Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Muscle Nerve ; 66(1): 96-105, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35373353

RESUMO

INTRODUCTION/AIMS: The muscle relaxant methocarbamol and the antimyotonic drug mexiletine are widely used for the treatment of muscle spasms, myotonia, and pain syndromes. To determine whether these drugs affect muscle spindle function, we studied their effect on the resting discharge and on stretch-induced action potential frequencies of proprioceptive afferent neurons. METHODS: Single unit action potential frequencies of proprioceptive afferents from muscle spindles in the murine extensor digitorum longus muscle of adult C57BL/6J mice were recorded under resting conditions and during ramp-and-hold stretches. Maximal tetanic force of the same muscle after direct stimulation was determined. High-resolution confocal microscopy analysis was performed to determine the distribution of Nav 1.4 channels, a potential target for both drugs. RESULTS: Methocarbamol and mexiletine inhibited the muscle spindle resting discharge in a dose-dependent manner with IC50 values around 300 µM and 6 µM, respectively. With increasing concentrations of both drugs, the response to stretch was also affected, with the static sensitivity first followed by the dynamic sensitivity. At high concentrations, both drugs completely blocked muscle spindle afferent output. Both drugs also reversibly reduced the specific force of the extensor digitorum longus muscle after tetanic stimulation. Finally, we present evidence for the presence and specific localization of the voltage-gated sodium channel Nav 1.4 in intrafusal fibers. DISCUSSION: In this study we demonstrate that both muscle relaxants affect muscle spindle function, suggesting impaired proprioception as a potential side effect of both drugs. Moreover, our results provide additional evidence of a peripheral activity of methocarbamol and mexiletine.


Assuntos
Metocarbamol , Fusos Musculares , Animais , Mexiletina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Fusos Musculares/fisiologia , Músculo Esquelético/fisiologia , Neurônios Aferentes/fisiologia
2.
J Physiol ; 597(15): 3999-4012, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31148174

RESUMO

KEY POINTS: The pathogenic mechanism and the neuromuscular reflex-related phenotype (e.g. tremors accompanied by clonus) of Amish nemaline myopathy, as well as of other recessively inherited TNNT1 myopathies, remain to be clarified. The truncated slow skeletal muscle isoform of troponin T (ssTnT) encoded by the mutant TNNT1 gene is unable to incorporate into myofilaments and is degraded in muscle cells. By contrast to extrafusal muscle fibres, spindle intrafusal fibres of normal mice contain a significant level of cardiac TnT and a low molecular weight splice form of ssTnT. Intrafusal fibres of ssTnT-knockout mice have significantly increased cardiac TnT. Rotarod and balance beam tests have revealed abnormal neuromuscular co-ordination in ssTnT-knockout mice and a blunted response to a spindle sensitizer, succinylcholine. The loss of ssTnT and a compensatory increase of cardiac TnT in intrafusal nuclear bag fibres may increase myofilament Ca2+ -sensitivity and tension, impairing spindle function, thus identifying a novel mechanism for the development of targeted treatment. ABSTRACT: A nonsense mutation at codon Glu180 of TNNT1 gene causes Amish nemaline myopathy (ANM), a recessively inherited disease with infantile lethality. TNNT1 encodes the slow skeletal muscle isoform of troponin T (ssTnT). The truncated ssTnT is unable to incorporate into myofilament and is degraded in muscle cells. The symptoms of ANM include muscle weakness, atrophy, contracture and tremors accompanied by clonus. An ssTnT-knockout (KO) mouse model recapitulates key features of ANM such as atrophy of extrafusal slow muscle fibres and increased fatigability. However, the neuromuscular reflex-related symptoms of ANM have not been explained. By isolating muscle spindles from ssTnT-KO and control mice aiming to examine the composition of myofilament proteins, we found that, in contrast to extrafusal fibres, intrafusal fibres contain a significant level of cardiac TnT and the low molecular weight splice form of ssTnT. Intrafusal fibres from ssTnT-KO mice have significantly increased cardiac TnT. Rotarod and balance beam tests revealed impaired neuromuscular co-ordination in ssTnT-KO mice, indicating abnormality in spindle functions. Unlike the wild-type control, the beam running ability of ssTnT-KO mice had a blunted response to a spindle sensitizer, succinylcholine. Immunohistochemistry detected ssTnT and cardiac TnT in nuclear bag fibres, whereas fast skeletal muscle TnT was detected in nuclear chain fibres, and cardiac α-myosin was present in one of the two nuclear bag fibres. The loss of ssTnT and a compensatory increase of cardiac TnT in nuclear bag fibres would increase myofilament Ca2+ -sensitivity and tension, thus affecting spindle activities. This mechanism provides an explanation for the pathophysiology of ANM, as well as a novel target for treatment.


Assuntos
Fibras Musculares Esqueléticas/metabolismo , Fusos Musculares/metabolismo , Miopatias da Nemalina/genética , Troponina T/genética , Animais , Células Cultivadas , Locomoção , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/fisiologia , Miofibrilas/metabolismo , Miopatias da Nemalina/metabolismo , Miopatias da Nemalina/fisiopatologia
3.
J Physiol ; 597(7): 1993-2006, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30673133

RESUMO

KEY POINTS: Acetylcholine receptors are aggregated in the central regions of intrafusal muscle fibres. Single unit muscle spindle afferent responses from isolated mouse extensor digitorum longus muscle were recorded in the absence of fusimotor input to ramp and hold stretches as well as to sinusoidal vibrations in the presence and absence of the acetylcholine receptor blockers d-tubocurarine and α-bungarotoxin. Proprioceptive afferent responses to both types of stretch were enhanced in the presence of either blocker. Blocking acetylcholine uptake and vesicular acetylcholine release by hemicholinium-3 also enhanced stretch-evoked responses. These results represent the first evidence that acetylcholine receptors negatively modulate muscle spindle responses to stretch. The data support the hypothesis that the sensory nerve terminal is able to release vesicles to fine-tune proprioceptive afferent sensitivity. ABSTRACT: Muscle spindles are complex stretch-sensitive mechanoreceptors. They consist of specialized skeletal muscle fibres, called intrafusal fibres, which are innervated in the central (equatorial) region by afferent sensory axons and in both polar regions by efferent γ-motoneurons. Previously it was shown that acetylcholine receptors (AChR) are concentrated in the equatorial region at the contact site between the sensory neuron and the intrafusal muscle fibre. To address the function of these AChRs, single unit sensory afferents were recorded from an isolated mouse extensor digitorum longus muscle in the absence of γ-motoneuron activity. Specifically, we investigated the responses of individual sensory neurons to ramp-and-hold stretches and sinusoidal vibrations before and after the addition of the competitive and non-competitive AChR blockers d-tubocurarine and α-bungarotoxin, respectively. The presence of either drug did not affect the resting action potential discharge frequency. However, the action potential frequencies in response to stretch were increased. In particular, frequencies of the dynamic peak and dynamic index to ramp-and-hold stretches were significantly higher in the presence of either drug. Treatment of muscle spindle afferents with the high-affinity choline transporter antagonist hemicholinium-3 similarly increased muscle spindle afferent firing frequencies during stretch. Moreover, the firing rate during sinusoidal vibration stimuli at low amplitudes was higher in the presence of α-bungarotoxin compared to control spindles also indicating an increased sensitivity to stretch. Collectively these data suggest a modulation of the muscle spindle afferent response to stretch by AChRs in the central region of intrafusal fibres possibly fine-tuning muscle spindle sensitivity.


Assuntos
Fibras Musculares Esqueléticas/fisiologia , Fusos Musculares/fisiologia , Receptores Colinérgicos/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Bungarotoxinas/farmacologia , Hemicolínio 3/farmacologia , Masculino , Mecanotransdução Celular , Camundongos , Camundongos Endogâmicos C57BL , Transporte Proteico , Células Receptoras Sensoriais , Tubocurarina/farmacologia
4.
Biomaterials ; 122: 179-187, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28129596

RESUMO

Muscle spindles are sensory organs embedded in the belly of skeletal muscles that serve as mechanoreceptors detecting static and dynamic information about muscle length and stretch. Through their connection with proprioceptive sensory neurons, sensation of axial body position and muscle movement are transmitted to the central nervous system. Impairment of this sensory circuit causes motor deficits and has been linked to a wide range of diseases. To date, no defined human-based in vitro model of the proprioceptive sensory circuit has been developed. The goal of this study was to develop a human-based in vitro muscle sensory circuit utilizing human stem cells. A serum-free medium was developed to drive the induction of intrafusal fibers from human satellite cells by actuation of a neuregulin signaling pathway. Both bag and chain intrafusal fibers were generated and subsequently validated by phase microscopy and immunocytochemistry. When co-cultured with proprioceptive sensory neurons derived from human neuroprogenitors, mechanosensory nerve terminal structural features with intrafusal fibers were demonstrated. Most importantly, patch-clamp electrophysiological analysis of the intrafusal fibers indicated repetitive firing of human intrafusal fibers, which has not been observed in human extrafusal fibers.


Assuntos
Mecanotransdução Celular/fisiologia , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Propriocepção/fisiologia , Reflexo de Estiramento/fisiologia , Células Receptoras Sensoriais/fisiologia , Engenharia Tecidual/métodos , Diferenciação Celular/fisiologia , Células Cultivadas , Humanos , Fibras Musculares Esqueléticas/citologia , Células Receptoras Sensoriais/citologia
5.
Eur J Neurosci ; 41(1): 69-78, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25377642

RESUMO

Intrafusal fibers of muscle spindles are innervated in the central region by afferent sensory axons and at both polar regions by efferent γ-motoneurons. We previously demonstrated that both neuron-muscle contact sites contain cholinergic synapse-like specialisation, including aggregates of the nicotinic acetylcholine receptor (AChR). In this study we tested the hypothesis that agrin and its receptor complex (consisting of LRP4 and the tyrosine kinase MuSK) are involved in the aggregation of AChRs in muscle spindles, similar to their role at the neuromuscular junction. We show that agrin, MuSK and LRP4 are concentrated at the contact site between the intrafusal fibers and the sensory- and γ-motoneuron, respectively, and that they are expressed in the cell bodies of proprioceptive neurons in dorsal root ganglia. Moreover, agrin and LRP4, but not MuSK, are expressed in γ-motoneuron cell bodies in the ventral horn of the spinal cord. In agrin- and in MuSK-deficient mice, AChR aggregates are absent from the polar regions. In contrast, the subcellular concentration of AChRs in the central region where the sensory neuron contacts the intrafusal muscle fiber is apparently unaffected. Skeletal muscle-specific expression of miniagrin in agrin(-/-) mice in vivo is sufficient to restore the formation of γ-motoneuron endplates. These results show that agrin and MuSK are major determinants during the formation of γ-motoneuron endplates but appear dispensable for the aggregation of AChRs at the central region. Our results therefore suggest different molecular mechanisms for AChR clustering within two domains of intrafusal fibers.


Assuntos
Neurônios Motores/metabolismo , Fusos Musculares/metabolismo , Receptores Nicotínicos/metabolismo , Agrina/genética , Agrina/metabolismo , Animais , Células do Corno Anterior/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Gânglios Espinais/crescimento & desenvolvimento , Gânglios Espinais/metabolismo , Imuno-Histoquímica , Proteínas Relacionadas a Receptor de LDL , Vértebras Lombares , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Fusos Musculares/crescimento & desenvolvimento , Junção Neuromuscular/crescimento & desenvolvimento , Junção Neuromuscular/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores de LDL/metabolismo , Células Receptoras Sensoriais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA