Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Toxins (Basel) ; 16(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38535823

RESUMO

Island tameness results largely from a lack of natural predators. Because some insular rattlesnake populations lack functional rattles, presumably the consequence of relaxed selection from reduced predation, we hypothesized that the Santa Catalina Island, California, USA, population of the southern Pacific rattlesnake (Crotalus helleri, which possesses a functional rattle), would exhibit a decrement in defensive behavior relative to their mainland counterparts. Contrary to our prediction, rattlesnakes from the island not only lacked tameness compared to mainland snakes, but instead exhibited measurably greater levels of defensiveness. Island snakes attempted to bite 4.7 times more frequently as we endeavored to secure them by hand, and required 2.1-fold more time to be pinned and captured. When induced to bite a beaker after being grasped, the island snakes also delivered 2.1-fold greater quantities of venom when controlling for body size. The additional venom resulted from 2.1-fold larger pulses of venom ejected from the fangs. We found no effects of duration in captivity (2-36 months), which suggests an absence of long-term habituation of antipredator behaviors. Breeding bird surveys and Christmas bird counts indicated reduced population densities of avian predators on Catalina compared to the mainland. However, historical estimates confirmed that populations of foxes and introduced mammalian predators (cats and pigs) and antagonists (herbivorous ungulates) substantially exceeded those on the mainland in recent centuries, and therefore best explain the paradoxically exaggerated defensive behaviors exhibited by Catalina's rattlesnakes. These findings augment our understanding of anthropogenic effects on the behaviors of island animals and underscore how these effects can negatively affect human safety.


Assuntos
Crotalus , Mãos , Serpentes Peçonhentas , Humanos , Animais , Suínos , Densidade Demográfica , Tamanho Corporal , Tosilarginina Metil Éster , Mamíferos
2.
Mech Ageing Dev ; 219: 111927, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38499252

RESUMO

The different evolutionary theories of senescence predict different directions for the correlation between the population size and the intensity of senescence. Using simulations, I highlighted how the effect of the population size on the intensity of senescence could be reinforced by the time since populations have been large or small. I devised a mutation-selection model in which the effect of the mutations was age-specific. Several small populations diverged from a same large population at different points in time. At the end of the simulation, the correlation between the time since the populations had been small and the rate of senescence was positive under the mutation accumulation theory and negative under the antagonistic pleiotropy theory. The phenomenon was strong enough to reverse the usually negative relationship between the intensity of senescence and the generation time. These mutually-exclusive predictions could help broaden the taxonomic support for the mutation accumulation theory of senescence, currently mostly supported in humans and lab invertebrates. I briefly mention a few potential applications in real-life systems.


Assuntos
Envelhecimento , Envelhecimento/genética , Envelhecimento/fisiologia , Humanos , Animais , Mutação , Evolução Biológica , Acúmulo de Mutações , Modelos Genéticos , Seleção Genética
3.
Proc Biol Sci ; 290(1998): 20222603, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37161324

RESUMO

The evolution of behaviour on islands is a pervasive phenomenon that contributed to Darwin's theory of natural selection. Island populations frequently show increased boldness and exploration compared with their mainland counterparts. Despite the generality of this pattern, the genetic basis of island-associated behaviours remains a mystery. To address this gap in knowledge, we genetically dissected behaviour in 613 F2s generated by crossing inbred mouse strains from Gough Island (where they live without predators or human commensals) and a mainland conspecific. We used open field and light/dark box tests to measure seven behaviours related to boldness and exploration in juveniles and adults. Across all assays, we identified a total of 41 quantitative trait loci (QTL) influencing boldness and exploration. QTL have moderate effects and are often unique to specific behaviours or ages. Function-valued trait mapping revealed changes in estimated effects of QTL during assays, providing a rare dynamic window into the genetics of behaviour often missed by standard approaches. The genomic locations of QTL are distinct from those found in laboratory strains of mice, indicating different genetic paths to the evolution of similar behaviours. We combine our mapping results with extensive phenotypic and genetic information available for laboratory mice to nominate candidate genes for the evolution of behaviour on islands.


Assuntos
Genômica , Laboratórios , Adulto , Humanos , Animais , Camundongos , Fenótipo , Locos de Características Quantitativas
4.
Biol Lett ; 19(4): 20220425, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37073525

RESUMO

The loss of defence hypothesis posits that island colonizers experience a release from predation on the mainland and subsequently lose their defensive adaptations. However, while support for the hypothesis from direct defensive traits is abundant, far less is known about indirect defensive traits. Leaf domatia are cave-like structures produced on the underside of leaves that facilitate an indirect defensive interaction with predaceous and microbivorous mites. I tested the loss of defence hypothesis in six domatia-bearing taxa inhabiting New Zealand and its offshore islands. No support for the loss of defence hypothesis was found. Changes in domatia investment were instead associated with changes in leaf size-a trait that has been repeatedly observed to undergo rapid evolution on islands. Overall results suggest that not all types of defence are lost on islands.


Assuntos
Ácaros , Simbiose , Animais , Nova Zelândia , Folhas de Planta , Ilhas
5.
Front Plant Sci ; 14: 1097113, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36890904

RESUMO

Introduction: Plants confined to island-like habitats are hypothesised to possess a suite of functional traits that promote on-spot persistence and recruitment, but this may come at the cost of broad-based colonising potential. Ecological functions that define this island syndrome are expected to generate a characteristic genetic signature. Here we examine genetic structuring in the orchid Phalaenopsis pulcherrima, a specialist lithophyte of tropical Asian inselbergs, both at the scale of individual outcrops and across much of its range in Indochina and on Hainan Island, to infer patterns of gene flow in the context of an exploration of island syndrome traits. Methods: We sampled 323 individuals occurring in 20 populations on 15 widely scattered inselbergs, and quantified genetic diversity, isolation-by-distance and genetic structuring using 14 microsatellite markers. To incorporate a temporal dimension, we inferred historical demography and estimated direction of gene flow using Bayesian approaches. Results: We uncovered high genotypic diversity, high heterozygosity and low rates of inbreeding, as well as strong evidence for the occurrence of two genetic clusters, one comprising the populations of Hainan Island and the other those of mainland Indochina. Connectivity was greater within, rather than between the two clusters, with the former unequivocally supported as ancestral. Discussion: Despite a strong capacity for on-spot persistence conferred by clonality, incomplete self-sterility and an ability to utilize multiple magnet species for pollination, our data reveal that P. pulcherrima also possesses traits that promote landscape-scale gene flow, including deceptive pollination and wind-borne seed dispersal, generating an ecological profile that neither fully conforms to, nor fully contradicts, a putative island syndrome. A terrestrial matrix is shown to be significantly more permeable than open water, with the direction of historic gene flow indicating that island populations can serve as refugia for postglacial colonisation of continental landmasses by effective dispersers.

6.
Mol Ecol ; 32(1): 152-166, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36226847

RESUMO

Geographically isolated populations, specifically island-mainland counterparts, tend to exhibit phenotypic variation in many species. The so-called island syndrome occurs when different environmental pressures lead to insular divergence from mainland populations. This phenomenon can be seen in an island population of Nova Scotia masked shrews (Sorex cinereus), which have developed a specialized feeding habit and digestive enzyme compared to their mainland counterparts. Epigenetic modifications, such as DNA methylation (DNAm), can impact phenotypes by altering gene expression without changing the DNA sequence. Here, we used a de novo masked shrew genome assembly and a mammalian methylation array profiling 37 thousand conserved CpGs to investigate morphological and DNA methylation patterns between island and mainland populations. Island shrews were morphologically and epigenetically different than their mainland counterparts, exhibiting a smaller body size. A gene ontology enrichment analyses of differentially methylated CpGs implicated developmental and digestive system related pathways. Based on our shrew epigenetic clock, island shrews might also be aging faster than their mainland counterparts. This study provides novel insight on phenotypic and epigenetic divergence in island-mainland mammal populations and suggests an underlying role of methylation in island-mainland divergence.


Assuntos
Epigênese Genética , Musaranhos , Animais , Musaranhos/genética , Tamanho Corporal , Sequência de Bases , Metilação de DNA/genética
7.
Proc Natl Acad Sci U S A ; 119(37): e2208629119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067289

RESUMO

Insular woodiness (IW)-the evolutionary transition from herbaceousness toward woodiness on islands-is one of the most iconic features of island floras. Since pioneering work by Darwin and Wallace, a number of drivers of IW have been proposed, such as 1) competition for sunlight requiring plants with taller and stronger woody stems and 2) drought favoring woodiness to safeguard root-to-shoot water transport. Alternatively, IW may be the indirect result of increased lifespan related to 3) a favorable aseasonal climate and/or 4) a lack of large native herbivores. However, information on the occurrence of IW is fragmented, hampering tests of these potential drivers. Here, we identify 1,097 insular woody species on 375 islands and infer at least 175 evolutionary transitions on 31 archipelagos, concentrated in six angiosperm families. Structural equation models reveal that the insular woody species richness on oceanic islands correlates with a favorable aseasonal climate, followed by increased drought and island isolation (approximating competition). When continental islands are also included, reduced herbivory pressure by large native mammals, increased drought, and island isolation are most relevant. Our results illustrate different trajectories leading to rampant convergent evolution toward IW and further emphasize archipelagos as natural laboratories of evolution, where similar abiotic or biotic conditions replicated evolution of similar traits.


Assuntos
Ilhas , Madeira , Evolução Biológica , Clima , Oceanos e Mares , Plantas
8.
Behav Ecol Sociobiol ; 75(4)2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34970019

RESUMO

Island populations are hallmarks of extreme phenotypic evolution. Radical changes in resource availability and predation risk accompanying island colonization drive changes in behavior, which Darwin likened to tameness in domesticated animals. Although many examples of animal boldness are found on islands, the heritability of observed behaviors, a requirement for evolution, remains largely unknown. To fill this gap, we profiled anxiety and exploration in island and mainland inbred strains of house mice raised in a common laboratory environment. The island strain was descended from mice on Gough Island, the largest wild house mice on record. Experiments utilizing open environments across two ages showed that Gough Island mice are bolder and more exploratory, even when a shelter is provided. Concurrently, Gough Island mice retain an avoidance response to predator urine. F1 offspring from crosses between these two strains behave more similarly to the mainland strain for most traits, suggesting recessive mutations contributed to behavioral evolution on the island. Our results provide a rare example of novel, inherited behaviors in an island population and demonstrate that behavioral evolution can be specific to different forms of perceived danger. Our discoveries pave the way for a genetic understanding of how island populations evolve unusual behaviors.

9.
Front Vet Sci ; 8: 736216, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34692809

RESUMO

On volcanic islands, the release of animals from predators and competitors can lead to increased body size and population density as well as the expanded habitat use of introduced animals relative to their mainland counterparts. Such alterations might facilitate the spread of diseases on islands when these exotic animals also carry pathogenic agents; however, this has rarely been investigated. The commensal Asian house rat (Rattus tanezumi) is confined to human residential surroundings in mainland Taiwan but can be observed in the forests of nearby Orchid Island, which is a tropical volcanic island. Orchid Island is also a hot spot for scrub typhus, a lethal febrile disease transmitted by larval trombiculid mites (chiggers) that are infected primarily with the rickettsia Orientia tsutsugamushi (OT). We predicted an increase in chigger abundance when rodents (the primary host of chiggers) invade forests from human settlements since soils are largely absent in the latter habitat but necessary for the survival of nymphal and adult mites. A trimonthly rodent survey at 10 sites in three habitats (human residential, grassland, and forest) found only R. tanezumi and showed more R. tanezumi and chiggers in forests than in human residential sites. There was a positive association between rodent and chigger abundance, as well as between rodent body weight and chigger load. Lastly, >95% of chiggers were Leptotrombidium deliense and their OT infection rates were similar among all habitats. Our study demonstrated potentially elevated risks of scrub typhus when this commensal rat species is allowed to invade natural habitats on islands. Additionally, while the success of invasive species can be ascribed to their parasites being left behind, island invaders might instead obtain more parasites if the parasite requires only a single host (e.g., trombiculid mite), is a host generalist (e.g., L. deliense), and is transferred from unsuitable to suitable habitats (i.e., human settlements on the mainland to forests on an island).

10.
Evolution ; 75(6): 1348-1360, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33543771

RESUMO

The existence of distinct traits in island versus mainland populations offers opportunities to gain insights into how eco-evolutionary processes operate under natural conditions. We used two island colonization events in the white-winged fairywren (Malurus leucopterus) to investigate the genomic and demographic origin of melanic plumage. This avian species is distributed across most of Australia, and males of the mainland subspecies (M. l. leuconotus) exhibit a blue nuptial plumage in contrast to males of two island subspecies - M. l. leucopterus on Dirk Hartog Island and M. l. edouardi on Barrow Island - that exhibit a black nuptial plumage. We used reduced-representation sequencing to explore differentiation and demographic history in this species and found clear patterns of divergence between mainland and island populations, with additional substructuring on the mainland. Divergence between the mainland and Dirk Hartog was approximately 10 times more recent than the split between the mainland and Barrow Island, supporting two independent colonizations. In both cases, estimated gene flow between the mainland and the islands was low, contributing to signals of divergence among subspecies. Our results present demographic reconstructions of mainland-island dynamics and associated plumage variation in white-winged fairywrens, with broader implications regarding our understanding of convergent evolution in insular populations.


Assuntos
Plumas , Deriva Genética , Passeriformes/genética , Pigmentação/genética , Animais , Austrália , Fluxo Gênico , Genética Populacional , Ilhas , Masculino , Polimorfismo de Nucleotídeo Único , Dinâmica Populacional
11.
Biol Lett ; 17(1): 20200643, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33497592

RESUMO

Island species are often predictably different from their mainland counterparts. Milder climates and reduced predation risk on islands have been involved to explain shifts in body size and a suite of life-history traits such as clutch size and offspring growth rate. Despite the key role of adult survival on risk taking and reproduction, the prediction that living on islands increases adult survival has yet to be tested systematically. I gathered data on adult annual apparent survival from the island and mainland year-round resident species of birds from around the world. With this large dataset (697 species), I found that species of birds living on islands showed higher apparent survival than their mainland counterparts in the two Hemispheres and at all latitudes, controlling for several known predictors of adult survival, including body size, clutch size and breeding system. These results shed light on the ecological factors that influence survival on islands and extend the life-history island syndrome to adult survival.


Assuntos
Aves , Características de História de Vida , Animais , Tamanho da Ninhada , Ilhas , Reprodução
12.
Trends Plant Sci ; 25(4): 329-339, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31953170

RESUMO

The study of insular systems has a long history in ecology and biogeography. Island plants often differ remarkably from their noninsular counterparts, constituting excellent models for exploring eco-evolutionary processes. Trait-based approaches can help to answer important questions in island biogeography, yet plant trait patterns on islands remain understudied. We discuss three key hypotheses linking functional ecology to island biogeography: (i) plants in insular systems are characterized by distinct functional trait syndromes (compared with noninsular environments); (ii) these syndromes differ between true islands and terrestrial habitat islands; and (iii) island characteristics influence trait syndromes in a predictable manner. We are convinced that implementing trait-based comparative approaches would considerably further our understanding of plant ecology and evolution in insular systems.


Assuntos
Biodiversidade , Ecologia , Evolução Biológica , Ecossistema , Ilhas , Plantas
13.
Proc Biol Sci ; 286(1914): 20191697, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31662081

RESUMO

Animals on islands often exhibit dramatic differences in morphology and behaviour compared with mainland individuals, a phenomenon known as the 'island syndrome'. These differences are thought to be adaptations to island environments, but the extent to which they have a genetic basis or instead represent plastic responses to environmental extremes is often unknown. Here, we revisit a classic case of island syndrome in deer mice (Peromyscus maniculatus) from British Columbia. We first show that Saturna Island mice and those from neighbouring islands are approximately 35% (approx. 5 g) heavier than mainland mice and diverged approximately 10 000 years ago. We then establish laboratory colonies and find that Saturna Island mice are heavier both because they are longer and have disproportionately more lean mass. These trait differences are maintained in second-generation captive-born mice raised in a common environment. In addition, island-mainland hybrids reveal a maternal genetic effect on body weight. Using behavioural testing in the laboratory, we also find that wild-caught island mice are less aggressive than mainland mice; however, laboratory-raised mice born to these founders do not differ in aggression. Together, our results reveal that these mice have different responses to the environmental conditions on islands-a heritable change in a morphological trait and a plastic response in a behavioural trait.


Assuntos
Evolução Biológica , Peromyscus/fisiologia , Adaptação Fisiológica , Animais , Colúmbia Britânica , Camundongos
14.
PeerJ ; 7: e6894, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31119086

RESUMO

Populations of vertebrate species introduced onto islands regularly develop similar phenotypic changes, e.g., larger or smaller body size, shortened limbs, duller coats, as well as behavioural changes such as increased tameness and reduced flight-initiation distance. These changes overlap in part with those associated with the 'domestication syndrome', especially tameness and changes in coat patterns, and might indicate a similar neural crest involvement in the concurrent development of multiple phenotypic traits. Here I examine long-term data on free-living populations of wild Polynesian rats from seven mainland countries and 117 islands (n = 3,034), covering the species' native and introduced range. Mainland populations showed no aberrant coat patterns, with the exception of one albino, whereas aberrant coat patterns were found in 12 island populations. Observed coat colour polymorphisms consisted of leucistic (including singular white patches), melanistic (darkly pigmented) and piebald (mixed) coat patterns. After isolation for at least seven centuries, wild Polynesian rat populations on islands seem to exhibit a trend towards a higher incidence of aberrant coat patterns. These phenotypic changes are here explained as a neutral, non-adaptive process, likely part of the 'domestication syndrome' (via the commensal pathway of domestication), in combination with genetic drift, little or no gene flow between the islands and/or the mainland and a relaxed selection (as a result of the weakening or removal of competitor/predator pressure) under commensality.

15.
Proc Biol Sci ; 286(1894): 20181967, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30963869

RESUMO

Island populations often differ in consistent ways from their mainland counterparts with respect to their ecology, behaviour, morphology, demography and life-history characteristics; a set of changes referred to as the 'island syndrome'. To understand the ecological and evolutionary drivers of the island syndrome requires characterization of suites of interacting traits. While patterns in some types of traits, e.g. body size, are well characterized across a range of taxa, key gaps remain. Growth rate is one such trait, being an important determinant of both increases and decreases in body size, and can vary with changes in predation pressure and food limitation; two factors that are known to differ between mainland and island environments. Using a phylogenetic meta-analytic approach, we characterize differences in growth rates among mainland and island altricial bird populations, controlling for environmental factors. We found a trend towards slower growth on islands in small-bodied (less than 1 kg) bird species. This is consistent with the idea that the pattern of body size increases in small-bodied island colonists is associated with the evolution of slower growth combined with shifts in age and size at maturity in relaxed predation regimes.


Assuntos
Distribuição Animal , Evolução Biológica , Aves/crescimento & desenvolvimento , Tamanho Corporal , Animais , Geografia , Ilhas
16.
Bone ; 124: 14-21, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30914273

RESUMO

B4GALT7 encodes beta-1,4-galactosyltransferase which links glycosaminoglycans to proteoglycans in connective tissues. Rare, biallelic variants in B4GALT7 have been associated with spondylodysplastic Ehlers-Danlos and Larsen of Reunion Island syndromes. Thirty patients with B4GALT7-related disorders have been reported to date with phenotypic variability. Using whole exome sequencing, we identified male and female siblings with biallelic, pathogenic B4GALT7 variants and phenotypic features of spondylodysplastic Ehlers-Danlos syndrome as well as previously unreported skeletal characteristics. We also provide detailed radiological characterization and describe the siblings' responses to growth hormone treatment. Our report extends the phenotypic spectrum of B4GALT7-associated spondylodysplastic Ehlers-Danlos syndrome and reports results of growth hormone treatment for patients with this rare disorder.


Assuntos
Galactosiltransferases/deficiência , Hormônio do Crescimento/uso terapêutico , Irmãos , Adulto , Biomarcadores/metabolismo , Criança , Pré-Escolar , Feminino , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Humanos , Masculino , Fenótipo , Sequenciamento do Exoma
17.
Mol Ecol ; 27(2): 533-549, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29219226

RESUMO

Episodes of expansion and isolation in geographic range over space and time, during which parasites have the opportunity to expand their host range, are linked to the development of host-parasite mosaic assemblages and parasite diversification. In this study, we investigated whether island colonization events lead to host range oscillations in a taxon of host-specific parasitic nematodes of the genus Spauligodon in the Canary Islands. We further investigated whether range oscillations also resulted in shifts in host breadth (i.e., specialization), as expected for parasites on islands. Parasite phylogeny and divergence time estimates were inferred from molecular data with Bayesian methods. Host divergence times were set as calibration priors after a priori evaluation with a global-fit method of which individual host-parasite associations likely represent cospeciation links. Parasite colonization history was reconstructed, followed by an estimation of oscillation events and specificity level. The results indicate the presence of four Spauligodon clades in the Canary Islands, which originated from at least three different colonization events. We found evidence of host range oscillations to truly novel hosts, which in one case led to higher diversification. Contemporary host-parasite associations show strong host specificity, suggesting that changes in host breadth were limited to the shift period. Lineages with more frequent and wider taxonomic host range oscillations prior to the initial colonization event showed wider range oscillations during colonization and diversification within the archipelago. Our results suggest that a lineage's evolutionary past may be the best indicator of a parasite's potential for future range expansions.


Assuntos
Evolução Biológica , DNA Mitocondrial/genética , Oxyuroidea/genética , Filogenia , Animais , Teorema de Bayes , Especificidade de Hospedeiro , Interações Hospedeiro-Parasita/genética , Oxyuroidea/patogenicidade , Espanha , Especificidade da Espécie
18.
Orphanet J Rare Dis ; 12(1): 153, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28882145

RESUMO

BACKGROUND: Spondylodysplastic EDS (spEDS) is a rare connective tissue disorder that groups the phenotypes caused by biallelic B4GALT7, B3GALT6, and SLC39A13 mutations. In the 2017 EDS nosology, minimal criteria (general and gene-specific) for a clinical suspicion of spEDS have been proposed, but molecular analysis is required to reach a definite diagnosis. The majority of spEDS patients presented with short stature, skin hyperextensibility, facial dysmorphisms, peculiar radiological findings, muscle hypotonia and joint laxity and/or its complications. To date only 7 patients with ß4GALT7-deficiency (spEDS-B4GALT7) have been described and their clinical data suggested that, in addition to short stature and muscle hypotonia, radioulnar synostosis, hypermetropia, and delayed cognitive development might be a hallmark of this specific type of spEDS. Additional 22 patients affected with an overlapping phenotype, i.e., Larsen of Reunion Island syndrome, all carrying a homozygous B4GALT7 mutation, are also recognized. RESULTS: Herein, we report on a 30-year-old Moroccan woman who fitted the minimal criteria to suspect spEDS, but lacked radioulnar synostosis and intellectual disability and presented with neurosensorial hearing loss and limb edema of lymphatic origin. Sanger sequencing of B4GALT7 was performed since the evaluation of the spEDS gene-specific minor criteria suggested this specific subtype. Mutational screening revealed the homozygous c.829G>T, p.Glu277* pathogenetic variant leading to aberrant splicing. CONCLUSIONS: Our findings expand both the clinical and mutational spectrum of this ultrarare connective tissue disorder. The comparison of the patient's features with those of the other spEDS and Larsen of Reunion Island syndrome patients reported up to now offers future perspectives for spEDS nosology and clinical research in this field.


Assuntos
Síndrome de Ehlers-Danlos/genética , Galactosiltransferases/genética , Adulto , Feminino , Homozigoto , Humanos , Hipotonia Muscular/genética , Mutação/genética , Fenótipo
19.
Genetics ; 204(4): 1559-1572, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27694627

RESUMO

Organisms on islands often undergo rapid morphological evolution, providing a platform for understanding mechanisms of phenotypic change. Many examples of evolution on islands involve the vertebrate skeleton. Although the genetic basis of skeletal variation has been studied in laboratory strains, especially in the house mouse Mus musculus domesticus, the genetic determinants of skeletal evolution in natural populations remain poorly understood. We used house mice living on the remote Gough Island-the largest wild house mice on record-to understand the genetics of rapid skeletal evolution in nature. Compared to a mainland reference strain from the same subspecies (WSB/EiJ), the skeleton of Gough Island mice is considerably larger, with notable expansions of the pelvis and limbs. The Gough Island mouse skeleton also displays changes in shape, including elongations of the skull and the proximal vs. distal elements in the limbs. Quantitative trait locus (QTL) mapping in a large F2 intercross between Gough Island mice and WSB/EiJ reveals hundreds of QTL that control skeletal dimensions measured at 5, 10, and/or 16 weeks of age. QTL exhibit modest, mostly additive effects, and Gough Island alleles are associated with larger skeletal size at most QTL. The QTL with the largest effects are found on a few chromosomes and affect suites of skeletal traits. Many of these loci also colocalize with QTL for body weight. The high degree of QTL colocalization is consistent with an important contribution of pleiotropy to skeletal evolution. Our results provide a rare portrait of the genetic basis of skeletal evolution in an island population and position the Gough Island mouse as a model system for understanding mechanisms of rapid evolution in nature.


Assuntos
Tamanho Corporal/genética , Osso e Ossos/anatomia & histologia , Evolução Molecular , Camundongos/genética , Locos de Características Quantitativas , Animais , Feminino , Pleiotropia Genética , Ilhas , Masculino
20.
Genetics ; 201(1): 213-28, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26199233

RESUMO

Organisms on islands provide a revealing window into the process of adaptation. Populations that colonize islands often evolve substantial differences in body size from their mainland relatives. Although the ecological drivers of this phenomenon have received considerable attention, its genetic basis remains poorly understood. We use house mice (subspecies: Mus musculus domesticus) from remote Gough Island to provide a genetic portrait of rapid and extreme size evolution. In just a few hundred generations, Gough Island mice evolved the largest body size among wild house mice from around the world. Through comparisons with a smaller-bodied wild-derived strain from the same subspecies (WSB/EiJ), we demonstrate that Gough Island mice achieve their exceptional body weight primarily by growing faster during the 6 weeks after birth. We use genetic mapping in large F(2) intercrosses between Gough Island mice and WSB/EiJ to identify 19 quantitative trait loci (QTL) responsible for the evolution of 16-week weight trajectories: 8 QTL for body weight and 11 QTL for growth rate. QTL exhibit modest effects that are mostly additive. We conclude that body size evolution on islands can be genetically complex, even when substantial size changes occur rapidly. In comparisons to published studies of laboratory strains of mice that were artificially selected for divergent body sizes, we discover that the overall genetic profile of size evolution in nature and in the laboratory is similar, but many contributing loci are distinct. Our results underscore the power of genetically characterizing the entire growth trajectory in wild populations and lay the foundation necessary for identifying the mutations responsible for extreme body size evolution in nature.


Assuntos
Tamanho Corporal/genética , Mapeamento Cromossômico/métodos , Camundongos/crescimento & desenvolvimento , Camundongos/genética , Locos de Características Quantitativas , Animais , Evolução Biológica , Cruzamentos Genéticos , Feminino , Ilhas , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA