Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Front Genet ; 14: 1270085, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37860672

RESUMO

Background: Endoplasmic reticulum stress (ERS) is an important pathophysiological mechanism in ulcerative colitis (UC) and Crohn's disease (CD). ERS-related genes may be influenced by genetic factors and intestinal inflammation. However, the role of ERS as a trigger or potential etiological factor for UC and CD is unclear, as the expression of ERS-related genes in UC and CD may be the cause or subsequent changes in intestinal inflammation. Here, we used a three-step summary data-based Mendelian randomization (SMR) approach integrating multi-omics data to identify putative causal effects of ERS-related genes in UC and CD. Methods: Genome-wide association study (GWAS) summary data for UC (6,968 cases and 20,464 controls) and CD (5,956 cases and 14,927 controls) were extracted as outcome, and DNA methylation quantitative trait loci (mQTL, 1,980 participants) data and expression QTL data (eQTL, 31,684 participants) from the blood were obtained as exposure. The ERS-related genes were extracted from the GeneCards database, and then the GWAS summary data were integrated with the mQTL and eQTL data associated with ERS genes by SMR. Sensitivity analysis included two-sample MR analysis, power calculations, Bayesian co-localization analysis, and phenotype scanning were performed to evaluate the robustness of the results. Results: A total of 1,193 ERS-related genes were obtained. The three-step SMR analysis showed that cg24011261 CpG site regulating GPX1 expression was associated with a low risk of UC, whereas GPX1 expression regulated by a combination of cg05055782, cg24011261, and cg05551922 CpG sites was associated with a low risk of CD. Sensitivity analysis further supports these findings. Conclusion: This multi-omics integration study identifies a causal relationship between the role of ERS in UC and CD and suggests potential new therapeutic targets for clinical practice.

2.
Plant Mol Biol ; 109(3): 249-269, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32757126

RESUMO

KEY MESSAGE: Integrative omics approaches revealed a crosstalk among phytohormones during tuberous root development in cassava. Tuberous root formation is a complex process consisting of phase changes as well as cell division and elongation for radial growth. We performed an integrated analysis to clarify the relationships among metabolites, phytohormones, and gene transcription during tuberous root formation in cassava (Manihot esculenta Crantz). We also confirmed the effects of the auxin (AUX), cytokinin (CK), abscisic acid (ABA), jasmonic acid (JA), gibberellin (GA), brassinosteroid (BR), salicylic acid, and indole-3-acetic acid conjugated with aspartic acid on tuberous root development. An integrated analysis of metabolites and gene expression indicated the expression levels of several genes encoding enzymes involved in starch biosynthesis and sucrose metabolism are up-regulated during tuberous root development, which is consistent with the accumulation of starch, sugar phosphates, and nucleotides. An integrated analysis of phytohormones and gene transcripts revealed a relationship among AUX signaling, CK signaling, and BR signaling, with AUX, CK, and BR inducing tuberous root development. In contrast, ABA and JA inhibited tuberous root development. These phenomena might represent the differences between stem tubers (e.g., potato) and root tubers (e.g., cassava). On the basis of these results, a phytohormonal regulatory model for tuberous root development was constructed. This model may be useful for future phytohormonal studies involving cassava.


Assuntos
Manihot , Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas , Manihot/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Amido/metabolismo
3.
J Exp Clin Cancer Res ; 40(1): 225, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34233735

RESUMO

BACKGROUND: Genes in the Ras pathway have somatic mutations in at least 60 % of colorectal cancers. Despite activating the same pathway, the BRAF V600E mutation and the prevalent mutations in codon 12 and 13 of KRAS have all been linked to different clinical outcomes, but the molecular mechanisms behind these differences largely remain to be clarified. METHODS: To characterize the similarities and differences between common activating KRAS mutations and between KRAS and BRAF mutations, we used genome editing to engineer KRAS G12C/D/V and G13D mutations in colorectal cancer cells that had their mutant BRAF V600E allele removed and subjected them to transcriptome sequencing, global proteomics and metabolomics analyses. RESULTS: By intersecting differentially expressed genes, proteins and metabolites, we uncovered (i) two-fold more regulated genes and proteins when comparing KRAS to BRAF mutant cells to those lacking Ras pathway mutation, (ii) five differentially expressed proteins in KRAS mutants compared to cells lacking Ras pathway mutation (IFI16, S100A10, CD44, GLRX and AHNAK2) and 6 (CRABP2, FLNA, NXN, LCP1, S100A10 and S100A2) compared to BRAF mutant cells, (iii) 19 proteins expressed differentially in a KRAS mutation specific manner versus BRAF V600E cells, (iv) regulation of the Integrin Linked Kinase pathway by KRAS but not BRAF mutation, (v) regulation of amino acid metabolism, particularly of the tyrosine, histidine, arginine and proline pathways, the urea cycle and purine metabolism by Ras pathway mutations, (vi) increased free carnitine in KRAS and BRAF mutant RKO cells. CONCLUSIONS: This comprehensive integrative -omics analysis confirms known and adds novel genes, proteins and metabolic pathways regulated by mutant KRAS and BRAF signaling in colorectal cancer. The results from the new model systems presented here can inform future development of diagnostic and therapeutic approaches targeting tumors with KRAS and BRAF mutations.


Assuntos
Neoplasias Colorretais/genética , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Humanos , Fenótipo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
4.
J Agric Food Chem ; 69(9): 2906-2918, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33587641

RESUMO

Oenococcus oeni plays a key role in inducing malolactic fermentation in wine. Acid stress is often encountered under wine conditions. However, the lack of systematic studies of acid resistance mechanisms limits the downstream fermentation applications. In this study, the acid responses of O. oeni were investigated by combining transcriptome, metabolome, and genome-scale metabolic modeling approaches. Metabolite profiling highlighted the decreased abundance of nucleotides under acid stress. The gene-metabolite bipartite network showed negative correlations between nucleotides and genes involved in ribosome assembly, translation, and post-translational processes, suggesting that stringent response could be activated under acid stress. Genome-scale metabolic modeling revealed marked flux rerouting, including reallocation of pyruvate, attenuation of glycolysis, utilization of carbon sources other than glucose, and enhancement of nucleotide salvage and the arginine deiminase pathway. This study provided novel insights into the acid responses of O. oeni, which will be useful for designing strategies to address acid stress in wine malolactic fermentation.


Assuntos
Oenococcus , Vinho , Fermentação , Ácido Láctico , Oenococcus/genética
6.
BMC Plant Biol ; 19(1): 475, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31694541

RESUMO

BACKGROUND: Pyropia haitanensis, distributes in the intertidal zone, can tolerate water losses exceeding 90%. However, the mechanisms enabling P. haitanensis to survive harsh conditions remain uncharacterized. To elucidate the mechanism underlying P. haitanensis desiccation tolerance, we completed an integrated analysis of its transcriptome and proteome as well as transgenic Chlamydomonas reinhardtii carrying a P. haitanensis gene. RESULTS: P. haitanensis rapidly adjusted its physiological activities to compensate for water losses up to 60%, after which, photosynthesis, antioxidant systems, chaperones, and cytoskeleton were activated to response to severe desiccation stress. The integrative analysis suggested that transketolase (TKL) was affected by all desiccation treatments. Transgenic C. reinhardtii cells overexpressed PhTKL grew better than the wild-type cells in response to osmotic stress. CONCLUSION: P. haitanensis quickly establishes acclimatory homeostasis regarding its transcriptome and proteome to ensure its thalli can recover after being rehydrated. Additionally, PhTKL is vital for P. haitanensis desiccation tolerance. The present data may provide new insights for the breeding of algae and plants exhibiting enhanced desiccation tolerance.


Assuntos
Rodófitas/enzimologia , Transcetolase/metabolismo , Adaptação Fisiológica , Parede Celular/metabolismo , Chlamydomonas reinhardtii/genética , Citoesqueleto/metabolismo , Desidratação/enzimologia , Metabolismo Energético , Regulação da Expressão Gênica de Plantas , Homeostase , Pressão Osmótica , Proteínas de Plantas/genética , Proteoma , Rodófitas/genética , Transcriptoma
7.
Int J Cardiol ; 227: 239-246, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27852445

RESUMO

BACKGROUND: Myocardial infarction (MI) is caused by myocardial necrosis resulting from prolonged ischemia. However, the biological mechanisms underlying MI remain unclear. METHODS: We evaluated metabolic and lipidomic changes in rat heart tissue from sham and MI at 1h, 1day and 10day after coronary ligation, using global profiling based on metabolomics. RESULTS: A time-dependent increase or decrease in polar and lipid metabolite levels was measured. The S-adenosylmethionine (SAM) concentration and the SAM/S-adenosylhomocysteine (SAH) ratio gradually decreased in a time-dependent manner and were significantly downregulated 10days after MI. Transcriptome analysis revealed that the levels of coenzyme Q (Coq)-3 and Coq5, both of which are SAM-dependent methyltransferases, were decreased in the MI groups. These results suggested that dysregulation of SAM may be related to down regulated COQ biosynthetic pathway. In addition, short-chain (C3) and medium-chain (C4-C12) acylcarnitine levels gradually decreased, whereas long-chain acylcarnitine (C14-18) levels increased, owing to a defect in ß-oxidation during ischemia. These changes are related to energy-dependent metabolic pathways, and a subsequent decrease in adenosine triphosphate concentration was observed. CONCLUSIONS: The comprehensive integration of various omics data provides a novel means of understanding the underlying pathophysiological mechanisms of MI.


Assuntos
Metabolômica , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Animais , Modelos Animais de Doenças , Ligadura , Masculino , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
8.
J Proteome Res ; 15(3): 766-76, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26680540

RESUMO

Microsatellite instability (MSI) is a frequent and clinically relevant molecular phenotype in colorectal cancer. MSI cancers have favorable survival compared with microsatellite stable cancers (MSS), possibly due to the pronounced tumor-infiltrating lymphocytes observed in MSI cancers. Consistent with the strong immune response that MSI cancers trigger in the host, previous transcriptome expression studies have identified mRNA signatures characteristic of immune response in MSI cancers. However, proteomics features of MSI cancers and the extent to which the mRNA signatures are reflected at the protein level remain largely unknown. Here, we performed a comprehensive comparison of global proteomics profiles between MSI and MSS colorectal cancers in The Cancer Genome Atlas (TCGA) cohort. We found that protein signatures of MSI are also associated with increased immunogenicity. To reliably quantify post-transcription regulation in MSI cancers, we developed a resampling-based regression method by integrative modeling of transcriptomics and proteomics data sets. Compared with the popular simple method, which detects post-transcriptional regulation by either identifying genes differentially expressed at the mRNA level but not at the protein level or vice versa, our method provided a quantitative, more sensitive, and accurate way to identify genes subject to differential post-transcriptional regulation. With this method, we demonstrated that post-transcriptional regulation, coordinating protein expression with key players, initiates de novo and enhances protective host response in MSI cancers.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Regulação Neoplásica da Expressão Gênica/genética , Instabilidade de Microssatélites , Estudos de Coortes , Perfilação da Expressão Gênica , Humanos , Imunidade/genética , Proteômica , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA