Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Front Behav Neurosci ; 18: 1270159, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487348

RESUMO

The IntelliCage (IC) permits the assessment of the behavior and learning abilities of mice in a social home cage context. To overcome water deprivation as an aversive driver of learning, we developed protocols in which spatial learning is motivated appetitively by the preference of mice for sweetened over plain water. While plain water is available at all times, only correct task responses give access to sweetened water rewards. Under these conditions, C57BL/6J mice successfully mastered a corner preference task with the reversal and also learned a more difficult time-place task with reversal. However, the rate of responding to sweetened water decreased strongly with increasing task difficulty, indicating that learning challenges and reduced success in obtaining rewards decreased the motivation of the animals to seek sweetened water. While C57BL/6J mice of both sexes showed similar initial taste preferences and learned similarly well in simple learning tasks, the rate of responding to sweetened water and performance dropped more rapidly in male than in female mice in response to increasing learning challenges. Taken together, our data indicate that male mice can have a disadvantage relative to females in mastering difficult, appetitively motivated learning tasks, likely due to sex differences in value-based decision-making.

2.
Front Behav Neurosci ; 17: 1256744, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37791111

RESUMO

The IntelliCage is an automated home-cage system that allows researchers to investigate the spontaneous behavior and learning abilities of group-housed mice. The IntelliCage enables us to increase the standardization and reproducibility of behavioral outcomes by the omission of experimenter-mouse interactions. Although the IntelliCage provides a less stressful environment for animals, standard IntelliCage protocols use controlled water access as the motivational driver for learning. To overcome possible water restrictions in slow learners, we developed a series of novel protocols based on appetitive learning, in which mice had permanent access to plain water but were additionally rewarded with sweetened water upon solving the task. C57BL/6NCrl female mice were used to assess the efficacy of these sweet reward-based protocols in a series of learning tasks. Compared to control mice tested with standard protocols, mice motivated with a sweet reward did equal to or better in operant performance and place learning tasks. Learning of temporal rules was slower than that in controls. When faced with a combined temporal x spatial working memory task, sweet-rewarded mice learned little and chose plain water. In a second set of experiments, the impact of environmental enrichment on appetitive learning was tested. Mice kept under enriched environment (EE) or standard housing (SH) conditions prior to the IntelliCage experiments performed similarly in the sweet-rewarded place learning task. EE mice performed better in the hippocampus-dependent spatial working memory task. The improved performance of EE mice in the hippocampus-dependent spatial working memory task might be explained by the observed larger volume of their mossy fibers. Our results confirm that environmental enrichment increases complex spatial learning abilities and leads to long-lasting morphological changes in the hippocampus. Furthermore, simple standard IntelliCage protocols could easily be adapted to sweet rewards, which improve animal welfare by removing the possibility of water restriction. However, complex behavioral tasks motivated by sweet reward-based learning need further adjustments to reach the same efficacy as standard protocols.

3.
Cell Biosci ; 13(1): 155, 2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37635256

RESUMO

BACKGROUND: Pain in early life may impact on development and risk of chronic pain. We developed an optogenetic Cre/loxP mouse model of "early-life-pain" (ELP) using mice with transgenic expression of channelrhodopsin-2 (ChR2) under control of the Advillin (Avil) promoter, which drives expression of transgenes predominantly in isolectin B4 positive non-peptidergic nociceptors in postnatal mice. Avil-ChR2 (Cre +) and ChR2-flfl control mice were exposed to blue light in a chamber once daily from P1-P5 together with their Cre-negative mother. RESULTS: ELP caused cortical hyperexcitability at P8-9 as assessed via multi-electrode array recordings that coincided with reduced expression of synaptic genes (RNAseq) including Grin2b, neurexins, piccolo and voltage gated calcium and sodium channels. Young adult (8-16 wks) Avil-ChR2 mice presented with nociceptive hypersensitivity upon heat or mechanical stimulation, which did not resolve up until one year of age. The persistent hypersensitivy to nociceptive stimuli was reflected by increased calcium fluxes in primary sensory neurons of aged mice (1 year) upon capsaicin stimulation. Avil-ChR2 mice behaved like controls in maze tests of anxiety, social interaction, and spatial memory but IntelliCage behavioral studies revealed repetitive nosepokes and corner visits and compulsive lickings. Compulsiveness at the behavioral level was associated with a reduction of sphingomyelin species in brain and plasma lipidomic studies. Behavioral studies were done with female mice. CONCLUSION: The results suggest that ELP may predispose to chronic "pain" and compulsive psychopathology in part mediated by alterations of sphingolipid metabolism, which have been previously described in the context of addiction and psychiatric diseases.

4.
Addict Biol ; 28(5): e13276, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37186439

RESUMO

Calcium/calmodulin-dependent kinase II (CaMKII) is a key enzyme at the glutamatergic synapses. CAMK2A gene variants have been linked with alcohol use disorder (AUD) by an unknown mechanism. Here, we looked for the link between αCaMKII autophosphorylation and the AUD aetiology. Autophosphorylation-deficient heterozygous αCaMKII mutant mice (T286A+/- ) were trained in the IntelliCages to test the role of αCaMKII activity in AUD-related behaviours. The glutamatergic synapses morphology in CeA was studied in the animals drinking alcohol using 3D electron microscopy. We found that T286A+/- mutants consumed less alcohol and were more sensitive to sedating effects of alcohol, as compared to wild-type littermates (WT). After voluntary alcohol drinking, T286A+/- mice had less excitatory synapses in the CeA, as compared to alcohol-naive animals. This change correlated with alcohol consumption was not reversed after alcohol withdrawal and not observed in WT mice. Our study suggests that αCaMKII autophosphorylation affects alcohol consumption by controlling sedative effects of alcohol and preventing synaptic loss in the individuals drinking alcohol. This finding advances our understanding of the molecular processes that regulate alcohol dependence.


Assuntos
Alcoolismo , Síndrome de Abstinência a Substâncias , Animais , Camundongos , Alcoolismo/genética , Alcoolismo/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Etanol/farmacologia , Etanol/metabolismo , Fosforilação/genética , Síndrome de Abstinência a Substâncias/metabolismo , Sinapses/metabolismo
5.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901690

RESUMO

Exercise is shown to improve cognitive function in various human and animal studies. Laboratory mice are often used as a model to study the effects of physical activity and running wheels provide a voluntary and non-stressful form of exercise. The aim of the study was to analyze whether the cognitive state of a mouse is related to its wheel-running behavior. Twenty-two male C57BL/6NCrl mice (9.5 weeks old) were used in the study. The cognitive function of group-housed mice (n = 5-6/group) was first analyzed in the IntelliCage system followed by individual phenotyping with the PhenoMaster with access to a voluntary running wheel. The mice were divided into three groups according to their running wheel activity: low, average, and high runners. The learning trials in the IntelliCage showed that the high-runner mice exhibited a higher error rate at the beginning of learning trials but improved their outcome and learning performance more compared to the other groups. The high-runner mice ate more compared to the other groups in the PhenoMaster analyses. There were no differences in the corticosterone levels between the groups, indicating similar stress responses. Our results demonstrate that high-runner mice exhibit enhanced learning capabilities prior to access to voluntary running wheels. In addition, our results also show that individual mice react differently when introduced to running wheels, which should be taken into consideration when choosing animals for voluntary endurance exercise studies.


Assuntos
Atividade Motora , Condicionamento Físico Animal , Humanos , Camundongos , Animais , Masculino , Camundongos Endogâmicos C57BL , Aprendizagem , Condicionamento Físico Animal/fisiologia
6.
Nutrients ; 15(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36771316

RESUMO

Two distinct types of trans fatty acids (TFA) are found in the diet. Industrial TFA such as elaidic acid (EA) have deleterious effects on metabolic risk factors, and oppositely ruminant TFA including trans-palmitoleic acid (TPA) may have beneficial effects. The objective is to evaluate the taste preference between EA, TPA, lecithin or water. In this study, 24 female C57BL/6 mice were microchipped and placed in two separate IntelliCages®. Nano encapsulated TFA or lecithin were added to drinking water in different corners of the cage with normal diet. The study was carried out over 5 weeks, during which mice were exposed to water only (weeks 1 and 3), TFA or lecithin (week 2), and EA or TPA (weeks 4 and 5). Mice weights, corner visits, nose pokes (NP), and lick number were measured each week. The results demonstrated that mice consume more TFA, either EA or TPA, compared with lecithin. In addition, the mice licked more EA compared with TPA in one cage; conversely, in the other cage they licked more TPA compared with EA. However, when TFA positions were swapped, mice had equal licks for EA and TPA. In sum, mice preferred TFA, in equal matter compared with controls; therefore, the results demonstrate the potential for TFA-type substitution in diet.


Assuntos
Ácidos Graxos trans , Feminino , Camundongos , Animais , Ácidos Graxos trans/efeitos adversos , Lecitinas , Paladar , Camundongos Endogâmicos C57BL , Ruminantes/metabolismo , Ácidos Graxos/metabolismo
7.
Neurobiol Dis ; 178: 106006, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36682503

RESUMO

Many fundamental questions on alcohol use disorder (AUD) are frequently difficult to address by examining a single brain structure, but should be viewed from the whole brain perspective. c-Fos is a marker of neuronal activation. Global brain c-Fos profiling in rodents represents a promising platform to study brain functional networks rearrangements in AUD. We used a mouse model of alcohol drinking in IntelliCage. We trained mice to voluntarily drink alcohol, next subjected them to withdrawal and alcohol reexposure. We have developed a dedicated image computational workflow to identify c-Fos-positive cells in three-dimensional images obtained after whole-brain optical clearing and imaging in the light-sheet microscope. We provide a complete list of 169 brain structures with annotated c-Fos expression. We analyzed functional networks, brain modularity and engram index. Brain c-Fos levels in animals reexposed to alcohol were different from both control and binge drinking animals. Structures involved in reward processing, decision making and characteristic for addictive behaviors, such as precommissural nucleus, nucleus Raphe, parts of colliculus and tecta stood out particularly. Alcohol reexposure leads to a massive change of brain modularity including a formation of numerous smaller functional modules grouping structures involved in addiction development. Binge drinking can lead to substantial functional remodeling in the brain. We provide a list of structures that can be used as a target in pharmacotherapy but also point to the networks and modules that can hold therapeutic potential demonstrated by a clinical trial in patients.


Assuntos
Alcoolismo , Consumo Excessivo de Bebidas Alcoólicas , Camundongos , Animais , Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Encéfalo/metabolismo , Etanol , Consumo de Bebidas Alcoólicas/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo
8.
Behav Res Methods ; 55(2): 751-766, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35469084

RESUMO

From the preference of one good over another, the strength of the preference cannot automatically be inferred. While money is the common denominator to assess the value of goods in humans, it appears difficult at first glance to put a price tag on the decisions of laboratory animals. Here we used consumer demand tests to measure how much work female mice expend to obtain access to different liquids. The mice could each choose between two liquids, one of which was free. The amount of work required to access the other liquid, by contrast, increased daily. In this way, the value of the liquid can be determined from a mouse's microeconomic perspective. The unique feature is that our test was carried out in a home-cage based setup. The mice lived in a group but could individually access the test-cage, which was connected to the home-cage via a gate. Thereby the mice were able to perform their task undisturbed by group members and on a self-chosen schedule with minimal influence by the experimenter. Our results show that the maximum number of nosepokes depends on the liquids presented. Mice worked incredibly hard for access to water while a bitter-tasting solution was offered for free whereas they made less nosepokes for sweetened liquids while water was offered for free. The results demonstrate that it is possible to perform automated and home-cage based consumer demand tests in order to ask the mice not only what they like best but also how strong their preference is.


Assuntos
Comportamento Animal , Comportamento do Consumidor , Animais , Feminino , Camundongos , Comportamento do Consumidor/economia , Abrigo para Animais , Água
9.
Neuroscience ; 510: 157-170, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36403688

RESUMO

Impulsivity is a personality trait of healthy individuals, but in extreme forms common in mental disorders. Previous behavioral testing of wild-caught bank voles and wood mice suggested impulsiveness in bank voles. Here, we compared behavioral performance of bank voles and wood mice in tests for response control in the IntelliCage. In the reaction time task, a test similar to the five-choice serial-reaction time task (5CSRTT), bank voles made more premature responses. Impulsivity in the reaction time task was associated with smaller medial habenular nucleus in bank voles. Additional tests revealed reduced behavioral flexibility in the self-paced flexibility task in bank voles, but equal spatial and reversal learning in the chaining/reversal task in both species. Expression of immediate early gene Arc after behavioral testing was low in medial prefrontal cortex, but high in hypothalamic supraoptic and paraventricular nucleus in bank voles. Wood mice showed the opposite pattern. Numbers of Arc-positive cells in the dorsal hippocampus were higher in bank voles than wood mice. Due to continuous behavioral testing (24/7), associations between behavioral performance and Arc were rare. Corticosterone measurements at the end of experiments suggested that IntelliCage testing did not elicit a stress response in these wild rodents. In summary, habenular size differences and altered activation of brain areas after testing might indicate differently balanced activations of cortico-limbic and cortico-hypothalamic circuits in bank voles compared to wood mice. Behavioral performance of bank voles suggest that these rodents could be a natural animal model for investigating impulsive and perseverative behaviors.


Assuntos
Arvicolinae , Roedores , Camundongos , Animais , Reversão de Aprendizagem , Comportamento Impulsivo , Modelos Animais
10.
Dev Psychobiol ; 64(7): e22318, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36282738

RESUMO

The study identifies the critical period of early ontogeny, during which social factors have the greatest influence on the operant behavior with positive reinforcement in adult WAG/Rij rats. Individual social isolation of rats from dam and siblings was performed daily for 3 h during postnatal day (PND) 2-8, 9-15, and 16-22. General activity and water consumption were examined using the IntelliCage (IC) in adulthood. The operant behavior training was performed in four consecutive sessions: free exploration of the IC environment (adaptation), learning to retrieve water by nosepoking (nosepoke adaptation), spatial learning to retrieve water in the specific corner (place learning), and retraining with a change of a place preference (reversal learning). Social isolation during PND16-22 led to the greatest behavioral changes in all sessions of the experiment. These rats were more active, consumed more water, demonstrated a higher ratio of visits with drinking to the total number, and relearned faster after changing the location of the rewarded corner. Thus, the postnatal period between days 16 and 22 in WAG/Rij rat pups is more sensitive to social isolation for change of adaptive behavior in the IC in adulthood.


Assuntos
Comportamento Animal , Aprendizagem Espacial , Animais , Ratos , Ratos Wistar , Isolamento Social , Água , Modelos Animais de Doenças
11.
Front Behav Neurosci ; 16: 1042227, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36688127

RESUMO

Background: Stimulation of gamma-aminobutyric acid (GABA) activity through GABA receptor agonists is the basic mechanism of many anticonvulsant drugs. Nevertheless, many of these GABergic drugs have adverse cognitive effects. We previously found that GABAB receptors (GABABRs) in the insula regulate operant associative memory in healthy rats. The present study aimed at investigating the effects of GABABR modulation in the insula on operant associative memory in epileptic rats, along with the underlying mechanisms. Methods: The lithium-pilocarpine model of temporal lobe epilepsy (TLE) was established in male Sprague-Dawley rats. A 22-gauge stainless-steel guide cannula was surgically implanted into the granular insula cortex of the epileptic rats. Baclofen (125 ng/µl, 1 µl), CGP35348 (12.5 µg/µl, 1 µl), or saline (1 µl) was slowly infused through the guide cannula. The Intellicage automated behavioral testing system was used to evaluate operant associative memory of the epileptic rats, including non-spatial operant tasks (basic nosepoke learning and skilled nosepoke learning) and spatial operant tasks (chamber position learning). The expression of the GABABR subunits GB1 and GB2 in the insula was examined by immunofluorescence and Western blotting. Results: The Intellicage tests demonstrated that baclofen significantly impaired basic nosepoke learning, skilled nosepoke learning and chamber position learning of the epileptic rats, while CGP35348 boosted these functions. Immunofluorescence staining revealed that GB1 and GB2 were expressed in the insula of the epileptic rats, and Western blotting analysis showed that baclofen enhanced while CGP35348 inhibited the expression of these subunits. Conclusion: GABABRs in the insula bidirectionally regulate both spatial and non-spatial operant associative memory of epileptic rats. Effects of GABABRs on cognition should be taken into account when evaluating new possible treatments for people with epilepsy.

12.
Open Res Eur ; 2: 128, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37799631

RESUMO

The cognitive bias test is used to measure the emotional state of animals with regard to future expectations. Thus, the test offers a unique possibility to assess animal welfare with regard to housing and testing conditions of laboratory animals. So far, however, performing such a test is time-consuming and requires the presence of an experimenter. Therefore, we developed an automated and home-cage based cognitive bias test based on the IntelliCage system. We present several developmental steps to improve the experimental design leading to a successful measurement of cognitive bias in group-housed female C57BL/6J mice. The automated and home-cage based test design allows to obtain individual data from group-housed mice, to test the mice in their familiar environment, and during their active phase. By connecting the test-cage to the home-cage via a gating system, the mice participated in the test on a self-chosen schedule, indicating high motivation to actively participate in the experiment. We propose that this should have a positive effect on the animals themselves as well as on the data. Unexpectedly, the mice showed an optimistic cognitive bias after enrichment was removed and additional restraining. An optimistic expectation of the future as a consequence of worsening environmental conditions, however, can also be interpreted as an active coping strategy in which a potential profit is sought to be maximized through a higher willingness to take risks.

13.
Behav Brain Res ; 418: 113627, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34648796

RESUMO

Whisker system in rats undergoes rapid development during the first postnatal weeks. Neonatal whisker trimming increases excitability in the somatosensory cortex and affects exploratory behavior at adult ages. WAG/Rij rats are genetically predisposed to develop absence seizures in adulthood, and whisker trimming during three postnatal weeks aggravates epileptic activity in these rats. It is assumed that behavioral performance in adult WAG/Rij rats is influenced (1) by absence epilepsy and (2) by whisker trimming during the short period around the onset of active whisker movements, PN9-16. We examined the effect of whisker trimming in WAG/Rij rats during PN9-16 on spike-wave discharges (SWD, EEG hallmark of absence epilepsy). We found that 77% of WAG/Rij rats showed pronounced SWD (epileptic phenotype), and the rest did not (non-epileptic phenotype). At the age of 5 m, epileptic trimmed rats showed more SWD than epileptic control rats. Age-related increase of SWD was found only in the control group, suggesting that whisker trimming during PN9-16 led to an earlier maturation of SWD. Goal-directed behavior was examined in all rats at the age of 4-4.5 m using IntelliCage impulsivity paradigm. In order to optimize the analysis of behavioral data, we combined several Python packages into a single processing pipeline. Early life whisker trimming altered behavioral sequences and strategy of exploration in adulthood, suggesting reduced whisker sensitivity in the trimmed rats. Epileptic WAG/Rij rats at 4-4.5 months showed only a slight learning impairment during later stages of IntelliCage impulsivity paradigm, which may be associated with the early stage of development of SWD.


Assuntos
Epilepsia Tipo Ausência/genética , Comportamento Exploratório , Comportamento Impulsivo , Vibrissas/fisiologia , Animais , Predisposição Genética para Doença , Masculino , Ratos , Córtex Somatossensorial
14.
J Biomed Sci ; 28(1): 87, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34923968

RESUMO

BACKGROUND: Craving for alcohol, in other words powerful desire to drink after withdrawal, is an important contributor to the development and maintenance of alcoholism. Here, we studied the role of GDNF (glial cell line-derived neurotrophic factor) and BDNF (brain-derived neurotrophic factor) on alcohol-seeking behavior in group-housed female mice. METHODS: We modeled alcohol-seeking behavior in C57Bl/6J female mice. The behavioral experiments in group-housed female mice were performed in an automated IntelliCage system. We conducted RT-qPCR analysis of Gdnf, Bdnf, Manf and Cdnf expression in different areas of the female mouse brain after alcohol drinking conditioning. We injected an adeno-associated virus (AAV) vector expressing human GDNF or BDNF in mouse nucleus accumbens (NAc) after ten days of alcohol drinking conditioning and assessed alcohol-seeking behavior. Behavioral data were analyzed by two-way repeated-measures ANOVA, and statistically significant effects were followed by Bonferroni's post hoc test. The student's t-test was used to analyze qPCR data. RESULTS: The RT-qPCR data showed that Gdnf mRNA level in NAc was more than four times higher (p < 0.0001) in the mice from the sweetened alcohol group compared to the water group. Our data showed a more than a two-fold decrease in Manf mRNA (p = 0.04) and Cdnf mRNA (p = 0.02) levels in the hippocampus and Manf mRNA in the VTA (p = 0.04) after alcohol consumption. Two-fold endogenous overexpression of Gdnf mRNA and lack of CDNF did not affect alcohol-seeking behavior. The AVV-GDNF overexpression in nucleus accumbens suppressed alcohol-seeking behavior while overexpression of BDNF did not. CONCLUSIONS: The effect of increased endogenous Gdnf mRNA level in female mice upon alcohol drinking has remained unknown. Our data suggest that an increase in endogenous GDNF expression upon alcohol drinking occurs in response to the activation of another mesolimbic reward pathway participant.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Fissura , Regulação da Expressão Gênica , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Núcleo Accumbens/metabolismo , Animais , Feminino , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Comportamento Social
15.
Nutrients ; 13(11)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34836380

RESUMO

Progranulin deficiency in mice is associated with deregulations of the scavenger receptor signaling of CD36/SCARB3 in immune disease models, and CD36 is a dominant receptor in taste bud cells in the tongue and contributes to the sensation of dietary fats. Progranulin-deficient mice (Grn-/-) are moderately overweight during middle age. We therefore asked if there was a connection between progranulin/CD36 in the tongue and fat taste preferences. By using unbiased behavioral analyses in IntelliCages and Phenomaster cages we showed that progranulin-deficient mice (Grn-/-) developed a strong preference of fat taste in the form of 2% milk over 0.3% milk, and for diluted MCTs versus tap water. The fat preference in the 7d-IntelliCage observation period caused an increase of 10% in the body weight of Grn-/- mice, which did not occur in the wildtype controls. CD36 expression in taste buds was reduced in Grn-/- mice at RNA and histology levels. There were no differences in the plasma or tongue lipids of various classes including sphingolipids, ceramides and endocannabinoids. The data suggest that progranulin deficiency leads to a lower expression of CD36 in the tongue resulting in a stronger urge for fatty taste and fatty nutrition.


Assuntos
Antígenos CD36/metabolismo , Gorduras na Dieta , Preferências Alimentares/fisiologia , Progranulinas/metabolismo , Papilas Gustativas/metabolismo , Paladar/fisiologia , Aumento de Peso , Animais , Feminino , Lipídeos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Leite/química , Obesidade/etiologia , Obesidade/metabolismo , Receptores Depuradores/metabolismo , Percepção Gustatória
16.
Front Behav Neurosci ; 15: 709775, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539359

RESUMO

Laboratory mice are predominantly used for one experiment only, i.e., new mice are ordered or bred for every new experiment. Moreover, most experiments use relatively young mice in the range of late adolescence to early adulthood. As a consequence, little is known about the day-to-day life of adult and aged laboratory mice. Here we present a long-term data set with three consecutive phases conducted with the same male mice over their lifetime in order to shed light on possible long-term effects of repeated cognitive stimulation. One third of the animals was trained by a variety of learning tasks conducted up to an age of 606 days. The mice were housed in four cages with 12 animals per cage; only four mice per cage had to repeatedly solve cognitive tasks for getting access to water using the IntelliCage system. In addition, these learner mice were tested in standard cognitive tests outside their home-cage. The other eight mice served as two control groups living in the same environment but without having to solve tasks for getting access to water. One control group was additionally placed on the test set-ups without having to learn the tasks. Next to the cognitive tasks, we took physiological measures (body mass, resting metabolic rate) and tested for dominance behavior, and attractivity in a female choice experiment. Overall, the mice were under surveillance until they died a natural death, providing a unique data set over the course of virtually their entire lives. Our data showed treatment differences during the first phase of our lifetime data set. Young learner mice showed a higher activity, less growth and resting metabolic rate, and were less attractive for female mice. These effects, however, were not preserved over the long-term. We also did not find differences in dominance or effects on longevity. However, we generated a unique and valuable set of long-term behavioral and physiological data from a single group of male mice and note that our long-term data contribute to a better understanding of the behavioral and physiological processes in male C57Bl/6J mice.

17.
Alcohol Clin Exp Res ; 45(11): 2231-2245, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34585391

RESUMO

BACKGROUND: Few studies have examined the association between APOE genotype and alcohol use. Although some of these studies have reported outcomes associated with a history of drinking, none have examined alcohol-seeking behavior. In addition, no preclinical studies have examined alcohol use as a function of APOE genotype with or without traumatic brain injury. METHODS: Male and female human APOE3- and APOE4-targeted replacement (TR) mice were used to assess voluntary alcohol seeking longitudinally using a 2-bottle choice paradigm conducted within the automated IntelliCage system prior to and following repeated mild TBI (rmTBI). Following an acquisition phase in which the concentration of ethanol (EtOH) was increased to 12%, a variety of drinking paradigms that included extended alcohol access (EAA1 and EAA2), alcohol deprivation effect (ADE), limited access drinking in the dark (DID), and progressive ratio (PR) were used to assess alcohol-seeking behavior. Additional behavioral tasks were performed to measure cognitive function and anxiety-like behavior. RESULTS: All groups readily consumed increasing concentrations of EtOH (4-12%) during the acquisition phase. During the EAA1 period (12% EtOH), there was a significant genotype effect in both males and females for EtOH preference. Following a 3-week abstinence period, mice received sham or rmTBI resulting in a genotype- and sex-independent main effect of rmTBI on the recovery of righting reflex and a main effect of rmTBI on spontaneous home-cage activity in females only. Reintroduction of 12% EtOH (EAA2) resulted in a significant effect genotype for alcohol preference in males with APOE4 mice displaying increased preference and motivation for alcohol compared with APOE3 mice independent of TBI while in females, there was a significant genotype × TBI interaction under the ADE and DID paradigms. Finally, there was a main effect of rmTBI on increased risk-seeking behavior in both sexes, but no effect on spatial learning or cognitive flexibility. CONCLUSION: These results suggest that sex and APOE genotype play a significant role in alcohol consumption and may subsequently influence long-term recovery following traumatic brain insults.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Apolipoproteínas E/metabolismo , Comportamento Aditivo/metabolismo , Genótipo , Consumo de Bebidas Alcoólicas/genética , Animais , Apolipoproteínas E/genética , Comportamento Aditivo/genética , Condicionamento Clássico/fisiologia , Feminino , Humanos , Masculino , Camundongos
18.
Nutrients ; 13(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34578829

RESUMO

Trehalose, a sugar from fungi, mimics starvation due to a block of glucose transport and induces Transcription Factor EB- mediated autophagy, likely supported by the upregulation of progranulin. The pro-autophagy effects help to remove pathological proteins and thereby prevent neurodegenerative diseases such as Alzheimer's disease. Enhancing autophagy also contributes to the resolution of neuropathic pain in mice. Therefore, we here assessed the effects of continuous trehalose administration via drinking water using the mouse Spared Nerve Injury model of neuropathic pain. Trehalose had no effect on drinking, feeding, voluntary wheel running, motor coordination, locomotion, and open field, elevated plus maze, and Barnes Maze behavior, showing that it was well tolerated. However, trehalose reduced nerve injury-evoked nociceptive mechanical and thermal hypersensitivity as compared to vehicle. Trehalose had no effect on calcium currents in primary somatosensory neurons, pointing to central mechanisms of the antinociceptive effects. In IntelliCages, trehalose-treated mice showed reduced activity, in particular, a low frequency of nosepokes, which was associated with a reduced proportion of correct trials and flat learning curves in place preference learning tasks. Mice failed to switch corner preferences and stuck to spontaneously preferred corners. The behavior in IntelliCages is suggestive of sedative effects as a "side effect" of a continuous protracted trehalose treatment, leading to impairment of learning flexibility. Hence, trehalose diet supplements might reduce chronic pain but likely at the expense of alertness.


Assuntos
Comportamento Animal/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Nociceptividade/efeitos dos fármacos , Nervo Isquiático/lesões , Trealose/farmacologia , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Nervo Isquiático/efeitos dos fármacos
19.
Front Aging Neurosci ; 13: 720214, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34483889

RESUMO

Transgenic rodent models of Alzheimer's disease (AD) were designed to study mechanisms of pathogenesis and connect these mechanisms with cognitive decline. Measurements of cognition in rodents can be confounded, however, by human handling and interaction; the IntelliCage was created to circumvent these issues while measuring various facets of cognition in a social environment with water consumption as the primary motivator for task completion. Here, for the first time, we examined the behavioral performance of 3xTg-AD mice in the IntelliCage. Seven- to 9-month-old female 3xTg-AD and non-transgenic (NonTg) mice were tested for 29 days in the IntelliCage to measure prefrontal cortical and hippocampal function. We found that a higher percentage of NonTg mice (86.96%) were able to successfully complete the training (adaptation) phases compared to their 3xTg-AD (57.14%) counterparts. Furthermore, the 3xTg-AD mice showed impairments in attention and working memory. Interestingly, we found that differences in body and brain weight between NonTg and 3xTg-AD mice were associated with whether mice were able to complete the IntelliCage tasks. 3xTg-AD mice that completed IntelliCage tasks had lower cortical insoluble amyloid-ß40 fractions than their 3xTg-AD counterparts who failed to complete the tasks. Collectively, these results demonstrate deficits in cognition in the 3xTg-AD mouse and inform scientists of important factors to consider when testing this transgenic model in the IntelliCage.

20.
Neurosci Lett ; 763: 136192, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34419504

RESUMO

OBJECTIVE: To verify a behavioral device for the detection of learning, memory, and affective disorders in post-weaning socially isolated rats. METHODS: We tested the behavioral changes in post-weaning socially isolated rats using a multi-function closed maze, a self-developed behavioral device, against the classical mood disorder detection method, the IntelliCage system and Morris water maze. RESULTS: In the multifunctional closed maze experiment, the spatial learning and memory ability of post-weaning socially isolated rats decreased, which was consistent with the results of the water maze and IntelliCage system. Furthermore, the behavioral changes in the post-weaning socially isolated rats in the multi-function closed maze test were the same as those of the forced swimming and open field tests, indicating that the rats had depression- and anxiety-like behaviors. CONCLUSION: A multi-function closed maze can detect emotional changes, spatial learning ability, and memory ability.


Assuntos
Disfunção Cognitiva/diagnóstico , Aprendizagem em Labirinto/fisiologia , Transtornos do Humor/diagnóstico , Isolamento Social/psicologia , Animais , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Transtornos do Humor/etiologia , Transtornos do Humor/fisiopatologia , Ratos , Organismos Livres de Patógenos Específicos , Desmame
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA