were applied as a precursor, protective agent and reducing agent, respectively. The absorption, fluorescence excitation and emission spectra of FA@CuNCs were carried out by using ultraviolet-visible and fluorescence spectrometry, respectively. The morphology, particle size, functional groups, oxidation states of elements of FA@CuNCs were discussed via using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The stability of FA@CuNCs was studied under various conditions, such as storage time at 25 ℃, ultraviolet radiation time, sodium chloride solutione and pH. The FA@CuNCs displayed blue fluorescence under the excitation wavelength of 361 nm, and the fluorescence quantum yield was 7.45 %. As a result of the inner filter effect, the alizarin red could significantly weaken the blue fluorescence of FA@CuNCs. Thus, the as-prepared FA@CuNCs could be utilized as fluorescence nanosensors for the trace determination of alizarin red. This platform suggested an excellent linear range for alizarin red varying from 0.5 to 200 µM with a fitting coefficient of 0.9955. The detection limit was calculated to be 0.064 µM in the light of the 3b/k (b and k refer to the standard deviation and slope of fitted curve, respectively). Furthermore, the as-developed FA@CuNCs could be used to detect the alizarin red in real samples and for the sensing of temperature.

9.
Food Chem X ; 22: 101488, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38840721

RESUMO

Developing a rapid detection method of Cr(VI) and ascorbic acid (AA) is vital in the food and environmental fields. Herein, an anthrylimidazole-based fluorescent ionic liquid (AI-FIL) with the advantageous fluorescent properties was successfully prepared and used to construct a promising "on-off-on" fluoroprobe for rapid/sensitive Cr(VI) and AA detection. Cr(VI) could effectively quench the fluorescence of AI-FIL owing to the inner-filter effect and photoinduced electron-transfer process. However, the decreased fluorescence could be rapidly recovered by AA owing to the redox reaction between AA and Cr(VI). For Cr(VI) detection, a satisfactorily linear response (0.03-300 µM) was achieved with the corresponding detection limit of 9 nM. For AA detection, a good linearity from 1 to 1000 µM was obtained with the resultant detection limit of 0.3 µM. Moreover, the AI-FIL based fluoroprobe was successfully utilized for Cr(VI) and AA detection in food and water samples with satisfactory accuracy and precision.

10.
J Fluoresc ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865062

RESUMO

Bilirubin (BR), a heme protein produced from breakdown of haemoglobin is present in aged red blood cells; whose abnormal concentration is associated with diseases like hyperbilirubinemia, coronary disease, iron deficiency, and so on. Herein, we have synthesized a selective, sensitive, and low-cost sensing platform using fluorescent nitrogen doped carbon dots (NCDs), prepared from precursors; citric acid and urea via a simple microwave-assisted method. The emission at 444 nm on excitation with 360 nm was well quenched in presence of BR suggesting a direct turn-off detection for BR. Characterization of developed probe was done by UV-Visible absorption studies, photoluminescence studies, SEM, TEM, ATR-FTIR, XPS, and DLS analysis. BR was detected with a Limit of Detection (LoD) and Limit of Quantification (LoQ) of 0.32 µM and 1.08 µM respectively. NCDs exhibited excellent selectivity and sensitivity towards BR in the presence of co-existing biomolecules and ions. Practical feasibility was checked by paper-strip-based sensing of BR and spiked real human samples were used for conducting real sample analysis.

11.
Environ Technol ; : 1-12, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38887014

RESUMO

2,4,6-Trinitrophenol (TNP) has high explosive risks and biological toxicity, and there has been considerable concern over the determination of TNP. In the present work, fluorescent carbon dots (CDs) stemmed from a green carbon source of pinecone by the facile hydrothermal approach. A novel environment- friendly fluorescent probe was developed to efficiently detect TNP by using the obtained CDs with remarkable fluorescence stability. The fluorescent CDs exhibited obvious excitation dependence with the highest peaks for excitation and emission occurring at 321 and 411 nm, respectively. The fluorescence intensity is significantly reduced by TNP owing to the inner filter effect with the CDs. The probe exhibited good linearity with TNP concentrations in the range of 0.025-20 µg mL-1, and the limit of detection was as low as 8.5 ng mL-1. Additionally, the probe proved successful in sensing TNP quantitatively in actual environmental samples with satisfied recoveries of 95.6-99.6%. The developed fluorescent probe offered an environment-friendly, efficient, rapid, and reliable platform for detecting trace TNP in the environmental field.HighlightsNovel carbon dots were synthesised from green precursors of pineal powder.The highly effective quenching process was put down to the inner filter effect.The as-constructed fluorescent probe was successfully utilised for sensing 2,4,6-trinitrophenol in environmental samples.The proposed method was simple, rapid, efficient, economical, and eco-friendly.

12.
Talanta ; 277: 126335, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823323

RESUMO

Developing a simple, economical, sensitive, and selective method for label-free direct detection analytes is attractive, especially the strategies that could achieve signal amplification without complicated operations. Herein, a dual-fluorescence colorimetric nanoswitch sensing platform for label-free direct melamine (MEL) detection was established. We first explored the relationship between MEL-induced aggregation of gold nanoparticles (AuNPs) and size and determined the optimal size to be 37 nm. Using surfactant Triton X-100 to modify AuNPs and clarify possible interaction mechanisms to improve detection performance. The dynamic changes of surface plasmon resonance absorption peaks in the dispersed and aggregated states of AuNPs were skillfully utilized to match the emission of multicolor gold nanoclusters to trigger the multi-inner filter effect. Accompanied by the addition of MEL-induced AuNPs to change from dispersed to aggregated state, the fluorescence of green-emitting and red-emitting gradually turned on and turned off, respectively. The fluorescence turn-on mode detection limit was 10 times higher than the colorimetric method and as low as 5.5 ng/mL; the detection took only 10 min. The sensor detected MEL in spiked milk samples with a good recovery in the range of 81.2-111.0 % with a coefficient of variation less than 11.4 % and achieved a good correlation with commercial kits. The proposed sensor integrates numerous merits of label-free, multi-signal readout, self-calibration, simple operations, and economical, which provides a promising tool for convenient on-site detection of MEL.


Assuntos
Colorimetria , Ouro , Nanopartículas Metálicas , Leite , Triazinas , Triazinas/análise , Triazinas/química , Ouro/química , Nanopartículas Metálicas/química , Colorimetria/métodos , Leite/química , Animais , Limite de Detecção , Fluorescência , Contaminação de Alimentos/análise , Espectrometria de Fluorescência/métodos
13.
Chem Biodivers ; : e202400891, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825847

RESUMO

The utilization of natural materials for the synthesis of highly fluorescent carbon quantum dots (CQDs) presents a sustainable approach to overcome the challenges associated with traditional chemical precursors. Here, we report the synthesis of novel S,N-self-doped CQDs (S,N@CQDs) derived from asparagus officinalis herb. These S,N@CQDs exhibit 16.7% fluorescence quantum yield, demonstrating their potential in medical diagnostics. We demonstrate the efficacy of S,N@CQDs as luminescent probes for the detection of anti-pathogenic medications metronidazole (MTZ) and nitazoxanide (NTZ) over concentration ranges of 0.0-180.0 µM (with a limit of detection (LOD) of 0.064 µM) and 0.25-40.0 µM (LOD of 0.05 µM), respectively. The probes were successfully applied to determine MTZ and NTZ in medicinal samples, real samples, and spiked human plasma, with excellent recovery rates ranging from 99.82% to 103.03%. Additionally, S,N@CQDs demonstrate exceptional efficacy as diagnostic luminescent probes for hemoglobin (Hb) detection over a concentration range of 0-900 nM, with a minimal detectability of 9.24 nM, comparable to commercially available medical laboratory diagnostic tests. The eco-friendly synthesis and precise detection limits of S,N@CQDs meet necessary analytical requirements and hold promise for advancing diagnostic capabilities in clinical settings. This research signifies a significant step towards sustainable and efficient fluorescence-based medical diagnostics.

14.
J Fluoresc ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874826

RESUMO

Detection of nitroaromatic explosives is essential in the area of environmental safety. Fluorescent carbon nitride nanoparticles is a promising material for this purpose. Herein, we have prepared fluorescent carbon nitride nanoparticles (CNNPs) by one step thermal treatment of formamide. These fluorescent CNNPs is sensitive towards picric acid (PA) than other analytes both in aqueous medium and on test paper which is witnessed by fluorescence quenching based on inner filter effect (IFE). The PA detection with the fluorescent CNNPs is observed in the concentration ranges, 0 µM to 60 µM with linear range of 10 nM to 25 µM. The minimum detection limit in aqueous medium and solid phase are determined to be 26.20 nM and 10 µM respectively. Finally, the fluorescent CNNPs is applied for detection of PA in real water samples. The recoveries are in the ranges from 99.54 to 116.35% with relative standard deviation less than 3.85%. This proposed fluorescent method can act as suitable analytical technique to monitored PA concentration in water samples.

15.
Talanta ; 278: 126432, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38917547

RESUMO

Given the threat to human health posed by the abuse of tetracycline (TC), the development of a portable, on-site methods for highly sensitive and rapid TC detection is crucial. In this work, we initially synthesized europium-doped silicon nanoparticles (SiEuNPs) through a facile one-pot microwave-assisted method. Due to its blue-red dual fluorescence emission (465 nm/627 nm), which was respectively attributed to the silicon nanoparticles and Eu3+, SiEuNPs were designed as a ratiometric fluorescent sensor for TC detection. For the dual-signal reverse response mechanism: TC quenched the blue emission from silicon nanoparticles through inner filter effect (IFE), and enhanced the red emission through "antenna effect" (AE) between TC and Eu3+, the nanoprobe was able to detect TC within a range of 0.2-10 µM with a limit of detection (LOD) of 10.7 nM. Notably, the equilibrium detection time was only 1 min, achieving rapid TC detection. Furthermore, TC was also measured in real samples (tap water, milk and honey) with recoveries ranging from 95.7 % to 117.0 %. More importantly, a portable smartphone-assisted on-site detection platform was developed, enabling real-time qualitative identification and semi-quantitative analysis of TC based on fluorescence color changes. This work not only provided a novel doped silicon nanoparticles strategy, but also constructed a ratiometric sensing platform with dual-signal reverse response for intuitive and real-time TC detection.

16.
Acta Pharm Sin B ; 14(5): 2349-2357, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38799620

RESUMO

A titrant for the SARS-CoV-2 main protease (Mpro) was developed that enables, for the first time, the exact determination of the concentration of the enzymatically active Mpro by active-site titration. The covalent binding mode of the tetrapeptidic titrant was elucidated by the determination of the crystal structure of the enzyme-titrant complex. Four fluorogenic substrates of Mpro, including a prototypical, internally quenched Dabcyl-EDANS peptide, were compared in terms of solubility under typical assay conditions. By exploiting the new titrant, key kinetic parameters for the Mpro-catalyzed cleavage of these substrates were determined.

17.
Mikrochim Acta ; 191(6): 310, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38714566

RESUMO

A ratiometric fluorescence sensor has been established based on dual-excitation carbon dots (D-CDs) for the detection of flavonoids (morin is chosen as the typical detecting model for flavonoids). D-CDs were prepared using microwave radiation with o-phenylenediamine and melamine and exhibit controllable dual-excitation behavior through the regulation of their concentration. Remarkably, the short-wavelength excitation of D-CDs can be quenched by morin owing to the inner filter effect, while the long-wavelength excitation remains insensitive, serving as the reference signal. This contributes to the successful design of an excitation-based ratiometric sensor. Based on the distinct and differentiated variation of excitation intensity, morin can be determined from 0.156 to 110 µM with a low detection limit of 0.156 µM. In addition, an intelligent and visually lateral flow sensing device is developed for the determination  of morin content in real samples with satisfying recoveries, which indicates the potential application for human health monitoring.


Assuntos
Carbono , Flavonoides , Limite de Detecção , Nitrogênio , Impressão Tridimensional , Pontos Quânticos , Espectrometria de Fluorescência , Flavonoides/análise , Flavonoides/química , Carbono/química , Pontos Quânticos/química , Espectrometria de Fluorescência/métodos , Nitrogênio/química , Corantes Fluorescentes/química , Humanos , Flavonas
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124422, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38776666

RESUMO

The application of the inner filter effect (IFE) in fluorescent substance determination is gaining popularity. In this paper, a theory of the fluorescence distribution along with the excitation light path is derived from our previous research about the spatial micro-element method. According to the relationship between the summation of fluorescence intensities along the vertical direction at a certain position on the excitation light path and the position, a high-concentration and wide-range fluorescent substance quantification method based on the IFE and fluorescence imaging analysis is proposed. Correspondingly, a high-throughput fluorescent substance quantification detection system is constructed. In order to validate the method, solutions of rhodamine B in different concentrations are used for principle validation, concentration prediction, and experimental investigation on the influence of integration time and lens distortion. The high-throughput system enables the simultaneous measurement of six samples, realizing the high-concentration and wide-range quantification of rhodamine B (100-600 mg/L) with high precision (R2 = 0.9992, MRE = 2.34 %). By setting the filter wheel, the system can measure the concentration of fluorescent substances with different emission wavelengths. The improvement of experimental device is expected to reduce the single sample capacity to tens of microliters and increase the overall sample quantity to tens or even hundreds. The proposed method and system are beneficial to fluorescence measurement in fields such as biomedicine and dye research and to the improvement of high-throughput fluorescence quantitative PCR instruments.

19.
Chemphyschem ; : e202400264, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38776018

RESUMO

Picric acid (PA) is an important industrial feedstock and hence the release of industrial effluents without proper remediation results in its buildup in soil and water bodies. The adverse effects of PA accumulation in living beings necessitate the development of efficient methods for its detection and quantification. Herein, we describe pyrene-based fluorescent sensors for PA, where pyrene is appended with electron-withdrawing groups, malononitrile, and 2-(3-cyano-4,5,5-trimethylfuran-2(5H)-ylidene) malononitrile (DCDHF). These molecules displayed the typical emission of pyrene monomers, as well as a broad red-shifted emission resulting from an intramolecular charge transfer (ICT) in the excited state. Both the emissions displayed a turn-off response to PA with high selectivity and sensitivity and the lowest limit of detection was estimated as 27 nM. To prove the feasibility of on-site detection, test paper strips were prepared, which could detect PA up to 4.58 picograms. Using a combination of experimental and theoretical studies the mechanism of the detection was identified as primary/secondary inner filter effect, oxidative photoinduced electron transfer, or a combination of both depending on the excitation wavelength. Interestingly, the contribution of each of these mechanisms to the total quenching process varied with a change in the excitation wavelength.

20.
J Fluoresc ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758342

RESUMO

Dipicolinic acid (DPA) is a prominent biomarker for Anthrax disease. Bacillus anthracis bacterial endospores is composed of DPA as the significant component, which on over inhalation can cause severe health issues. Such contagious and life-threatening pathogens can be employed as bioweapons or biothreat agents for spreading bioterrorism which is a major risk for national security and public health concerns. Hence, effective detection or a surveillance system is essential for preventing the growth of bioterrorism events. Herein, we have developed a Terbium - 1,10 Phenanthroline (Tb-Phen) based lanthanide luminescence complex with bright green fluorescence. On addition of DPA, the green fluorescence is turn-off at a linear range from 0.6 to 4.762 mM. In this effect, 5D4- 7F5 transition caused by 1,10-phenanthroline to Tb3+ at 544 nm is restricted due to energy transfer quenching and Inner Filter Effect (IFE). The developed probe shows good sensitivity towards the detection of DPA with other coexisting biomolecules and ions with a low Limit of Detection (LOD) of 5.029 µM. The practical feasibility was evaluated in paper strip assay and extended in real samples such as human serum and tap water with satisfactory recovery percentage. Thereby, probe finds promising application in sensing of anthrax spore biomarker (DPA) and biothreat agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA