Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Sci Rep ; 14(1): 9137, 2024 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644422

RESUMO

To investigate the therapeutic potential of photodynamic therapy (PDT) for malignant gliomas arising in unresectable sites, we investigated the effect of tumor tissue damage by interstitial PDT (i-PDT) using talaporfin sodium (TPS) in a mouse glioma model in which C6 glioma cells were implanted subcutaneously. A kinetic study of TPS demonstrated that a dose of 10 mg/kg and 90 min after administration was appropriate dose and timing for i-PDT. Performing i-PDT using a small-diameter plastic optical fiber demonstrated that an irradiation energy density of 100 J/cm2 or higher was required to achieve therapeutic effects over the entire tumor tissue. The tissue damage induced apoptosis in the area close to the light source, whereas vascular effects, such as fibrin thrombus formation occurred in the area slightly distant from the light source. Furthermore, when irradiating at the same energy density, irradiation at a lower power density for a longer period of time was more effective than irradiation at a higher power density for a shorter time. When performing i-PDT, it is important to consider the rate of delivery of the irradiation light into the tumor tissue and to set irradiation conditions that achieve an optimal balance between cytotoxic and vascular effects.


Assuntos
Glioma , Lasers Semicondutores , Fotoquimioterapia , Fármacos Fotossensibilizantes , Porfirinas , Animais , Fotoquimioterapia/métodos , Glioma/tratamento farmacológico , Glioma/patologia , Porfirinas/farmacologia , Porfirinas/uso terapêutico , Camundongos , Lasers Semicondutores/uso terapêutico , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Modelos Animais de Doenças , Aloenxertos , Apoptose/efeitos dos fármacos , Masculino
2.
Photodiagnosis Photodyn Ther ; 45: 103968, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38215958

RESUMO

BACKGROUND: Accurate light dosimetry is a complex remaining challenge in interstitial photodynamic therapy (iPDT) for malignant gliomas. The light dosimetry should ideally be based on the tissue morphology and the individual optical tissue properties of each tissue type in the target region. First investigations are reported on using NMR information to estimate changes of individual optical tissue properties. METHODS: Porcine brain tissue and optical tissue phantoms were investigated. To the porcine brain, supplements were added to simulate an edema or high blood content. The tissue phantoms were based on agar, Lipoveneous, ink, blood and gadobutrol (Gd-based MRI contrast agent). The concentrations of phantom ingredients and tissue additives are varied to compare concentration-dependent effects on optical and NMR properties. A 3-tesla whole-body MRI system was used to determine T1 and T2 relaxation times. Optical tissue properties, i.e., the spectrally resolved absorption and reduced scattering coefficient, were obtained using a single integrating sphere setup. The observed changes of NMR and optical properties were compared to each other. RESULTS: By adjusting the NMR relaxation times and optical tissue properties of the tissue phantoms to literature values, recipes for human brain tumor, white matter and grey matter tissue phantoms were obtained that mimic these brain tissues simultaneously in both properties. For porcine brain tissue, it was observed that with increasing water concentration in the tissue, both NMR-relaxation times increased, while µa decreased and µs' increased at 635 nm. The addition of blood to porcine brain samples showed a constant T1, while T2 shortened and the absorption coefficient at 635 nm increased. CONCLUSIONS: In this investigation, by changing sample contents, notable changes of both NMR relaxation times and optical tissue properties have been observed and their relations examined. The developed dual NMR/optical tissue phantoms can be used in iPDT research, clinical training and demonstrations.


Assuntos
Fotoquimioterapia , Humanos , Animais , Suínos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes , Imageamento por Ressonância Magnética , Ágar , Encéfalo/diagnóstico por imagem
3.
Cancers (Basel) ; 15(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37174102

RESUMO

There are no effective treatments for patients with extrinsic malignant central airway obstruction (MCAO). In a recent clinical study, we demonstrated that interstitial photodynamic therapy (I-PDT) is a safe and potentially effective treatment for patients with extrinsic MCAO. In previous preclinical studies, we reported that a minimum light irradiance and fluence should be maintained within a significant volume of the target tumor to obtain an effective PDT response. In this paper, we present a computational approach to personalized treatment planning of light delivery in I-PDT that simultaneously optimizes the delivered irradiance and fluence using finite element method (FEM) solvers of either Comsol Multiphysics® or Dosie™ for light propagation. The FEM simulations were validated with light dosimetry measurements in a solid phantom with tissue-like optical properties. The agreement between the treatment plans generated by two FEMs was tested using typical imaging data from four patients with extrinsic MCAO treated with I-PDT. The concordance correlation coefficient (CCC) and its 95% confidence interval (95% CI) were used to test the agreement between the simulation results and measurements, and between the two FEMs treatment plans. Dosie with CCC = 0.994 (95% CI, 0.953-0.996) and Comsol with CCC = 0.999 (95% CI, 0.985-0.999) showed excellent agreement with light measurements in the phantom. The CCC analysis showed very good agreement between Comsol and Dosie treatment plans for irradiance (95% CI, CCC: 0.996-0.999) and fluence (95% CI, CCC: 0.916-0.987) in using patients' data. In previous preclinical work, we demonstrated that effective I-PDT is associated with a computed light dose of ≥45 J/cm2 when the irradiance is ≥8.6 mW/cm2 (i.e., the effective rate-based light dose). In this paper, we show how to use Comsol and Dosie packages to optimize rate-based light dose, and we present Dosie's newly developed domination sub-maps method to improve the planning of the delivery of the effective rate-based light dose. We conclude that image-based treatment planning using Comsol or Dosie FEM-solvers is a valid approach to guide the light dosimetry in I-PDT of patients with MCAO.

4.
J Neurooncol ; 162(1): 217-223, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36928699

RESUMO

PURPOSE: Innovative, efficient treatments are desperately needed for people with glioblastoma (GBM). METHODS: Sixteen patients (median age 65.8 years) with newly diagnosed, small-sized, not safely resectable supratentorial GBM underwent interstitial photodynamic therapy (iPDT) as upfront eradicating local therapy followed by standard chemoradiation. 5-aminolevulinic acid (5-ALA) induced protoporphyrin IX was used as the photosensitizer. The tumors were irradiated with light at 635 nm wavelength via stereotactically implanted cylindrical diffuser fibers. Outcome after iPDT was retrospectively compared with a positively-selected in-house patient cohort (n = 110) who underwent complete tumor resection followed by chemoradiation. RESULTS: Median progression-free survival (PFS) was 16.4 months, and median overall survival (OS) was 28.0 months. Seven patients (43.8%) experienced long-term PFS > 24 months. Median follow-up was 113.9 months for the survivors. Univariate regression revealed MGMT-promoter methylation but not age as a prognostic factor for both OS (p = 0.04 and p = 0.07) and PFS (p = 0.04 and p = 0.67). Permanent iPDT-associated morbidity was seen in one iPDT patient (6.3%). Patients treated with iPDT experienced superior PFS and OS compared to patients who underwent complete tumor removal (p < 0.01 and p = 0.01, respectively). The rate of long-term PFS was higher in iPDT-treated patients (43.8% vs. 8.9%, p < 0.01). CONCLUSION: iPDT is a feasible treatment concept and might be associated with long-term PFS in a subgroup of GBM patients, potentially via induction of so far unknown immunological tumor-controlling processes.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Fotoquimioterapia , Humanos , Idoso , Glioblastoma/tratamento farmacológico , Estudos Retrospectivos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Metilases de Modificação do DNA/genética , Ácido Aminolevulínico/uso terapêutico , Prognóstico
5.
JTO Clin Res Rep ; 3(10): 100372, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36188632

RESUMO

Objective: Patients with inoperable extrabronchial or endobronchial tumors who are not candidates for curative radiotherapy have dire prognoses with no effective long-term treatment options. To reveal that our computer-optimized interstitial photodynamic therapy (I-PDT) is safe and potentially effective in the treatment of patients with inoperable extra or endobronchial malignancies inducing central airway obstructions. Methods: High-spatial resolution computer simulations were used to personalize the light dose rate and dose for each tumor. Endobronchial ultrasound with a transbronchial needle was used to place the optical fibers within the tumor according to an individualized plan. The primary and secondary end points were safety and overall survival, respectively. An exploratory end point evaluated changes in immune markers. Results: Eight patients received I-PDT with planning, and five of these received additional external beam PDT. Two additional patients received external beam PDT. The treatment was declared safe. Three of 10 patients are alive at 26.3, 12, and 8.3 months, respectively, after I-PDT. The treatments were able to deliver a prescribed light dose rate and dose to 87% to 100% and 18% to 92% of the tumor volumes, respectively. A marked increase in the proportion of monocytic myeloid-derived suppressor cells expressing programmed death-ligand 1 was measured in four of seven patients. Conclusions: Image-guided light dosimetry for I-PDT with linear endobronchial ultrasound transbronchial needle is safe and potentially beneficial in increasing overall survival of patients. I-PDT has a positive effect on the immune response including an increase in the proportion of programmed death-ligand 1-expressing monocytic myeloid-derived suppressor cells.

6.
Methods Mol Biol ; 2451: 151-162, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35505016

RESUMO

Interstitial photodynamic therapy (I-PDT) is a promising therapy considered for patients with locally advanced cancer. In I-PDT, laser fibers are inserted into the tumor for effective illumination and activation of the photosensitizer in a large tumor. The intratumoral light irradiance and fluence are critical parameters that affect the response to I-PDT. In vivo animal models are required to conduct light dose studies, to define optimal irradiance and fluence for I-PDT. Here we describe two animal models with locally advanced tumors that can be used to evaluate the response to I-PDT. One model is the C3H mouse bearing large subcutaneous SCCVII carcinoma (400-600 mm3). Using this murine model, multiple light regimens with one or two optical fibers with cylindrical diffuser ends (cylindrical diffuser fiber, CDF) can be used to study tumor response to I-PDT. However, tissue heating may occur when 630 nm therapeutic light is delivered through CDF at an intensity ≥60 mW/cm and energy ≥100 J/cm. These thermal effects can impact tumor response while treating locally advanced mice tumors. Magnetic resonance imaging and thermometry can be used to study these thermal effects. A larger animal model, New Zealand White rabbit with VX2 carcinoma (~5000 mm3) implanted in either the sternomastoid (neck implantation model) or the biceps femoris muscle (thigh implantation model), can be used to study I-PDT with image-based pretreatment planning using computed tomography. In the VX2 model, the light delivery can include the use of multiple laser fibers to test light dosimetry and delivery that are relevant for clinical use of I-PDT.


Assuntos
Carcinoma , Segunda Neoplasia Primária , Fotoquimioterapia , Animais , Humanos , Camundongos , Camundongos Endogâmicos C3H , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Coelhos
7.
J Biomed Opt ; 26(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34302323

RESUMO

SIGNIFICANCE: Despite remarkable advances in the core modalities used in combating cancer, malignant diseases remain the second largest cause of death globally. Interstitial photodynamic therapy (IPDT) has emerged as an alternative approach for the treatment of solid tumors. AIM: The aim of our study is to outline the advancements in IPDT in recent years and provide our vision for the inclusion of IPDT in standard-of-care (SoC) treatment guidelines of specific malignant diseases. APPROACH: First, the SoC treatment for solid tumors is described, and the attractive properties of IPDT are presented. Second, the application of IPDT for selected types of tumors is discussed. Finally, future opportunities are considered. RESULTS: Strong research efforts in academic, clinical, and industrial settings have led to significant improvements in the current implementation of IPDT, and these studies have demonstrated the unique advantages of this modality for the treatment of solid tumors. It is envisioned that further randomized prospective clinical trials and treatment optimization will enable a wide acceptance of IPDT in the clinical community and inclusion in SoC guidelines for well-defined clinical indications. CONCLUSIONS: The minimally invasive nature of this treatment modality combined with the relatively mild side effects makes IPDT a compelling alternative option for treatment in a number of clinical applications. The adaptability of this technique provides many opportunities to both optimize and personalize the treatment.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Neoplasias/tratamento farmacológico , Estudos Prospectivos
8.
Cancers (Basel) ; 14(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35008284

RESUMO

In a former study, interstitial photodynamic therapy (iPDT) was performed on patients suffering from newly diagnosed glioblastoma (n = 11; 8/3 male/female; median age: 68, range: 40-76). The procedure includes the application of 5-ALA to selectively metabolize protoporphyrin IX (PpIX) in tumor cells and illumination utilizing interstitially positioned optical cylindrical diffuser fibers (CDF) (2-10 CDFs, 2-3 cm diffusor length, 200 mW/cm, 635 nm, 60 min irradiation). Intraoperative spectral online monitoring (SOM) was employed to monitor treatment light transmission and PpIX fluorescence during iPDT. MRI was used for treatment planning and outcome assessment. Case-dependent observations included intraoperative reduction of treatment light transmission and local intrinsic T1 hyperintensity in non-contrast-enhanced T1-weighted MRI acquired within one day after iPDT. Intrinsic T1 hyperintensity was observed and found to be associated with the treatment volume, which indicates the presence of methemoglobin, possibly induced by iPDT. Based on SOM data, the optical absorption coefficient and its change during iPDT were estimated for the target tissue volumes interjacent between evaluable CDF-pairs at the treatment wavelength of 635 nm. By spatial comparison and statistical analysis, it was found that observed increases of the absorption coefficient during iPDT were larger in or near regions of intrinsic T1 hyperintensity (p = 0.003). In cases where PpIX-fluorescence was undetectable before iPDT, the increase in optical absorption and intrinsic T1 hyperintensity tended to be less. The observations are consistent with in vitro experiments and indicate PDT-induced deoxygenation of hemoglobin and methemoglobin formation. Further investigations are needed to provide more data on the time course of the observed changes, thus paving the way for optimized iPDT irradiation protocols.

9.
Technol Cancer Res Treat ; 17: 1533034618766792, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29658392

RESUMO

Interstitial photodynamic therapy has shown promising results in the treatment of locally advanced head and neck cancer. In this therapy, systemic administration of a light-sensitive drug is followed by insertion of multiple laser fibers to illuminate the tumor and its margins. Image-based pretreatment planning is employed in order to deliver a sufficient light dose to the complex locally advanced head-and-neck cancer anatomy, in order to meet clinical requirements. Unfortunately, the tumor may deform between pretreatment imaging for the purpose of planning and intraoperative imaging when the plan is executed. Tumor deformation may result from the mechanical forces applied by the light fibers and variation of the patient's posture. Pretreatment planning is frequently done with the assistance of computed tomography or magnetic resonance imaging in an outpatient suite, while treatment monitoring and control typically uses ultrasound imaging due to considerations of costs and availability in the operation room. This article presents a computational method designed to bridge the gap between the 2 imaging events by taking a tumor geometry, reconstructed during preplanning, and by following the displacement of fiducial markers, which are initially placed during the preplanning procedure. The deformed tumor shape is predicted by solving an inverse problem, seeking for the forces that would have resulted in the corresponding fiducial marker displacements. The computational method is studied on spheres of variable sizes and demonstrated on computed tomography reconstructed locally advanced head and neck cancer model. Results of this study demonstrate an average error of less than 1 mm in predicting the deformed tumor shape, where 1 mm is typically the order of uncertainty in distance measurements using magnetic resonance imaging or computed tomography imaging and high-quality ultrasound imaging. This study further demonstrates that the deformed shape can be calculated in a few seconds, making the proposed method clinically relevant.


Assuntos
Marcadores Fiduciais , Modelos Anatômicos , Neoplasias/diagnóstico por imagem , Algoritmos , Simulação por Computador , Diagnóstico por Imagem , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Neoplasias/patologia , Neoplasias/terapia , Fotoquimioterapia , Reprodutibilidade dos Testes
10.
J Thorac Dis ; 9(8): 2613-2618, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28932569

RESUMO

Recent advances in interventional pulmonology led to a significant expansion of the diagnostic and therapeutic role of endobronchial ultrasound. In this paper, we describe a new concept for using endobronchial ultrasound to guide interstitial photodynamic therapy (PDT). For this purpose, we conducted in vitro and in vivo experiments using a phantom and animal models, respectively. A new 0.5 mm optical fiber, with cylindrical diffuser end, was used to deliver the therapeutic light through the 21-gauge endobronchial ultrasound needle. The animal experiments were performed under real-time ultrasonography guidance in mice and rabbits' tumor models. Safe and effective fiber placements and tumor illumination was accomplished. In addition, computer simulation of light propagation suggests that locally advanced lung cancer tumor can be illuminated. This study demonstrates the potential feasibility of this new therapeutic modality approach, justifying further investigation in the treatment of locally advanced lung cancers.

11.
Theranostics ; 7(2): 436-451, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28255341

RESUMO

Despite recent progress in conventional therapeutic approaches, the vast majority of glioblastoma recur locally, indicating that a more aggressive local therapy is required. Interstitial photodynamic therapy (iPDT) appears as a very promising and complementary approach to conventional therapies. However, an optimal fractionation scheme for iPDT remains the indispensable requirement. To achieve that major goal, we suggested following iPDT tumor response by a non-invasive imaging monitoring. Nude rats bearing intracranial glioblastoma U87MG xenografts were treated by iPDT, just after intravenous injection of AGuIX® nanoparticles, encapsulating PDT and imaging agents. Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectroscopy (MRS) allowed us an original longitudinal follow-up of post-treatment effects to discriminate early predictive markers. We successfully used conventional MRI, T2 star (T2*), Diffusion Weighted Imaging (DWI) and MRS to extract relevant profiles on tissue cytoarchitectural alterations, local vascular disruption and metabolic information on brain tumor biology, achieving earlier assessment of tumor response. From one day post-iPDT, DWI and MRS allowed us to identify promising markers such as the Apparent Diffusion Coefficient (ADC) values, lipids, choline and myoInositol levels that led us to distinguish iPDT responders from non-responders. All these responses give us warning signs well before the tumor escapes and that the growth would be appreciated.


Assuntos
Monitoramento de Medicamentos/métodos , Glioblastoma/diagnóstico , Glioblastoma/terapia , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos , Fotoquimioterapia , Prótons , Animais , Meios de Contraste/administração & dosagem , Modelos Animais de Doenças , Xenoenxertos , Estudos Longitudinais , Nanopartículas/administração & dosagem , Fármacos Fotossensibilizantes/administração & dosagem , Ratos Nus , Resultado do Tratamento
12.
Lasers Surg Med ; 49(6): 599-608, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28185275

RESUMO

BACKGROUND AND OBJECTIVES: Image-based treatment planning can be used to compute the delivered light dose during interstitial photodynamic therapy (I-PDT) of locally advanced head and neck squamous cell carcinoma (LA-HNSCC). The objectives of this work were to evaluate the use of surface fiducial markers and flexible adhesive grids in guiding interstitial placement of laser fibers, and to quantify the impact of discrepancies in fiber location on the expected light dose volume histograms (DVHs). METHODS: Seven gel-based phantoms were made to mimic geometries of LA-HNSCC. Clinical flexible grids and fiducial markers were used to guide the insertion of optically transparent catheters, which are used to place cylindrical diffuser fibers within the phantoms. A computed tomography (CT) was used to image the markers and phantoms before and after catheter insertion and to determine the difference between the planned and actual location of the catheters. A finite element method was utilized to compute the light DVHs. Statistical analysis was employed to evaluate the accuracy of fiber placement and to investigate the correlation between the location of the fibers and the calculated DVHs. RESULTS: There was a statistically significant difference (P = 0.018) between all seven phantoms in terms of the mean displacement. There was also statistically significant correlation between DVHs and depth of insertion (P = 0.0027), but not with the lateral displacement (P = 0.3043). The maximum difference between actual and planned DVH was related to the number of fibers (P = 0.0025) and the treatment time. CONCLUSIONS: Surface markers and a flexible grid can be used to assist in the administration of a prescribed DVH within 15% of the target dose provided that the treatment fibers are placed within 1.3 cm of the planned depth of insertion in anatomies mimicking LA-HNSCC. The results suggest that the number of cylindrical diffuser fibers and treatment time can impact the delivered DVHs. Lasers Surg. Med. 49:599-608, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Antineoplásicos/administração & dosagem , Carcinoma de Células Escamosas/tratamento farmacológico , Cateterismo/métodos , Marcadores Fiduciais , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Antineoplásicos/uso terapêutico , Carcinoma de Células Escamosas/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Humanos , Modelos Teóricos , Imagens de Fantasmas , Fármacos Fotossensibilizantes/uso terapêutico , Carcinoma de Células Escamosas de Cabeça e Pescoço , Tomografia Computadorizada por Raios X
13.
Cancers (Basel) ; 9(2)2017 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-28125024

RESUMO

Multiple clinical studies have shown that interstitial photodynamic therapy (I-PDT) is a promising modality in the treatment of locally-advanced cancerous tumors. However, the utilization of I-PDT has been limited to several centers. The objective of this focused review is to highlight the different approaches employed to administer I-PDT with photosensitizers that are either approved or in clinical studies for the treatment of prostate cancer, pancreatic cancer, head and neck cancer, and brain cancer. Our review suggests that I-PDT is a promising treatment in patients with large-volume or thick tumors. Image-based treatment planning and real-time dosimetry are required to optimize and further advance the utilization of I-PDT. In addition, pre- and post-imaging using computed tomography (CT) with contrast may be utilized to assess the response.

14.
Ann Am Thorac Soc ; 13(2): 265-75, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26646726

RESUMO

Photodynamic therapy (PDT) is an established treatment modality for non-small cell lung cancer. Phototoxicity, the primary adverse event, is expected to be minimized with the introduction of new photosensitizers that have shown promising results in phase I and II clinical studies. Early-stage and superficial endobronchial lesions less than 1 cm in thickness can be effectively treated with external light sources. Thicker lesions and peripheral lesions may be amenable to interstitial PDT, where the light is delivered intratumorally. The addition of PDT to standard-of-care surgery and chemotherapy can improve survival and outcomes in patients with pleural disease. Intraoperative PDT has shown promise in the treatment of non-small cell lung cancer with pleural spread. Recent preclinical and clinical data suggest that PDT can increase antitumor immunity. Crosslinking of signal transducer and activator of transcription-3 molecules is a reliable biomarker to quantify the photoreaction induced by PDT. Randomized studies are required to test the prognosis value of this biomarker, obtain approval for the new photosensitizers, and test the potential efficacy of interstitial and intraoperative PDT in the treatment of patients with non-small cell lung cancer.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/terapia , Cuidados Intraoperatórios/métodos , Neoplasias Pulmonares/terapia , Fotoquimioterapia/métodos , Pneumonectomia , Terapia Combinada , Humanos , Fotoquimioterapia/tendências , Prognóstico , Radioterapia
15.
Lasers Surg Med ; 45(6): 370-6, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23775429

RESUMO

INTRODUCTION: Photodynamic therapy (PDT) is a minimally invasive treatment modality which has great clinical implications, especially in head and neck oncology. Post-operative swelling is a well-documented consequence of PDT. It is paramount the airway remains patent for these patients. A tracheostomy remains the gold standard treatment modality for base of tongue tumours susceptible to post operative PDT inflammation, which can lead to a compromised airway. We have carried out a retrospective study to outline the airway management strategies employed for head and neck cancer patients treated with PDT and suggest recommendations for future management. MATERIALS AND METHODS: This retrospective clinical study utilises 88 patients (53 males and 35 females) treated at the UCLH Head and Neck Center, London (between 2006 and 2013), for treatment of various lesions with superficial and/or interstitial PDT, when the airway could potentially be compromised. RESULTS: Of the 88 patients selected 60 had interstitial PDT (iPDT) and 13 had superficial PDT (sPDT). Fifteen patients were treated with both iPDT and sPDT. Among the iPDT patients 19 had a trachestomy; two patients a Quicktrach; four a Cook Airway Exchange Catheter (CEAC); one a percutaneous tracheostomy; one a needle tracheostomy and 33 patients did not receive any temporary airway pathways. Among the sPDT patients two had a trachestomy. Although the majority of patients did not suffer any major incidents, one sPDT patient required an emergency tracheostomy two days post-operatively. CONCLUSION: Airway management is vital when planning PDT treatment for tongue based tumours. Consider a more conventional approach when the lesion being targeted is located at a higher risk site: Floor of mouth/posterior tongue/tongue base or when multiple oral sites are being treated.


Assuntos
Manuseio das Vias Aéreas/métodos , Obstrução das Vias Respiratórias/prevenção & controle , Antineoplásicos/uso terapêutico , Carcinoma de Células Escamosas/cirurgia , Neoplasias de Cabeça e Pescoço/cirurgia , Mesoporfirinas/uso terapêutico , Fotoquimioterapia/efeitos adversos , Fármacos Fotossensibilizantes/uso terapêutico , Manuseio das Vias Aéreas/estatística & dados numéricos , Obstrução das Vias Respiratórias/etiologia , Anti-Inflamatórios/uso terapêutico , Carcinoma de Células Escamosas/complicações , Cartilagem Cricoide/cirurgia , Dexametasona/uso terapêutico , Feminino , Neoplasias de Cabeça e Pescoço/complicações , Humanos , Intubação Intratraqueal/estatística & dados numéricos , Masculino , Estudos Retrospectivos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Cartilagem Tireóidea/cirurgia , Neoplasias da Língua/complicações , Neoplasias da Língua/cirurgia , Traqueostomia/métodos , Traqueostomia/estatística & dados numéricos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA