Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 376
Filtrar
1.
Biomed Pharmacother ; 180: 117517, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39357326

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused millions of infections and deaths worldwide since its emergence in Wuhan, China, in late 2019. Natural product inhibitors targeting the interaction between the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and human angiotensin-converting enzyme 2 (ACE2), crucial for viral attachment and cellular entry, are of significant interest as potential antiviral agents. In this study a library of nitrile- and sulfur-containing natural product derived compounds were used for virtual drug screening against the RBD of the SARS-CoV-2 spike protein. The top 18 compounds from docking were tested for their efficacy to inhibit virus entry. In vitro experiments revealed that compounds 9, 14, and 15 inhibited SARS-CoV-2 pseudovirus and live virus entry in HEK-ACE2 and Vero E6 host cells at low micromolar IC50 values. Cell viability assays showed these compounds exerted low cytotoxicity towards MRC5, Vero E6, and HEK-ACE2 cell lines. Microscale thermophoresis revealed all three compounds strongly bound to the RBDs of SARS-CoV-2, SARS-CoV-2 XBB, SARS-CoV-1, MERS-CoV, and HCoV-HKU1, with their Kd values increasing as RBD sequence similarity decreased. Molecular docking studies indicated compounds 9, 14, and 15 bound to the SARS-CoV-2 spike protein RBD and interacted with hotspot amino acid residues required for the RBD-ACE2 interaction and cellular infection. These three nitrile-containing candidates, particularly compound 15, should be considered for further development as potential pan-coronavirus entry inhibitors.

2.
Chemosphere ; 366: 143514, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39389372

RESUMO

Isoquinoline (IQL), as a typical nitrogen-containing heterocyclic contaminant in coking wastewater, poses a serious threat to the aquatic environment and human health. Due to its chemical stability, traditional sewage treatment technology is not highly efficient in IQL removal. Advanced oxidation processes (AOPs) driven by ultraviolet radiation could be an effective treatment method, but it could generate toxic byproducts. In this work, the removal of IQL initiated by HO•, ClO•, Cl•, and SO4•- in UV/chlorine and UV/persulfate (PDS) process was comprehensively investigated, clarifying the degradation mechanism, reaction kinetics, and ecological toxicity. The findings indicate that the dominant oxidation mechanism of IQL by HO•, ClO•, and Cl• is radical adduct formation (RAF), while single electron transfer (SET) is the main reaction pathway of SO4•- with IQL. At 298 K and 1 atm, the order of rate constants for the reactions of IQL with active radicals is Cl• (6.23 × 1010 M-1 s-1) > SO4•- (8.81 × 109 M-1 s-1) > HO• (1.66 × 109 M-1 s-1) > ClO• (1.62 × 108 M-1 s-1). The acute and chronic toxicity of IQL and its degradation byproducts at three different trophic levels were evaluated using ECOSAR program. The byproducts produced by the oxidative degradation of IQL by HO• and SO4•- are mostly "not harmful", and their toxicity shows a decreasing trend compared to that of IQL. The byproducts derived from the reaction of IQL with Cl• are all "toxic" or "harmful", and the ranking of harm to three types of aquatic organisms is green algae > fish > daphnia. Hence, UV/PDS process could be more secure in pollutant disposal in wastewater. In actual water treatment process, merit attention should be paid to the potential hazards of the byproducts generated by various contaminants.

3.
Anal Chim Acta ; 1329: 343237, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39396299

RESUMO

BACKGROUND: Aptamers have aroused tremendous applications in sensors, drug deliveries, diagnosis, and therapies. In particular, target-induced global structure switching of aptamers has been widely used to develop selective sensors. However, fluorophore and/or quencher modification, sequence elongation, and nano-interface adsorption are required to design such global structure-switching aptamer sensors (SSAS) in order to signal target binding events. Accordingly, these requirements make SSAS at a high cost and expense of sensors' sensitivity. In this aspect, efforts should be made to overcome these drawbacks of SSAS. RESULTS: Herein, we tried to develop label-free folding-unswitching aptamer sensors (FUAS) by searching fluorogenic target competitors. Using adenine nucleoside/nucleotide as the proof-of-concept model targets, we screened out berberine (BER) from natural isoquinoline alkaloids (having rings comparable to targets) as the best fluorogenic target competitor. Binding of BER at the conserved nucleotides of intact aptamer foldings turned on this fluorogenic target competitor' fluorescence. Targets then competed with this fluorogenic target competitor over the same conserved nucleotides to cause its release in favor of a resultant fluorescence change. We found that the developed FUAS are much more sensitive than the previously reported SSAS. The FUAS were successfully applied to assays of ATP and adenosine deaminase in serums, and to screening of the adenosine deaminase's inhibitor, verifying the reliability and applicability of this FUAS platform in variant fields. SIGNIFICANCE: We demonstrate that by designing fluorogenic target competitors, FUAS can be alternatively developed in a label-free manner and with a higher sensitivity than the previously developed SSAS. This work opens a new way to develop high-performance aptamer-based sensors. Furthermore, our developed FUAS should inspire more interest for wide applications incluidng target-triggered drug deliveries when therapeutic fluorogenic target competitors are used.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Corantes Fluorescentes , Aptâmeros de Nucleotídeos/química , Corantes Fluorescentes/química , Berberina/química , Humanos
4.
Nat Prod Bioprospect ; 14(1): 57, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39404968

RESUMO

Four new isoquinoline alkaloids, hypecotumines A-D (1-4), were isolated and identified from the whole herbs of Hypecoum erectum L. Their structures were determined by a combination of HRESIMS, NMR, and X-ray diffraction analysis methods. Compounds 1-4 were characterized by a terminal double bond at C-9 and their plausible biosynthetic pathway was hypothesized. Since PCSK9 plays a key role in the development of cardiovascular disease (CVD), exploration of PCSK inhibitors from natural products are beneficial for drug discovery of CVD treatment. SPR and Western blot assays showed compound 4 had PCSK9 inhibition activity with KD value of 59.9 µM and thus elevated the LDLR level. Further molecular docking studies demonstrated that 4 and PCSK9 could form stable interactions via key hydrogen bonds.

5.
Eur J Med Chem ; 279: 116852, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39276584

RESUMO

Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) play a pivotal role in regulating kynurenine catabolism pathway and immunosuppressive environment, which are promising drug targets for cancer immunotherapy. In this work, a variety of isoquinoline derivatives were designed, synthesized and evaluated for the inhibitory activity against IDO1 and TDO. The enzymatic assay and structure-activity relationship studies led to the most potent compound 43b with IC50 values of 0.31 µM for IDO1 and 0.08 µM for TDO, respectively. Surface plasmon resonance (SPR) revealed direct binding affinity of compound 43b to IDO1 and TDO and molecular docking studies were performed to predict the possible binding mode. Further pharmacokinetic study and biological evaluation in vivo showed that 43b displayed acceptable pharmacokinetic profiles and potent antitumor efficacy with low toxicity in B16-F10 tumor model, which might provide some insights into the discovery of novel IDO1/TDO inhibitors for cancer immunotherapy.


Assuntos
Antineoplásicos , Inibidores Enzimáticos , Indolamina-Pirrol 2,3,-Dioxigenase , Isoquinolinas , Simulação de Acoplamento Molecular , Triptofano Oxigenase , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Relação Estrutura-Atividade , Animais , Isoquinolinas/química , Isoquinolinas/farmacologia , Isoquinolinas/síntese química , Camundongos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Triptofano Oxigenase/antagonistas & inibidores , Triptofano Oxigenase/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Humanos , Estrutura Molecular , Descoberta de Drogas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células/efeitos dos fármacos , Camundongos Endogâmicos C57BL
6.
Molecules ; 29(17)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39274880

RESUMO

Lamellarins are natural products with a [3,4]-fused pyrrolocoumarin skeleton possessing interesting biological properties. More than 70 members have been isolated from diverse marine organisms, such as sponges, ascidians, mollusks, and tunicates. There is a continuous interest in the synthesis of these compounds. In this review, the synthetic strategies for the synthesis of the title compounds are presented along with their biological properties. Three routes are followed for the synthesis of lamellarins. Initially, pyrrole derivatives are the starting or intermediate compounds, and then they are fused to isoquinoline or a coumarin moiety. Second, isoquinoline is the starting compound fused to an indole moiety. In the last route, coumarins are the starting compounds, which are fused to a pyrrole moiety and an isoquinoline scaffold. The synthesis of isolamellarins, azacoumestans, isoazacoumestans, and analogues is also described. The above synthesis is achieved via metal-catalyzed cross-coupling, [3 + 2] cycloaddition, substitution, and lactonization reactions. The title compounds exhibit cytotoxic, multidrug resistance (MDR), topoisomerase I-targeted antitumor, anti-HIV, antiproliferative, anti-neurodegenerative disease, and anti-inflammatory activities.


Assuntos
Cumarínicos , Cumarínicos/química , Cumarínicos/síntese química , Cumarínicos/farmacologia , Humanos , Animais , Produtos Biológicos/química , Produtos Biológicos/síntese química , Produtos Biológicos/farmacologia , Isoquinolinas/química , Isoquinolinas/síntese química , Isoquinolinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Pirróis/química , Pirróis/síntese química , Pirróis/farmacologia , Estrutura Molecular , Compostos Heterocíclicos de 4 ou mais Anéis
7.
Phytochemistry ; : 114282, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39271035

RESUMO

Two undescribed isoquinolines (1-2), including one undescribed carbon skeleton isoquinoline together with six known ones (4-9) as well as an undescribed amide (3) and three known ones (10-12) were isolated from C. tomentella. Their planar structures and absolute configurations were elucidated by extensive analyses of UV, NMR, HRESIMS, DP4+ statistical analysis and ECD calculations, respectively. Tomentediline A (1) is an isoquinoline alkaloid dimer that forms an undescribed carbon carbon bond at the C-13 position of (2H)-protoberberine in a natural product discovered for the first time. Meantime, 1 exerted moderate cytotoxicity against the U251 cell lines, indicating that the undescribed dimer skeleton of isoquinoline compound has the potential for anti-glioma.

8.
Curr Med Chem ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39297453

RESUMO

In this manuscript, the resource distribution, pharmacological activity, pharma-cokinetics of sinomenine and the structure, synthesis, biological activity and mechanism of sinomenine derivatives reported from 2000 to December 2023 were reviewed. The lit-erature was retrieved through Web of Science, PubMed, Science Direct, SciFiner Scholar and other websites. Sinomenine belongs to isoquinoline alkaloids and was extracted from the Chinese herb Sinomenium acutum root. In Asian countries such as China and Japan, it is commonly prescribed as a treatment for rheumatoid arthritis. In addition, sinomenine also has sedative, analgesic, anti-inflammatory, immunosuppressive, neuroprotective, an-ti-drug dependence, anti-tumor and other biological activities. Sinomenine limited its ap-plication prospects because of its large dosage, poor epidermal permeability and short half-life. To overcome these defects, new sinomenine derivatives have been synthesized. Based on the comprehensive analysis of relevant literature at home and abroad, this paper reviews the recent progress in the study of sinomenine's pharmacological effects and structural modifications. Future research on sinomenine will focus on improving its thera-peutic effect, and developing new drug preparations and structural modifications. It is hoped that this review will help to better understand the research progress of sinomenine and provide constructive suggestions for further research of sinomenine.

9.
Chemistry ; : e202402214, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140423

RESUMO

Herein, we report an efficient strategy towards the synthesis of amino acid substituted isoquinoline derivatives via reaction of unprotected amino acid/amino acid ester/amino acid based drugs with 2-(2-oxo-2-aryl/alkylethyl)benzonitrile under metal-free conditions. The developed protocol is highly simple and shows functional group tolerance to provide corresponding novel amino acid substituted isoquinolines in aqueous medium. The applicability of the reaction is an easier modification of well-known drugs and successfully extended to gram-scale synthesis.

10.
Chem Asian J ; : e202400784, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39191674

RESUMO

Host-guest doping strategy has gradually become the mainstream in constructing organic room-temperature phosphorescence (RTP) materials. The two-component doped system typically emits monochromatic phosphorescence dominated by the guest molecule, which also means that the intrinsic phosphorescence emission of the host molecule is not well utilized. In this work, a time-dependent color-changing RTP material is constructed based on host-guest doped system, in which the initial yellow phosphorescence stems from the isoquinoline-pyrazole guest and the final cyan phosphorescence originates from the intrinsic emission of the polymer host. The phenomenon of the strong interaction between host and guest molecules leading to their respective intrinsic phosphorescence provides new design inspiration for designing and developing two-component doped materials with RTP properties of color variation over time.

11.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 7): 763-766, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38974163

RESUMO

The crystal structure of 1,2,3,4-tetra-hydro-isoquinolin-2-ium (2S,3S)-3-carb-oxy-2,3-di-hydroxy-propano-ate monohydrate, C9H12N+·C4H5O6 -·H2O, at 115 K shows ortho-rhom-bic symmetry (space group P212121). The hydrogen tartrate anions and solvent water mol-ecules form an intricate diperiodic O-H⋯O hydrogen-bond network parallel to (001). The tetra-hydro-isoquinolinium cations are tethered to the anionic hydrogen-bonded layers through N-H⋯O hydrogen bonds. The crystal packing in the third direction is achieved through van der Waals contacts between the hydro-carbon tails of the tetra-hydro-isoquinolinium cations, resulting in hydro-phobic and hydro-philic regions in the crystal structure.

12.
Chem Biodivers ; : e202401388, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39073302

RESUMO

Four new alkaloids Chaeronepaline-A (1), Chaeronepaline-B (2), Chaeronepaline-C (3), and Chaeronepaline-D (4) were isolated from Corydalis chaerophylla D.C. collected from Nepal and their structures were elucidated by spectroscopic data, 1D, 2D NMR and mass spectrometry. The structures were established as 3,12- Dimethoxy-5,6-dihydroisoquinolino [2,1-b] isoquinolin- 7- ium- 2, 9- diol (1), 7-Methyl-2,3 : 11,12-bis(methylenedioxy)-7,13a-secoberbin-13-14-epoxide (2), 7- methyl-5, 6, 7, 8- tetrahydro- 8H-spiro-9,14-dihydroxy-11,12-methylenedioxy-indane-isoquinoline (3) and 7- methyl-5, 6, 7, 8- tetrahydro- 8H-spiro-9,14-dihydroxy-11,12-methylenedioxy-indane-isoquinoline-N-oxide (4). The new alkaloids were tested in human hepatoma cell line to assess their ability to modulate the expression of low-density lipoprotein receptor (LDL-R), of proprotein convertase subtilisin/kexin 9 (PCSK9) and to affect cellular cholesterol biosynthesis with the aim to evaluate their potential hypocholesterolemic effect. Results indicated that compounds 2 and 3 upregulate the LDLR, and inhibited the cholesterol biosynthesis with compound 2, which also reduced the secretion of PCSK9 by Huh7 cells. These in vitro data indicated a potential hypocholesterolemic effect of compound 2 that requires further in vivo validation.

13.
Artigo em Inglês | MEDLINE | ID: mdl-39069700

RESUMO

BACKGROUND: A series of novel 2-(isoquinolin-1-yl)-spiro[oxindole-3,3'-pyrrolines] were synthesized by a one-pot three-component reaction involving dimethyl acetylenedicarboxylate, 3- phenylimidazo[5,1-a]isoquinoline and N-alkylisatins in chloroform at ∼60 °C for 24 h. AIMS: This study aimed at the synthesis of novel spirooxindole-3,3'-pyrrolines derivatives and in vitro evaluation of cytotoxicity affinities in cross-correlations with their antiinflammation and radical scavenging capacities. OBJECTIVE: The objective of this study was to use a one-pot, three-component reaction to synthesize a novel set of spirooxindole-3,3'-pyrrolines derivatives. METHOD: A novel set of spirooxindole-3,3'-pyrrolines (8a-i) was synthesized by a one-pot threecomponent reaction involving dimethyl acetylenedicarboxylate, 3-phenylimidazo[5,1-a]isoquinoline and N-alkylisatins in chloroform at ∼60 °C for 24 h. These new compounds were characterized by 1HNMR, 13C-NMR, and HRMS spectral data and screened for their antitumor, anti-inflammatory, antibacterial, antifungal, and antioxidant activities. RESULTS: The new synthetic spirooxindole-3,3'-pyrrolines (8a-i)-tested compounds displayed significant anti-inflammatory properties and were noncytotoxic on PDL fibroblasts. However, they lacked antioxidative-DPPH radical scavenging capabilities. Notably, Doxorubicin and cisplatin demonstrated antiproliferative effects on various cancer monolayers. Moreover, compounds 8b, 8d, 8f, 8h, and 8i exhibited pronounced viability reduction properties in colorectal and pancreatic cancer monolayers, as well as across skin, lung, prostate, and cervical adenocarcinomas, with higher cytotoxicity in mammary cancer cells MCF7 and T47D. None of the tested compounds had significant antibacterial activity against S. aureus or E. coli. However, compounds 8c, 8d, and 8f exhibited notable antifungal properties, indicating potential for further investigation. CONCLUSION: Eight new synthetic spiro[indoline-3,3-pyrroles] were prepared, characterized, and evaluated for their anti-inflammatory and cytotoxic properties. The compounds showed significant anti-inflammatory effects and promising cytotoxicity against various cancer monolayers, especially in colorectal and pancreatic cancers. Some compounds also exhibited antifungal properties. However, they did not exhibit significant antibacterial activity.

14.
Alkaloids Chem Biol ; 91: 1-410, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38811064

RESUMO

Naphthylisoquinoline alkaloids are a fascinating class of natural biaryl compounds. They show characteristic mono- and dimeric scaffolds, with chiral axes and stereogenic centers. Since the appearance of the last comprehensive overview on these secondary plant metabolites in this series in 1995, the number of discovered representatives has tremendously increased to more than 280 examples known today. Many novel-type compounds have meanwhile been discovered, among them naphthylisoquinoline-related follow-up products like e.g., the first seco-type (i.e., ring-opened) and ring-contracted analogues. As highlighted in this review, the knowledge on the broad structural chemodiversity of naphthylisoquinoline alkaloids has been decisively driven forward by extensive phytochemical studies on the metabolite pattern of Ancistrocladus abbreviatus from Coastal West Africa, which is a particularly "creative" plant. These investigations furnished a considerable number of more than 80-mostly new-natural products from this single species, with promising antiplasmodial activities and with pronounced cytotoxic effects against human leukemia, pancreatic, cervical, and breast cancer cells. Another unique feature of naphthylisoquinoline alkaloids is their unprecedented biosynthetic origin from polyketidic precursors and not, as usual for isoquinoline alkaloids, from aromatic amino acids-a striking example of biosynthetic convergence in nature. Furthermore, remarkable botanical results are presented on the natural producers of naphthylisoquinoline alkaloids, the paleotropical Dioncophyllaceae and Ancistrocladaceae lianas, including first investigations on the chemoecological role of these plant metabolites and their storage and accumulation in particular plant organs.


Assuntos
Alcaloides , Isoquinolinas , Humanos , Alcaloides/química , Alcaloides/farmacologia , Alcaloides/metabolismo , Isoquinolinas/química , Isoquinolinas/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Animais , Estrutura Molecular
15.
Naunyn Schmiedebergs Arch Pharmacol ; 397(10): 7439-7471, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-38767672

RESUMO

Alkaloids are a complex class of biologically active compounds with a broad spectrum of health-related applications. Particularly the alkaloids of indole, steroidal, terpenoids, isoquinoline, and bisbenzylisoquinoline have been extensively investigated. Ultimately, substantial advancement has been highlighted in the investigation of chemical constituents and the therapeutic benefits of plant alkaloids, particularly during the last ten years. A total of 386 alkaloids have been isolated from over 40 families, including Apocynaceae, Annonaceae, Rubiaceae, Menispermaceae, Ranunculaceae, Buxaceae, Papaveraceae, Magnoliaceae, Rutaceae and Phyllanthaceae. This paper will investigate several alkaloids that have been isolated from botanical medicines as well as offer an in-depth analysis of their cytotoxic properties.


Assuntos
Alcaloides , Plantas Medicinais , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Alcaloides/química , Plantas Medicinais/química , Humanos , Animais , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação
16.
Molecules ; 29(8)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38675603

RESUMO

Due to boron's metalloid properties, aromatic boron reagents are prevalent synthetic intermediates. The direct borylation of aryl C-H bonds for producing aromatic boron compounds offers an appealing, one-step solution. Despite significant advances in this field, achieving regioselective aryl C-H bond borylation using simple and readily available starting materials still remains a challenge. In this work, we attempted to enhance the reactivity of the electron-donor-acceptor (EDA) complex by selecting different bases to replace the organic base (NEt3) used in our previous research. To our delight, when using NH4HCO3 as the base, we have achieved a mild visible-light-mediated aromatic C-H bond borylation reaction with exceptional regioselectivity (rr > 40:1 to single isomers). Compared with our previous borylation methodologies, this protocol provides a more efficient and broader scope for aryl C-H bond borylation through the use of N-Bromosuccinimide. The protocol's good functional-group tolerance and excellent regioselectivity enable the functionalization of a variety of biologically relevant compounds and novel cascade transformations. Mechanistic experiments and theoretical calculations conducted in this study have indicated that, for certain arenes, the aryl C-H bond borylation might proceed through a new reaction mechanism, which involves the formation of a novel transient EDA complex.

17.
J Exp Bot ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652148

RESUMO

Amaryllidaceae alkaloid (AAs) biosynthesis has garnered significant attention in recent years, particularly with the commercialisation of galanthamine as a treatment for the symptoms of Alzheimer's disease. A significant amount of research work over the last 8 decades has focused on the understanding of AA biosynthesis, starting from early radiolabelling studies to recent multi-omics analysis with modern biotechnological advancements. Those studies enabled the identification of hundreds of metabolites, the characterisation of biochemical pathway, an understanding of the environmental stimuli, and of the molecular regulation of these pharmaceutically and agriculturally important metabolites. Despite the numerous works there remain significant gaps in understanding their biosynthesis in Amaryllidaceae plants. As such, further research is needed to fully elucidate the metabolic pathway and facilitate their production. This review aims to provide a comprehensive overall summary of the current state of knowledge on AAs biosynthesis, from elicitation of transcription factors expression in the cell nucleus to alkaloid transport in the apoplast, and to highlight the challenges that need to be overcome for further advancement.

18.
J Ethnopharmacol ; 330: 118218, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38677570

RESUMO

ETHNOPHARMACOLOGY RELEVANCE: Zanthoxylum bungeanum Maxim. (Z. bungeanum), a member of the Rutaceae family, has a rich history of traditional use in Asia for treating arthritis and toothache conditions. As characteristic chemical components, numerous kinds of alkaloids have been extracted from plants and their diverse biological activities have been reported. However, research on the isoquinoline alkaloid, a specific type of alkaloids, in Z. bungeanum was scarce. AIM OF THE STUDY: The study aimed to isolate a novel isoquinoline alkaloid from Z. bungeanum and explore its pharmacological activity in vitro and analgesic activity in vivo. MATERIALS AND METHODS: Isoquinoline alkaloid isolation and identification from Z. bungeanum were conducted using chromatographic and spectroscopic methods. The whole-cell patch-clamp technique was applied to assess its impact on neuronal excitability, and endogenous voltage-gated potassium (Kv) and sodium (Nav) currents in acutely isolated mouse small-diameter dorsal root ganglion (DRG) neurons. Its inhibitory impacts on channels were further validated with HEK293 cells stably expressing Nav1.7 and Nav1.8, and Chinese hamster ovary (CHO) cells transiently expressing Kv2.1. The formalin inflammatory pain model was utilized to evaluate the potential analgesic activity in vivo. RESULTS: A novel isoquinoline alkaloid named HJ-69 (N-13-(3-methoxyprop-1-yl)rutaecarpine) was isolated and identified from Z. bungeanum for the first time. HJ-69 significantly suppressed the firing frequency and amplitudes of action potentials in DRG neurons. Consistently, it state-dependently inhibited endogenous Nav currents of DRG neurons, with half maximal inhibitory concentration (IC50) values of 13.06 ± 2.06 µM and 30.19 ± 2.07 µM for the inactivated and resting states, respectively. HJ-69 significantly suppressed potassium currents in DRG neurons, which notably inhibited the delayed rectifier potassium (IK) currents (IC50 = 6.95 ± 1.29 µM) and slightly affected the transient outward potassium (IA) currents (IC50 = 523.50 ± 39.16 µM). Furtherly, HJ-69 exhibited similar potencies on heterologously expressed Nav1.7, Nav1.8, and Kv2.1 channels, which correspondingly represent the main components in neurons. Notably, intraperitoneal administration of 30 mg/kg and 100 mg/kg HJ-69 significantly alleviated pain behaviors in the mouse inflammatory pain model induced by formalin. CONCLUSION: The study concluded that HJ-69 is a novel and active isoquinoline alkaloid, and the inhibition of Nav and Kv channels contributes to its analgesic activity. HJ-69 may be a promising prototype for future analgesic drug discovery based on the isoquinoline alkaloid.


Assuntos
Analgésicos , Gânglios Espinais , Dor , Zanthoxylum , Animais , Zanthoxylum/química , Humanos , Células HEK293 , Analgésicos/farmacologia , Analgésicos/química , Analgésicos/isolamento & purificação , Analgésicos/uso terapêutico , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Camundongos , Masculino , Dor/tratamento farmacológico , Isoquinolinas/farmacologia , Isoquinolinas/isolamento & purificação , Isoquinolinas/química , Alcaloides/farmacologia , Alcaloides/isolamento & purificação , Alcaloides/química , Alcaloides/uso terapêutico , Bloqueadores dos Canais de Potássio/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Inflamação/tratamento farmacológico , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/isolamento & purificação , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/química , Camundongos Endogâmicos C57BL , Cricetulus
19.
Poult Sci ; 103(5): 103654, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537403

RESUMO

Extensive mechanistic evidence to support the beneficial function of dietary phytobiotic applications for broiler performance, gut function and health is highly warranted. In particular, for isoquinoline alkaloids (IQ) the underlying mechanisms related to critical gut homeostasis components such as cytoprotection and gut barrier are scarce, especially for young broilers at the starter growth stage (d1-10). The aim of this study was to investigate the effect of a standardized blend of IQs on the relative gene expression of critical biomarkers relevant for antioxidant response and barrier function along the intestine of young broilers at the end of starter growth phase. For this purpose, 182 one-day-old Ross 308 broilers were allocated in 2 treatments with 7 replicates of 13 broilers each: control diet-no other additions (NC), and control diet containing a standardized blend of IQs at 200 mg/kg of diet (M) for the starter growth period (1-10d). The results revealed that the IQs blend significantly upregulated (P < 0.05) the expression of genes related to antioxidant response in all intestinal segments. Moreover, the IQs blend enhanced (P < 0.05) gut barrier components primarily at duodenal level. In conclusion, the blend of IQs beneficially affected critical pathway components relevant for the gut antioxidant capacity and barrier along the intestine of young broilers.


Assuntos
Ração Animal , Antioxidantes , Galinhas , Dieta , Suplementos Nutricionais , Isoquinolinas , Animais , Galinhas/fisiologia , Galinhas/crescimento & desenvolvimento , Dieta/veterinária , Antioxidantes/metabolismo , Isoquinolinas/administração & dosagem , Isoquinolinas/farmacologia , Ração Animal/análise , Suplementos Nutricionais/análise , Alcaloides/administração & dosagem , Alcaloides/farmacologia , Intestinos/efeitos dos fármacos , Intestinos/fisiologia , Distribuição Aleatória , Masculino , Expressão Gênica/efeitos dos fármacos
20.
Bioorg Med Chem Lett ; 104: 129710, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38518997

RESUMO

A novel series of benzo[6,7]indolo[3,4-c]isoquinolines 3a-3f was designed by scaffold hopping of topoisomerase I inhibitor benzo[g][1]benzopyrano[4,3-b]indol-6(13H)-ones (BBPIs), which were developed by structural modification of the natural marine product lamellarin. The unconventional pentacycle was constructed by Bischler-Napieralski-type condensation of amide 11 and subsequent intramolecular Heck reaction. In vitro anticancer activity of the synthesized benzo[6,7]indolo[3,4-c]isoquinolines was evaluated on a panel of 39 human cancer cell lines (JFCR39). Among the compounds tested, N-(3-morpholinopropyl) derivative 3e showed the most potent antiproliferative activity, with a mean GI50 value of 39 nM. This compound inhibited topoisomerase I activity by stabilizing the enzyme-DNA complex.


Assuntos
Antineoplásicos , Cumarínicos , Compostos Heterocíclicos de 4 ou mais Anéis , Isoquinolinas , Inibidores da Topoisomerase I , Humanos , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA Topoisomerases Tipo I/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Isoquinolinas/síntese química , Isoquinolinas/química , Isoquinolinas/farmacologia , Relação Estrutura-Atividade , Inibidores da Topoisomerase I/síntese química , Inibidores da Topoisomerase I/química , Inibidores da Topoisomerase I/farmacologia , Desenho de Fármacos , Cumarínicos/síntese química , Cumarínicos/química , Cumarínicos/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/síntese química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA